
Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Fuzzy Logic Programming based on Weak

Unification: concepts, implementation and
applications.

Pascual Julián-Iranzo1

1Department of Information Technologies and Systems,

University of Castilla-La Mancha, Spain.
(Pascual.Julian@uclm.es)

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 1 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Overview of this talk

There are two characteristics of programming languages that
are going to be greatly appreciated in the future:

1 their ability to answer flexibly to questions
2 the possibility of modeling taxonomies of terms.

This talk tries to show how both characteristics can be
integrated in fuzzy logic programming languages through
the unified concept of proximity/similarity relation.

We present some of the benefits of this integration through a
series of simple programs.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 2 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Outline

1 Introduction
Fuzzy Logic Programming
Bousi∼Prolog general features

2 Bousi∼Prolog Fundamentals and its Implementation
Proximity Relations and Similarity Relations
The Similarity-based Unification Algorithm
Pros and Cons of Proximity Relations
Proximity Blocks vs. Proximity Classes
A New Notion of Proximity Between Expressions
An Efficient Proximity-based Unification Algorithm
Weak SLD Resolution

3 Some Bousi∼Prolog Applications
Pattern Matching in Strings
Flexible Query Answering in Deductive Databases
Information Retrieval
Approximate Reasoning

4 Conclusions

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 3 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Outline

1 Introduction
Fuzzy Logic Programming
Bousi∼Prolog general features

2 Bousi∼Prolog Fundamentals and its Implementation
Proximity Relations and Similarity Relations
The Similarity-based Unification Algorithm
Pros and Cons of Proximity Relations
Proximity Blocks vs. Proximity Classes
A New Notion of Proximity Between Expressions
An Efficient Proximity-based Unification Algorithm
Weak SLD Resolution

3 Some Bousi∼Prolog Applications
Pattern Matching in Strings
Flexible Query Answering in Deductive Databases
Information Retrieval
Approximate Reasoning

4 Conclusions

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 4 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Fuzzy Logic Programming

Fuzzy Logic Programming

Fuzzy Logic Programming = Logic Prog. + Fuzzy Logic

Born as early as the seventies (past century) [Lee-72].

There is no a standard language. Several approaches:

1. SLD-resolution + weak unification
Likelog [Fontana & Formato-99]; SiLog [M. Sessa-01]; Bousi∼Prolog [Julián et al-08] [Julián &

Sáenz-23]

2. FUZZY inference + syntactic unification
Fril [Baldwin et al-84]; f-Prolog [Vojtáš & Pauĺık-96] [Vojtáš -01]; MALP [Ojeda et al-01& -04];

Fuzzy Prolog [S. Muñoz et al-04]

3. FUZZY inference + weak unification
FASILL [Moreno & Julián-14]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 5 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Fuzzy Logic Programming

Fuzzy Logic Programming and Bousi Prolog

SLD-resolution + weak unification

Bousi∼Prolog (BPL) is a fuzzy logic programming language
whose main objective is to make flexible the query answering
process.

BPL is a conservative extension of Prolog, introducing as
many fuzzy features as possible while maintaining most of the
Prolog syntax.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 6 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bousi∼Prolog general features

Bousi Prolog general features

One distinguished feature of Bousi∼Prolog is that it makes
a separate treatment of Vague Knowledge.

Algorithm = Logic + Vague Knowledge + Control.

Logic: is specified by (possibly graded) facts and rules (most
of which respect the Prolog syntax).

Vague Knowledge: is specified by proximity equations
(and/or directives defining fuzzy subsets).

Control: is implemented by an operational semantics based
on Weak SLD Resolution (= SLD Resolution + Weak
Unification + Grade composition).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 7 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bousi∼Prolog general features

Bousi Prolog general features

Example

% FACTS
likes teaching(john, physics).
likes teaching(mary, chemistry).
has degree(john, physics).
has degree(mary, chemistry).

% RULE
can teach(X,M):-has degree(X, M), likes teaching(X, M).

?- can teach(X,maths).

No answers !!

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 8 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bousi∼Prolog general features

Bousi Prolog general features

Example

% FACTS
likes teaching(john, physics).
likes teaching(mary, chemistry).
has degree(john, physics).
has degree(mary, chemistry).

% RULE
can teach(X,M):-has degree(X, M), likes teaching(X, M).

% PROXIMITY EQUATIONS
physics ∼ maths = 0.8.
physics ∼ chemistry = 0.8.
chemistry ∼ maths = 0.6.

?- can teach(X,maths).

X = john With approximation degree: 0.8 ;
X = mary With approximation degree: 0.6.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 8 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bousi∼Prolog general features

Bousi Prolog general features

Example

% FACTS
likes teaching(john, physics) with 0.75.
likes teaching(mary, chemistry) with 0.5.
has degree(john, physics).
has degree(mary, chemistry).

% RULE
can teach(X,M):-has degree(X, M), likes teaching(X, M) with 0.9.

% PROXIMITY EQUATIONS
physics ∼ maths = 0.8.
physics ∼ chemistry = 0.8.
chemistry ∼ maths = 0.6.

?- can teach(X,maths).

