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Conventions
And disclaimers, and such

• Bold monospace is used for code or linux commands.
• The pairs load instruction ­ read operation, store instruction ­ write operation are used interchangeably

throughout the presentation.
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Preamble

This talk assumes
• You are familiar with Cache memories.
• You are familiar with Cache coherence.
• You are familiar with Out­of­order execution and superscalar processors.

• Branch prediction is orthogonal.
• All data in C/C++ is volatile­qualified.
• All memory reads/writes are 8­bytes long, aligned.

Rek
ai G

onz
ález

Alb
erq

uilla

16
th Ma

y 20
24

AM
D Pub

lic |
Ext

ern
al u

se

4 / 21 2024 AMD Public | External use



Preamble

This talk assumes
• You are familiar with Cache memories.
• You are familiar with Cache coherence.
• You are familiar with Out­of­order execution and superscalar processors.

• Branch prediction is orthogonal.
• All data in C/C++ is volatile­qualified.
• All memory reads/writes are 8­bytes long, aligned.

Consistency vs Coherence, often put together, two totally different beasts.
• Coherence

• Transparent to the programmer.
• Only HW designers and low level programmers care about it.

• Consistency
• Part of the architecture (implication on instruction semantics).
• Has an impact beyond HW and low level SW.
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Definitions

• Parallel: Two events, A, and B, are parallel iff there is no order relationship between them.
• Static instruction: A sequence of bytes that adheres an element of the ISA. Defined by the value of the

bytes.
• Dynamic instruction: An instance of a static instruction, defined by the static instruction as well as the

execution context.
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Definitions

• Parallel: Two events, A, and B, are parallel iff there is no order relationship between them.
• Static instruction: A sequence of bytes that adheres an element of the ISA. Defined by the value of the

bytes.
• Dynamic instruction: An instance of a static instruction, defined by the static instruction as well as the

execution context.

1 b: b.eq r0, r1, end
2 fadd [r3], d0
3 add r3, #8
4 inc r0
5 jmp b
6 end:

1 b.eq r0, r1, end # r0 = 3, r1 = 5
2 fadd [r3], d0 # r3 = 0x10018, d0 = 2.0
3 add r3, #8 # r3 = 0x10018 | r3 <- 0x10020
4 inc r0 # r0 = 3 | r0 <- 4
5 jmp b
6 b.eq r0, r1, end # r0 = 4, r1 = 5
7 fadd [r3], d0 # r3 = 0x10020, d0 = 2.0
8 add r3, #8 # r3 = 0x10020 | r3 <- 0x10028
9 inc r0 # r0 = 4 | r0 <- 5

10 jmp b
11 ...
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Definitions

• Parallel: Two events, A, and B, are parallel iff there is no order relationship between them.
• Static instruction: A sequence of bytes that adheres an element of the ISA. Defined by the value of the

bytes.
• Dynamic instruction: An instance of a static instruction, defined by the static instruction as well as the

execution context.
• Speculative: means executing without waiting for memory order guarantee, as opposed to control order

guarantee.
• L(A): Load/Read Mem[A].
• S(B): Store/Write Mem[B].
• A ̸= B ⇒ Mem[A] ∩ Mem[B] = Φ.
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Definitions:Order relationships
All about not being one and only one order

• Program order: Is the order relationship between dynamic instructions implied by the trace (sequential
execution) of the program, <p.

• Coherence order: Is the order relationshipt between dynamic instructions implied by the cache coherence
protocol.

• Memory order: Is the order in which (memory) operations arrive to the shared global memory, <m.

The rest of the talk is about when, given two instructions Ii, Ij, Ii <p Ij ⇒ Ii <m Ij.
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Definitions:Order relationships
All about not being one and only one order

• Program order: Is the order relationship between dynamic instructions implied by the trace (sequential
execution) of the program, <p.

• Coherence order: Is the order relationshipt between dynamic instructions implied by the cache coherence
protocol.

• Memory order: Is the order in which (memory) operations arrive to the shared global memory, <m.

The rest of the talk is about when, given two instructions Ii, Ij, Ii <p Ij ⇒ Ii <m Ij.
• Fence: the ultimate tool. A Fence is a special instruction such that: for any two instructions Ii, Ij, for any

two fences Fu, Fv
• Ii <p Fu ⇒ Ii <m Fu
• Fu <p Ij ⇒ Fu <m Ij
• Fu <p Fv ⇒ Fu <m Fv

i.e., fences enforce order.
• There can be fences that provide only a subset of the guarantees.
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Motivating example
Why do we want a consistency model?