X = john With approximation degree: 0.75 ;
X = mary With approximation degree: 0.5.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 8 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bousi∼Prolog general features

Bousi∼Prolog general features and implementation

The BPL system is an implementation of Bousi∼Prolog.

It is a high level implementation system: compiles BPL
programs into Prolog code which is executed by SWI-Prolog.

It is publicly available at:
https://dectau.uclm.es/bousi-prolog/

Also available as an online interface:
https://dectau.uclm.es:8443

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 9 / 73

https://dectau.uclm.es/bousi-prolog/
https://dectau.uclm.es:8443


Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bousi∼Prolog general features

A screenshot of the online interface

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 10 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Architecture of the BPL system.

The Bousi∼Prolog system is composed of three subsystems which
are integrated by a total of nine modules.

The bousi module initializes the system.

The bplShell module: command processing
functionalities.

The parser module: lexical, syntactic and
semantic analysis of the BPL programs and
queries.

The translator module: translates the BPL
source files and queries into TPL code. It
relies on the parser module.

The evaluator module: executes the TPL
code. Implements the loader/interpreter of
the BPL system.

Modules with specific tasks: bplHelp,
directives, flags and foreign.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 11 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Outline

1 Introduction
Fuzzy Logic Programming
Bousi∼Prolog general features

2 Bousi∼Prolog Fundamentals and its Implementation
Proximity Relations and Similarity Relations
The Similarity-based Unification Algorithm
Pros and Cons of Proximity Relations
Proximity Blocks vs. Proximity Classes
A New Notion of Proximity Between Expressions
An Efficient Proximity-based Unification Algorithm
Weak SLD Resolution

3 Some Bousi∼Prolog Applications
Pattern Matching in Strings
Flexible Query Answering in Deductive Databases
Information Retrieval
Approximate Reasoning

4 Conclusions

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 12 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Proximity Relations and Similarity Relations

A binary fuzzy relation R on U is a mapping
R : U × U → [0, 1].

Some important properties fuzzy relations may have:

1 (Reflexive) R(x , x) = 1 for any x ∈ U ;
2 (Symmetric) R(x , y) = R(y , x) for any x , y ∈ U ;
3 (Transitive) R(x , z) ≥ R(x , y)△R(y , z) for any x , y , z ∈ U ;

where △ in any t-norm. When △ ≡ ∧ (i.e., the minimum
t-norm): min-transitive.

Proximity relations: fuzzy binary relations fulfilling the
reflexive and symmetric properties.

Similarity relations: transitive proximity relations. Extension
of the classical notion of equivalence relation.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 13 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Similarity relations on syntactic domains

In classical Logic Programming different syntactic symbols
represent distinct information.

This restriction can be relaxed by introducing a similarity
relation R defined on the alphabet of a first order language.

Then, it can be extended to expressions (terms and atomic
formulas) by structural induction:

R̂(x , y) = 1, if x and y are variables and x ≡ y .

R̂(f (t1, . . . , tn), g(s1, . . . , sn)) = R(f , g)∧ (
∧n

i=1 R̂(ti , si)), if f
and g are function symbols and t1, . . . , tn, s1, . . . , sn are terms.

R̂(p(t1, . . . , tn), q(s1, . . . , sn)) = R(p, q) ∧ (
∧n

i=1 R̂(ti , si )), if
p and q are predicate symbols and t1, . . . , tn, s1, . . . , sn are
terms.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 14 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Proximity/Similarity relations on syntactic domains

Example

Given the fuzzy relation R:

R(p, q) = 0.6, R(a, b) = 0.5, R(b, c) = 0.4

We can check the similarity of two terms using the extended
relation R̂:

R̂(p(c), q(a))

= R(p, q) ∧ R̂(c , a) = 0.6 ∧R(c , a) = 0.6 ∧ 0.4 = 0.4

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 15 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Fuzzy Relations and Proximity Equations

In Bousi∼Prolog fuzzy relations a syntactically represented by
“proximity equations”.

Proximity equation:

< symbol >∼< symbol >=< degree >

Formally, is an entry defining a fuzzy binary relation R

In practice, the built-in symbol “∼” is a compressed notation
for the symmetric closure of R

“a ∼ b = α” means that a is close to b and b is close to a
with degree α: R(a, b) = α plus R(b, a) = α.

Proximity Equations can express vague knowledge.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 16 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Fuzzy Relations and Proximity Equations

A proximity or similarity relation R can be partially specified:

Example (3)

p ∼ q = 0.6. a ∼ b = 0.5. b ∼ c = 0.4.

In fact, the above proximity equations are entries of a fuzzy
relation which are internally represented, e.g., as sim(p, q,

0.6).

It will depend on the “transitivity” directive whether the fuzzy
relation will become a proximity or a similarity relation.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 17 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Fuzzy Relations and Proximity Equations

The transitivity directive has the following syntax:

:- transitivity([option]).

Option Relation type T-norm

yes Similarity Minim
no Proximity N/A
min Similarity Minim
luka Similarity  Lukasiewicz

product Similarity Product
...

...
...

By default: :- transitivity(no).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 18 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Relations and Similarity Relations

Fuzzy Relations and Proximity Equations

Use “:- transitivity(yes).” If a similarity relation is needed.

Example (Computing a similarity relation)

For the partial specified fuzzy relation in Ex.3, the reflexive,
symmetric, transitive closure is obtained.

p q a b c

p 1 0.6 0 0 0
q 0.6 1 0 0 0
a 0 0 1 0.5 0.4
b 0 0 0.5 1 0.4
c 0 0 0.4 0.4 1

We use an adaptation of the Warshall algorithm.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 19 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

The Similarity-based Unification Algorithm

The Similarity-based Unification Algorithm

For a similarity relation on a syntactic domain, R, it is
possible to define a fuzzy notion of a most general unifier
(w.m.g.u.) of level λ (or λ-wmgu) of two expressions.

For a Cut Value λ > 0, θ is a λ-unifier of t1 and t2 iff
R̂(t1θ, t2θ) > λ.

The weak unification algorithm [Sessa-02]:

{f (t1, . . . , tn) ≈ g(s1, . . . , sn)} weakly unifies (at a level λ) iff
R(f , g) > λ and {t1 ≈ s1, . . . , tn ≈ sn)} weakly unifies (at a
level λ).

Output: a weak mgu of level λ, which is a substitution, plus
an approximation degree.

Note that it computes a representative of a class of wmgus.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 20 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

The Similarity-based Unification Algorithm

The Similarity-based Unification Algorithm

Example (Find a 0.3-wmgu for f (h(X )), k(Y )) and g(Z , j(Y )))

Assume R(f , g) = 0.8,R(h, j) = 0.6,R(h, k) = 0.3,R(j , k) = 0.5:

Unification problem Weak Unifier Degree

{f (h(X )), k(Y )) ≈ g(Z , j(Y ))} {} 1
{h(X ) ≈ Z , k(Y ) ≈ j(X )} {} 1 ∧ 0.8

{k(Y ) ≈ j(X )} {Z/h(X )} 0.8
{Y ≈ X} {Z/h(X )} 0.8 ∧ 0.5
{} {Z/h(X ),Y /X} 0.5

Observe that it does not exists a w.m.g.u. of level 0.8.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 21 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Bousi∼Prolog allows the use of proximity relations as a
feature of its fuzzy unification algorithm.

Several motivations for using proximity relations:
1. The exclusive use of similarity relations may cause
wrong modeling of vague information.

Example

middle

young old

0.38 0.53

middle

young old

0.38 0.53

0.38

R̂(young, old) ≥ R̂(young, middle) ∧ R̂(middle, old) = 0.38 ∧ 0.53 = 0.38

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 22 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Bousi∼Prolog allows the use of proximity relations as a
feature of its fuzzy unification algorithm.

Several motivations for using proximity relations:

2. The transitivity constrains imposed by similarity
relations may produce conflicts with user’s specifications.

Example

maths

chemistry physics

0.6 0.8

0.8

maths

chemistry physics

0.6 0.6

0.8

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 22 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Bousi∼Prolog allows the use of proximity relations as a
feature of its fuzzy unification algorithm.

Several motivations for using proximity relations:

3. Proximity relations are necessary to define “semantic
unification” in terms of a weak unification algorithm.

Example

Fuzzy
subsets

⇒
Standard
matching
functions

⇒ Proximity
relation

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 22 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

The use of proximity relations increases the expressive power
of the language and it is critical in order to give support to
certain problems.

However, a näıve treatment of proximity relations may cause
unexpected severe problems.

It is not suitable a direct combination of proximity
relations with Sessa’s unification algorithm.

It may cause the incompleteness of Sessa’s unification
algorithm and the similarity-based SLD resolution procedure.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 23 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Example

Given t1 ≡ p(x , x) and t2 ≡ p(a, c) and the proximity
R = {R(a, b) = 0.8,R(b, c) = 0.75},

θ = {x/b} is a unifier of t1 and t2, with an approximation
degree 0.75.

However, Sessa’s weak unification algorithm ends with failure:

〈{p(x , x) ≈ p(a, c)}, id , 1〉 ⇒ 〈{x ≈ a, x ≈ c}, id , 1〉
⇒ 〈{a ≈ c}, {x/a}, 1〉 ⇒ fail

Hence, Sessa’s weak unification algorithm turns incomplete
with proximity relations. This may lead to the incompleteness
of the weak SLD resolution procedure.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 24 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Moreover, also the cut rule

Γ ⊢ A and Γ ∪ {A} ⊢ B imply Γ ⊢ B

is not fulfilled.

Example

Given Π = {p(x , x).} and the proximity
R = {R(a, b) = 0.8,R(b, c) = 0.75}. It is easy to check that:

Π,R ⊢ p(b, b), since ← p(b, b)
id,1
⇒WSLD ✷.

Π ∪ {p(b, b)},R ⊢ p(c , a), since ← p(c , a)
id,0.75
⇒WSLD ✷. Because

〈{c ≈ b, a ≈ b}, id , 1〉 ⇒ 〈{a ≈ b}, id , 0.75〉 ⇒ 〈{}, id , 0.75〉

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 25 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Moreover, also the cut rule

Γ ⊢ A and Γ ∪ {A} ⊢ B imply Γ ⊢ B

is not fulfilled.