Assuming P0 and P1 are processors in a shared memory system.

Mem[X] := 0
Mem[Y] := 0

[P0]
St [X], 0x1 # S(X)
St [Y], 0x1 # S(Y)

[P1]
Ld r0, [Y] # L(Y)
Ld r1, [X] # L(X)

Which of the following are possible outcomes?

• [P1] r0 = 1, r1 = 1
• [P1] r0 = 0, r1 = 1
• [P1] r0 = 1, r1 = 0
• [P1] r0 = 0, r1 = 0

Knowing what is allowed and what is not is needed to validate HW and SW.
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What is memory Consistency?

Memory consistency is a contract between a programmer and a system that describes which outcomes
are possible for a particular program.

• Strict consistency: writes to memory are instantaneously observable by all processors in the system.
Purely theoretical.

• Sequential consistency (Lamport, 1979): "The result of any execution is the same as if the (read and write)
operations of all processes on the data store were executed in some sequential order,and the operations of
each individual processor appear in this sequence in the order specified by its program" (MIPS R10000).

• Release consistency
• TSO, strong: Younger loads may be reordered w.r.t. older stores. I.e. writes can be buffered locally (x86).
• RMO, weak: A read or write may be reordered w.r.t. any other read or write to a different location (Power, Arm).
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What does that mean?
The informal view

Mem[X] := 0
Mem[Y] := 0
Mem[Z] := 0

[P0]
St [X], 0x1
St [Y], 0x1
Ld r0, [Z]

[P1]
St[Z], 0x1
Ldr0, [Y]
Ldr1, [X]

P0.r0 P1.r0 P1.r1 SC TSO RMO
0 0 0 N Y Y
0 0 1 N Y Y
0 1 0 N N Y
0 1 1 Y Y Y
1 0 0 Y Y Y
1 0 1 N Y Y
1 1 0 N N Y
1 1 1 Y Y Y
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Push towards stricter consistency
Or why did you say we care about this?

1 class Peterson {
2 bool _request[2]{false, false};
3 int _yields{0};
4 public:
5 void lock(int me) {
6 _request[me] = true;
7 _yields = me;
8 while (_request[1 - me] && _yields == me)
9 continue;

10 }
11 void unlock(int me) {
12 _request[me] = false;
13 }
14 };
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Push towards stricter consistency
Or why did you say we care about this?

1 class Peterson {
2 bool _request[2]{false, false};
3 int _yields{0};
4 public:
5 void lock(int me) {
6 _request[me] = true;
7 _yields = me;
8 while (_request[1 - me] && _yields == me)
9 continue;

10 }
11 void unlock(int me) {
12 _request[me] = false;
13 }
14 };

This algorithm is SC­sound but does not work in TSO or RMO
• Thinking SC is easier.
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The (a bit more) formal view
What is the TSO guarantee?

No matter whether A and B are the same
• L(A) <p L(B) ⇒ L(A) <m L(B): Loads cannot overtake loads.
• L(A) <p S(B) ⇒ L(A) <m S(B): Stores cannot overtake loads.
• S(A) <p S(B) ⇒ S(A) <m S(B): Stores cannot overtake stores.
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The (a bit more) formal view
What is the TSO guarantee?

No matter whether A and B are the same
• L(A) <p L(B) ⇒ L(A) <m L(B): Loads cannot overtake loads.
• L(A) <p S(B) ⇒ L(A) <m S(B): Stores cannot overtake loads.
• S(A) <p S(B) ⇒ S(A) <m S(B): Stores cannot overtake stores.
• L(A) yields the value written by

max
<m

{S(A)|S(A) <m L(A) or S(A) <p L(A)}

Loads take the value of
• If the <p­latest store before the Load is L(A) <m S(A), then S(A) (Store­to­load­forwarding).
• Otherwise he <m­latest store before the Load.
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Back to the example

I1: W(_request[0], 1)
I2: W(_yields, 0)
I3: R(_request[1])

I1<p I2 <p I3

J1: W(_request[1], 1)
J2: W(_yields, 1)
J3: R(_request[0])

J1<p J2 <p J3

According to TSO
• J3 <m J1, and
• I3 <m I1 are valid outcomes

so I3 <m J3 <m I1 <m I2 <m J1 <m J2 is a valid outcome.
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What about the good old flag based synchronisation?