Example

Given Π = {p(x , x).} and the proximity
R = {R(a, b) = 0.8,R(b, c) = 0.75}. It is easy to check that:

However, Π,R 6⊢← p(c , a), since the unification of p(c , a)
and p(x1, x1) ends with failure:

〈{c ≈ x1, a ≈ x1}, id , 1〉 ⇒ 〈{a ≈ c}, {x1/c}, 1〉 ⇒ fail

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 25 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

Moreover, also the cut rule

Γ ⊢ A and Γ ∪ {A} ⊢ B imply Γ ⊢ B

is not fulfilled.

Example

Given Π = {p(x , x).} and the proximity
R = {R(a, b) = 0.8,R(b, c) = 0.75}. It is easy to check that:

The cut property, necessary for a reasonable logical
consequence relation, is broken.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 25 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pros and Cons of Proximity Relations

Pros and Cons of Proximity Relations

To take advantage of proximity relations, but avoiding their
problems, it is necessary:

1 An accurate notion of proximity between terms and atoms of a
first order language.

2 An efficient implementation of the weak unification algorithm
based on that notion of proximity.

To fulfill these goals we need more knowledge about
proximity relations.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 26 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Blocks vs. Proximity Classes

Proximity Levels

A proximity relation is characterized by a set Λ = {λ1, ..., λn}
of approximation levels.

Example

Given {R(a, a) = 1;R(a, b) = 0.8;R(b, b) = 1;R(b, a) = 0.8},
=⇒ Λ = {0.8; 1}.

Given a proximity relation R on a set U, a λ-cut of R

Rλ = {〈x , y〉 | R(x , y) ≥ λ}

Example

R1 = {(a, a); (b, b)} and R0.8 = {(a, a); (a, b); (b, a); (b, b)}.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 27 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Blocks vs. Proximity Classes

Proximity Blocks

Proximity block of level λ (or λ-block):

Given a proximity relation R on a set U ,
is a subset of U such that the restriction of Rλ to this subset
is a maximal total relation.

Example (11)

b

a c

Proximity relation

0.8 0.75

0.6

b

a c

B0.6 = {a, b, c}

B0.6

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 28 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Blocks vs. Proximity Classes

Proximity Blocks

Proximity block of level λ (or λ-block):

Given a proximity relation R on a set U ,
is a subset of U such that the restriction of Rλ to this subset
is a maximal total relation.

Example (11)

b

a c

Proximity relation

0.8 0.75

0.6

b

a c

B0.751 = {a, b} B0.752 = {b, c}

B0.751 B0.752

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 28 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Blocks vs. Proximity Classes

Proximity Blocks

Proximity block of level λ (or λ-block):

Given a proximity relation R on a set U ,
is a subset of U such that the restriction of Rλ to this subset
is a maximal total relation.

Example (11)

b

a c

Proximity relation

0.8 0.75

0.6

b

a c

B0.81 = {a, b} B0.82 = {c}

B0.81

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 28 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Blocks vs. Proximity Classes

Proximity Blocks

Proximity block of level λ (or λ-block):

Given a proximity relation R on a set U ,
is a subset of U such that the restriction of Rλ to this subset
is a maximal total relation.

Example (11)

b

a c

Proximity relation

0.8 0.75

0.6

b

a c

B11 = {a} B12 = {b} B13 = {c}

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 28 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Proximity Blocks vs. Proximity Classes

Proximity Classes

Proximity class of level λ (λ-Class) of an element x ∈ U:

Kλ(x) = {y ∈ U | R(x , y) ≥ λ}

The set of those elements of U that are λ-approximate to x .

Example

Given R = {R(a, b) = 0.8,R(b, c) = 0.75,R(a, c) = 0.6}
K0.75(a) = {a, b}; K0.75(b) = {a, b, c}; K0.75(c) = {b, c};

K0.8(a) = K0.8(b) = {a, b}; K0.8(c) = {c}

Blocks and Classes of a proximity relation on a set U form
coverings of U, but not necessarily partitions.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 29 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Relations on Syntactic Domains

Proximity relations can be defined on the alphabet of a first
order language and extended to terms and atomic formulas.

As was seen, for similarity relations the extension is made by a
simple structural induction.

For proximity relations this task is more complex: The key
factor is to investigate the role of the notion of
“indistinguishable” symbols.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 30 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Relations on Syntactic Domains

There are two options because a symbol may be
indistinguishable w.r.t. another:

1 They belong to the same proximity class (of level λ) or

2 They belong to the same proximity block (of level λ).

The aforementioned problems arise because we were using the
first option to decide if two expressions are approximate.

We can define a new notion of proximity between expressions
through the concept of λ-block.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 31 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Between Expressions

Declarative notion of proximity: two expressions e1 and e2 of
a first-order language L are λ-approximate

1 When their symbols, at their corresponding positions, belong
to the same λ-block and

2 A certain symbol is always assigned to the same λ-block (i.e.,
it is playing the same role) along a computation.

When two expressions e1 and e2 are λ-approximate, we denote
this as e1≈R,λe2 and its proximity degree as R̂(e1, e2).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 32 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Between Expressions

Example (13: Proximity between A1 ≡ p(b, b) and
A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

p

b b

p

a c

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 33 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Between Expressions

Example (13: Proximity between A1 ≡ p(b, b) and
A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

B0

b b

B0

a c

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 33 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Between Expressions

Example (13: Proximity between A1 ≡ p(b, b) and
A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

B0

B1 b

B0

B1 c

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 33 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

A New Notion of Proximity Between Expressions

Proximity Between Expressions

Example (13: Proximity between A1 ≡ p(b, b) and
A2 ≡ p(a, c))

Assume that R = {R(a, b) = 0.8,R(b, c) = 0.75},

0.75-blocks: B0 = {p}, B1 = {a, b}, B2 = {b, c}

B0

B1 B1

B0

B1 B2
CLASH!

The atoms A1 and A2 are not approximate.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 33 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

Now, we are ready to define our weak unification algorithm.

It relies on the notion of proximity just introduced.

The weak unification algorithm has three stages.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 34 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

Stage 1: we analyze the proximity relation R extracting the
set of proximity blocks.

This analysis is linked with the problem of finding all maximal
cliques on an undirected graph G corresponding to R.

The Bron-Kerbosch algorithm is a widely used efficient
algorithm for this purpose. So, we adapt a variant of this
algorithm with pivoting.

Done at compile time !!

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 35 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

Stage 2: we extend the proximity relation R into a new
relation RB, enhancing R with specific λ-block information.

Example

If a and b belong to the λ-block B and R(a, b) = α, we generate
RB(a, b, B) = α.

Also done at compile time !!

These two previous steps are implemented by a foreign
predicate coded in C (and connected to the system through
the SWI-Prolog Foreign Language Interface).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 36 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

Stage 3: weak unification, formalized by a transition system
(A notion of unification state + a proximity-based unification
relation “⇒”).

A weak unification state is a tuple 〈P ,S ,C ,α〉 where:

1 P is a (multi-)set of weak unification problems or failure;

2 S is a set of equations in solved form;

3 C is a set of block constraints of level λ:
(<symbol>:< λ-block label>);

4 α is a unification degree.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 37 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

A block constraint is an ordered pair that links a symbol with
a proximity λ-block label. We denote these constraints as
bindings “< symbol>:< λ-block label>” .

Block constraints of level λ are used to detect inconsistencies
in “block assignments” for an alphabet symbol.

A satisfaction function, Sat, is used for block constraint
satisfaction.

Implement as a Prolog predicate, sat/3, which essentially
performs a membership test on an association list and can be
done efficiently at runtime!!

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 38 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

A weak unification process is formalized as a sequence of
transition steps performed using “⇒”.

The proximity-based unification relation, “⇒”, is defined by a
set of transition rules:
Term decomposition:

(a) 〈{f (tn)≈ f (sn)} ∪ E , S ,C , α〉 ⇒ 〈{tn ≈ sn} ∪ E , S ,C , α〉,

(b) 〈{f (tn)≈g(sn)} ∪ E ,S ,C ,α〉 ⇒

〈{tn≈sn}∪E , S , {(f :Bλ
R

), (g:Bλ
R

)}∪C , α△β〉,

if RB(f , g , Bλ
R

) = β≥λ and Sat({(f :Bλ
R

), (g:Bλ
R

)},C ) 6= failure

where RB is the extension of R with block information.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 39 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

An Efficient Proximity-based Unification Algorithm

A weak unification process is formalized as a sequence of
transition steps performed using “⇒”.

The proximity-based unification relation, “⇒”, is defined by a
set of transition rules:
Failure rule:
〈{f (tn) ≈ g(sm)} ∪ E ,S ,C , α〉 ⇒ 〈fail ,S ,C , α〉,

if n 6= m, RB(f , g , BλR)<λ or Sat({(f :BλR), (g:BλR)},C )=failure

where RB is the extension of R with block information.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 39 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

The Proximity-based Unification Algorithm in Action

Example (15: A1 ≡ p(b, b) and A2 ≡ p(a, c))

R(a, b)=0.8,R(b, c)=0.75

Stage 1: B1={a, b}, B2={b, c}

Stage 2: RB(a, b, B1) = 0.8,RB(b, c , B2) = 0.75, . . .

Stage 3: The atoms A1 and A2 do not weakly unify.

〈{p(b, b) ≈ p(a, c)}, id , ∅, 1〉

⇒1a〈{b ≈ a, b ≈ c}, id , ∅, 1〉
⇒1b〈{b ≈ c}, id , {(b:B1), (a:B1)}, 0.8 ∧ 1〉
⇒5〈failure, id , {(b:B2), (c:B2), (b:B1), (a:B1)}, 0.8〉

It is important to note that Sessa’s weak unification
algorithm wrongly succeeds in this example!!

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 40 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

An Efficient Proximity-based Unification Algorithm

Three Different Weak Unification Algorithms

The BPL system implements three different weak unification
algorithms:

(A1) The similarity-based unification algorithm proposed by Maria
Sessa, which is only adequate for similarity relations (“:-
weak unification(a1).”).