1 class Channel {
2 bool _ready{0};
3 int _data;
4 public:
5 int consume() {
6 while (!_ready) {}
7 int d = _data;
8 _ready = false;
9 }

10 void produce(int v) {
11 while (_ready) {}
12 _data = v;
13 _ready = true;
14 }
15 };

C1: R0 <- R(_ready)
C2: BIfZero R0, C1
C3: R1 <- R(_data)
C4: W(_ready, 0)

P1: R0 <- R(_ready)
P2: BIfNotZero R0, P1
P3: W(_data, R1)
P4: W(_ready, 1)
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Flags in TSO
Why does it work?

C1: R0 <- R(_ready)
C2: BIfZero R0, C1
C3: R1 <- R(_data)
C4: W(_ready, 0)

P1: R0 <- R(_ready)
P2: BIfNotZero R0, P1
P3: W(_data, R1)
P4: W(_ready, 1)

• C1n <p C3 ⇒ C1n <m C3
• C3 <p C4 ⇒ C3 <m C4
• P1n <p P3 ⇒ P1n <m P3
• P3 <p P4 ⇒ P3 <m P4

Putting all together +<2> If C1i observes P4, i.e. P4 <m C1i, then it is guaranteed by TSO that P3 <m C3, i.e.
_data gets the expected v. +<3> If P1i observes C4, i.e. C4 <m P1i, then it is guaranteed by TSO that C3
<m P3, i.e. _data is not overwritten before being read.
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High performance techniques

• We want to do as much Out­of­order as needed to maximise ILP/MLP extraction.
• Break name dependencies, honour real dependencies.
• Execute instructions as soon as operands are ready. Commit in order to preserve precise exceptions.

What does consistency have to do with all this?
• The moment there are more than one threads sharing the memory out­of­order execution needs to be

done carefully.

Four techniques, as described in [Shen and Lipasti] and [Sorin et al]
• Load­load bypassing: Executing a younger load ahead of an older load waiting.
• Load­store bypassing: Executing a younger load ahead of an older store waiting.
• Store­Load Forwarding: Sending the data from an older store to a younger load.
• Store coalescing: Merging writes before sending them to memory.
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Some code to reason on
Who does not love I­DAXPY?

1 void idaxpy(double** x, double** y, double** z, double A) {
2 for (int i = 0; i < N; ++i) {
3 *(z[i]) = A * *(x[i]) + *(y[i]);
4 }
5 }

Loop:
I1 Rx <= Ld [Rpx] ; x[i]
I2 F2 <= Ld [Rx] ; *x[i]
I3 F2 <= Mul F2, F0 ; * A
I4 Ry <= Ld [Rpy] ; y[i]
I5 F4 <= Ld [Ry] ; *y[i]
I6 F4 <= Add F4, F0 ; + *y[i]
I7 Rz <= Ld [Rpz] ; z[i]
I8 St F4, [Rz] ; *z[i] =
I9 Rpx <= Add Rpx, 8 ; ++i
I10 Rpy <= Add Rpy, 8 ; ++i
I11 Rpz <= Add Rpz, 8 ; ++i
I12 Cmp Rpx, End
I13 Bneq Loop
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Load­Load bypassing
We want loads executed ASAP

Scenario, n­th iteration
• I2n: F2 <= Ld [Rx] misses in DL1 @Rx.
• We do not want to wait for the miss to do I4n: Ry <= Ld [Rpy] and I5n: F4 <= Ld [Ry].
• So we execute I4n as soon as I10n−1 is done, and I5n as soon as I4n is done.

Thoughts?
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Load­Load bypassing
We want loads executed ASAP

Scenario, n­th iteration
• I2n: F2 <= Ld [Rx] misses in DL1 @Rx.
• We do not want to wait for the miss to do I4n: Ry <= Ld [Rpy] and I5n: F4 <= Ld [Ry].
• So we execute I4n as soon as I10n−1 is done, and I5n as soon as I4n is done.

Thoughts?
• Doing so would violate I2n <p I4n ⇒ I2n <m I4n.

• If we are in relaxed consistency that is okay.
• If we are in TSO or SC that is not okay!