(A2) The original proximity-based unification algorithm that was
defined in our 2015 FSS paper, which uses proximity
constraints (“:- weak unification(a2).”).

(A3) The present reformulation of the proximity-based unification
algorithm described in this paper, which uses block constraints
(“:- weak unification(a3).”).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 41 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

Weak SLD Resolution (WSLD) (of level λ)

Let Π be a program, R be a proximity relation, △ a fixed
t-norm and a λ cut value.

Weak SLD (WSLD) resolution is defined as a transition
system 〈E ,⇒WSLD〉 where:

E is a set of tuples 〈G, θ, α,C 〉 (the state of a computation)
⇒WSLD ⊆ (E × E ) is the transition relation, defined as:

〈(←A′∧Q′), θ, α,C 〉 ⇒WSLD 〈← (Q∧Q′)σ, θσ, β△α△µ,C ′∪C 〉

if 1. R ≡ (A←Q with µ)<<Π,

2. wmguλ
R(A,A′)= 〈σ,C ′,β〉,

3. Sat(C ′,C) 6= failure,

4. (β△α△µ)≥λ.

Where β and µ are truth degrees (in [0, 1]), Q and Q′ are
conjunctions of atoms.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 42 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

Weak SLD Resolution (WSLD) (of level λ)

A WSLD derivation (of level λ) for Π ∪ {G0} is a sequence
of WSLD resolution steps

〈G0, id , 1, ∅〉 ⇒WSLD 〈G1, θ1, α1,C1〉 ⇒WSLD . . .⇒WSLD 〈Gn, θn, αn,Cn〉

WSLD refutation is a WSLD derivation (of level λ):

〈G, id , 1, ∅〉 ⇒WSLD
∗ 〈✷, θ, α,C 〉

Output of the computation: 〈σ, α〉
σ = θ |̀ Var(G0) is a computed answer and α is its computed
approximation degree.

Block constraints are used to guarantee the consistency of the
final answer (although it is not part of it).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 42 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Bousi∼Prolog implements WSLD resolution by compiling
(transpiling) BPL programs into a set of Prolog clauses that
are able of emulating it.

It uses a program translation that we call BPL expansion:

1 Each BPL program rule is replaced by the set of rules which
are approximate (w.r.t. R) to the rule being transformed.

2 The head of those approximate rules are linearised to facilitate
the crisp unification of the defined predicate with a goal, while
the weak unification of their arguments are carried out
explicitly in the body of the transformed rules

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 43 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Definition (BPL expansion)

Let RB be the extension of R , △ the fixed t-norm and
λ ∈ [0, 1] a cut value.

Let p(t1, . . . , tn)← Q with δ be a graded rule in Π.

Then, for each entry RB(p, q, BλR) = α ≥ λ add to the
transformed program Π′ the e-clause:

〈q(x1, . . . , xn)← x1 ≈ t1∧· · ·∧xn ≈ tn∧Q; (δ△α); [p : BλR, q : BλR]〉

where each xi is a fresh variable and xi ≈ ti forces weak
unification, i.e., the evaluation of wmguλ

R(xi , ti ).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 44 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Example (17)

% PROXIMITY EQUATIONS
p ∼ q = 0.9.

% FACTS & RULES

p(a).

% PROXIMITY RELATION

RB(p,q,0) = 0.9.

RB(q,p,0) = 0.9.

% E-CLAUSES
<p(X1) :- X1≈a; 1 ; []>

<q(X1) :- X1≈a; 0.9; [(p,0), (q,0)]>

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 45 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Example (18)

% PROXIMITY EQUATIONS
a ∼ b = 0.7.

b ∼ c = 0.8.

p ∼ q = 0.9.

% FACTS & RULES

p(X) :- r(X) with 0.75.

r(a).

% PROXIMITY RELATION

RB(a,b,2)=0.7. RB(c,b,1)=0.8.

RB(b,a,2)=0.7. RB(p,q,0)=0.9.

RB(b,c,1)=0.8. RB(q,p,0)=0.9.

% E-CLAUSES
<p(X1) :- X1≈X, r(X); 0.75 ; []>

<q(X1) :- X1≈X, r(X);

0.9 ∧ 0.75; [(p,0), (q,0)]>

<r(X1) :- X1≈a; 1; []>

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 46 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Definition (operational semantics for expanded programs)

Defined as a transition system 〈E ,⇒EXP〉 where

E is a set of tuples 〈G, α,C | θ〉 (goal, approximation degree,
block constraints, substitution),

⇒EXP⊆ (E × E ) is a transition relation which satisfies:

Rule 1: if wmguλ
R

(A,B) = 〈σ, β,C ′〉, Sat(C ∪ C ′) 6= failure and
(β△α) ≥ λ,

〈(←A ≈ B ∧Q), α,C | θ〉 ⇒EXP 〈← Qσ, β△α,C ∪ C ′ | θσ〉

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 47 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Definition (operational semantics for expanded programs)

Defined as a transition system 〈E ,⇒EXP〉 where

E is a set of tuples 〈G, α,C | θ〉 (goal, approximation degree,
block constraints, substitution),

⇒EXP⊆ (E × E ) is a transition relation which satisfies:

Rule 2: if 〈p(x1, . . . , xn)← x1≈ t1 ∧ · · · ∧xn≈ tn ∧Q′;β;C ′〉 << Π′ and
Sat(C ∪ C ′) 6= failure

〈(←p(s1, . . . , sn) ∧Q), α,C | θ〉 ⇒EXP

〈(← s1≈ t1 ∧ · · · ∧ sn≈ tn ∧ Q′ ∧ Q), β△α,C ∪ C ′ | θ〉

in Rule 2, we perform a syntactic unification of the selected
atom of the e-goal and the head of the e-clause.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 47 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Weak SLD Resolution

WSLD Resolution: Implementation details

Example (20: e-clauses for the program of Ex.18)
p(X1,C0,C2,D):- unify arguments a3([[X1,X,C0,C1,D1]]),

r(X,C1,C2,D2),
degree composition([0.75,D1,D2],D),
over lambdacut(D).

q(X1,C0,C3,D):- over lambdacut(0.9),
sat a3([q:0,p:0],C0,C1),
unify arguments a3([[X1,X,C1,C2,D1]]),

r(X,C2,C3,D2),
degree composition([0.9,0.75,D1,D2],D),
over lambdacut(D).

r(X1,C0,C1,D):- unify arguments a3([[X1,a,C0,C1,D1]]),

degree composition([1,D1],D),
over lambdacut(D).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 48 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Outline

1 Introduction
Fuzzy Logic Programming
Bousi∼Prolog general features

2 Bousi∼Prolog Fundamentals and its Implementation
Proximity Relations and Similarity Relations
The Similarity-based Unification Algorithm
Pros and Cons of Proximity Relations
Proximity Blocks vs. Proximity Classes
A New Notion of Proximity Between Expressions
An Efficient Proximity-based Unification Algorithm
Weak SLD Resolution

3 Some Bousi∼Prolog Applications
Pattern Matching in Strings
Flexible Query Answering in Deductive Databases
Information Retrieval
Approximate Reasoning

4 Conclusions

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 49 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[ a,b , c , a, c , b, d , a, c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b,c , a, c , b, d , a, c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c,a , c , b, d , a, c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a,c , b, d , a, c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a, c,b , d , a, c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a, c , b,d , a, c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a, c , b, d,a , c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a, c , b, d , a,c , d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a, c , b, d , a, c,d , b, ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

Program Pattern Matching in Strings:

Given a list of characters, find the occurrences of a pattern
[e1,e2], where e1 must be a and e2 may be b or c.

The program search the list exploring if each pair of characters
match the pattern:

[a, b, c , a, c , b, d , a, c , d,b , ...]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 50 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

% PROXIMITY EQUATIONS
b∼c = 1.

% FACTS and RULES
match( , [], 0).
match(P, S, N) :- search(P, S, N, P, S, 0).

% search(Pattern, String, Number, Pattern acc, String acc, Number acc):

search(P, [], N, , , A) :- P = [] → N is A+1 ; N= A.

search([], [ | ], N, OP, OS, A) :- A1 is A+1, search next(N, OP, OS, A1).

search([P | PP], [P | SS], N, OP, OS, A) :- !, search(PP, SS, N, OP, OS, A).

search([ | ], [ | ], N, OP, OS, A) :- search next(N, OP, OS, A).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 51 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Pattern Matching in Strings

Pattern Matching in Strings

% FACTS and RULES (Cont.)

% search next(Number, Pattern acc, String acc, Number acc).
% Called after the pattern is found or the pattern fail to be found.
% If String acc = [ | SS] the search of the pattern continues
% starting from SS.
%
search next(N, OP, [ | SS], A) :- search(OP, SS, N, OP, SS, A).

?- goal(N):-match([a,b], [a,b,c,a,c,b,d,a,c,d,b,b,a,b,c,c,a,c,a,b], N).

N = 6.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 52 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The first application examples come from the area of flexible
databases.

There are several approaches to fuzzy flexible database. We
highlight two of them:

1 The model of Buckles-Petry and Shenoi-Melton
(similarity/proximity relations)

2 The model of Prade-Testemale (fuzzy sets).

We show how Bousi∼Prolog allows to simulate both fuzzy
flexible database approaches effectively

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 53 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The model of Buckles-Petry and Shenoi-Melton

% DIRECTIVE

:-lambda cut(0.5).

%% PROXIMITY EQUATIONS

%% Location Distance Relation

bervely hills ∼ downtown=0.3.

downtown ∼ santa monica=0.23.

bervely hills ∼ santa monica=0.45.

downtown ∼ westwood=0.25.

bervely hills ∼ hollywood=0.56.

hollywood ∼ santa monica=0.3.

bervely hills ∼ westwood=0.9.

hollywood ∼ westwood=0.45.
downtown ∼ hollywood=0.45.
santa monica ∼ westwood=0.9.