• One way to fake it is as R10000 did: The eviction or invalidation of a cache block squashes any load to that
block and all subsequent instructions.

• If S1 : S(X) <p S2 : S(Y) <m L1 : L(Y) <p L2 : L(X), both TSO and SC have to guarantee that if L1 reads the
value written by S2, L2 needs to read the value from S1 (or younger).

• If L2 gets a value older than S1 it is guaranteed to observe an invalidation from S1 before the data from S2 arrives.
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Load­Store bypassing
We want loads executed ASAP

Scenario, n­th iteration
• I3n−1: F2 <= Mul F2, F0 is a long latency operation/I7n−1: Rz <= Ld [Rpz] misses in DL1 @Rz.
• Stores cannot write memory until they are the oldest instruction.
• We don't want I1n (I2n, I4n, I5n) to have to wait until I8n−1 is the oldest instruction/retires.
• So we execute I1nas soon as as I9n−1 is done.

Thoughts?
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Load­Store bypassing
We want loads executed ASAP

Scenario, n­th iteration
• I3n−1: F2 <= Mul F2, F0 is a long latency operation/I7n−1: Rz <= Ld [Rpz] misses in DL1 @Rz.
• Stores cannot write memory until they are the oldest instruction.
• We don't want I1n (I2n, I4n, I5n) to have to wait until I8n−1 is the oldest instruction/retires.
• So we execute I1nas soon as as I9n−1 is done.

Thoughts?
• If z[n-1] == x[n] we have to do Store­Load Forwarding to preserve program semantics.
• If z[n-1] != x[n], doing so would violate I7n−1 <p I1n ⇒ I7n−1 <m I1n.

• If we are in relaxed consistency or TSO that is okay.
• If we are in SC that is not okay!

• The same solution as in the previous case would handle it.
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Load­Store bypassing
We want loads executed ASAP

Scenario, n­th iteration
• I3n−1: F2 <= Mul F2, F0 is a long latency operation/I7n−1: Rz <= Ld [Rpz] misses in DL1 @Rz.
• Stores cannot write memory until they are the oldest instruction.
• We don't want I1n (I2n, I4n, I5n) to have to wait until I8n−1 is the oldest instruction/retires.
• So we execute I1nas soon as as I9n−1 is done.

Thoughts?
• What if I7n−1 misses in DL1 @Rz?

• This is a program semantics issue =) nothing new as far as consistency is concerned.
• Enforcing issue in order handles the situation.
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Store coalescing
If stores overlap, let's send them together

Scenario, n­th iteration
• *z[n-2] and *z[n] lie consecutively in the same cache line.
• *z[n-1] lies in a different cache line.
• We want to minimise the amount of cache writes, so we use a buffer to coalesce the data and perform two

writes to DL1 instead of 3.

Thoughts?
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Store coalescing
If stores overlap, let's send them together

Scenario, n­th iteration
• *z[n-2] and *z[n] lie consecutively in the same cache line.
• *z[n-1] lies in a different cache line.
• We want to minimise the amount of cache writes, so we use a buffer to coalesce the data and perform two

writes to DL1 instead of 3.

Thoughts?
• Doing so would violate I8n−2 <p I8n−1 <p I8n ⇒ I8n−2 <m I8n−1 <m I8n.

• If we are in relaxed consistency that is okay.
• If we are in TSO or SC that is not okay!

• There is literature handling it by delaying coherence responses to still enforce TSO.
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Push towards more relaxed consistency

• This should make it obvious why HW designers may want relaxed consistency.
• Why do we just not do all relaxed consistency then?

• Code is not portable towards more restricted consistency model.
• Ordering is a responsibility of the programmer (or compiler).

• Harder to write (correct) software.
• Achived through fences.

• Fences are instructions such that impose order. If F is a fence, and I and J are any two instructions
• I <p F ⇒ I <m F.
• F <p J ⇒ F <m J.

• The flipside of fences is that
• The most straigtforward way to enforce a fence is squashing all subsequent instructions upon retire.
• Fences may have implications as they travel the memory hierarchy.
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Conclusions

• You cannot ignore your memory model
• If you are making SW, you need to know what outcomes are possible, so your memory sharers communicate the

way you want them to.
• If you are making HW, you do not need to implement it, faking it is just enough, and enables better performance.
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