%% Category Relation

comedy ∼ drama=0.6.

drama ∼ adventure=0.6.

comedy ∼ adventure=0.3.

drama ∼ suspense=0.6.

comedy ∼ suspense=0.3.

adventure ∼ suspense=0.9.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 54 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The model of Buckles-Petry and Shenoi-Melton

%% FACTS MODELING A DATABASE

%% Films Table:

%% film(Title, Director, Category)

film(four feathers,korda,adventure).

film(modern times,chaplin,comedy).

film(psycho, hitchcock,suspense).

film(rear window,hitchcock,suspense).

film(robbery,yates,suspense).

film(star wars,lucas,adventure).

film(surf party,dexter,drama).

%% Theaters Table:

%% theater(Name,Owner,Location).

theater(chinese,mann,hollywood).

theater(egyptian,va,westwood).

theater(music hall,lae,bervely hills).

theater(odeon,cineplex,santa monica).

theater(rialto,independent,downtown).

theater(village,mann,westwood).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 55 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The model of Buckles-Petry and Shenoi-Melton

%% FACTS MODELING A DATABASE

%% Engagements Table:

%% engagement(Film,Theater)

engagement(modern times, rialto).

engagement(start wars, rialto).

engagement(star wars, chinese).

engagement(rear window, egyptian).

engagement(surf party, village).

engagement(robbery, odeon).

engagement(modern times, odeon).

engagement(four feathers,music hall).

%% MAIN RULE:

%% search(in, in, out, out)
search(Category,Location,Film,Theater)

:- film(Film, , Category),
engagement(Film, Theater),
theater(Theater, , Location).

?- search(adventure, westwood, Film, Theater).

Film=four feathers, Theater=music hall, with 0.9;

Film=rear window, Theater=egyptian, with 0.9;

Film=robbery, Theater=odeon, with 0.9;

Film=surf party, Theater=village, with 0.6;

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 56 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The model of Prade-Testemale

%% DIRECTIVES declaring and defining linguistic variables

%% Linguistic variable: rental

:-domain(rental,0,600,euros).
:-fuzzy set(rental,[cheap(100,100,250,500), normal(100,300,400,600),

expensive(300,450,600,600)]).

%% Linguistic variable: walk distance

:-domain(distance,0,50,minutes).
:-fuzzy set(distance,[close(0,0,15,40), medial(15,25,30,35), far(20,35,50,50)]).

%% Linguistic variable: flat conditions

:-domain(condition,0,10,conditions)).

:-fuzzy set(condition,[unfair(0,0,1,3), fair(1,3,6), good(4,6,8), excellent(7,9,10,10)]).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 57 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The model of Prade-Testemale

%% FACTS
%% Flats table: flat(Code,Street,Rental,Condition).
flat(f1, libertad street, rental#300, more or less#good).
flat(f2, ciruela street, rental#450, somewhat#good).
flat(f3, granja street, rental#200, unfair).

%% Streets table: street(Name,District)
street(libertad street, ronda la mata). street(ciruela street, downtwon).
street(granja street, ronda santa maria).

%% Distance (to campus) table: distance(District,District,Distance)
distance(downtwon,campus,medial). distance(ronda santa maria,campus,far).
distance(ronda la mata, campus, somewhat#close).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 58 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Flexible Query Answering in Deductive Databases

Flexible Query Answering in Deductive Databases

The model of Prade-Testemale

%% RULES
flat district(Flat,Flat Dist) :- flat(Flat,Street, , ),

street(Street,Flat Dist).

close to(Flat, District):- flat district(Flat, Flat Dist),
distance(Flat Dist, District, close).

select flat(Flat,Street):- flat(Flat,Street,cheap,good), close to(Flat,campus).

?- select flat(Flat, Street).

Flat = f1, Street = libertad, with 0.8; Flat = f2, Street = ciruela, with 0.14;

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 59 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Information Retrieval

Information Retrieval

Proximity equations can be used as a fuzzy model for
information retrieval where textual information is selected or
analyzed using an ontology of terms.

Ontologies of terms can be represented by a set of proximity
equations (The set of proximity equations used in this
example has been obtained using WordNet).

In this example, we want to extract information of terms
analogous to “wheat” on a given text (borrowed from
Reuters, a test collection for text categorization research).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 60 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Information Retrieval

Information Retrieval

The text provided by Reuters:

The U.S. Agriculture Department reported the
farmer-owned reserve national five-day average price
through April 8 as follows (Dlrs/Bu-Sorghum Cwt) -
. . .

The text after a linguistic preprocess (removing stop words,
performing a stemming process and grouping meaningful
couples of words – e.g.: crude oil –):

agriculture, department, report, farm, own, reserve,
national, average, price, loan, release, price, reserves,
matured, bean, grain, enter, corn, sorghum, rates,
bean, potato

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 61 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Information Retrieval

Information Retrieval

%% DIRECTIVES
:- transitivity(yes). %% builds a similarity starting from the proximity equations
:-transitivity(min).
:- weak unification(a1).
:- wn connect.
:- wn gen prox equations(wup, [[wheat, agriculture, department, report, farm, own,
reserve, national, average, price, loan, release, price,
reserves, matured, bean, grain, enter, corn, sorghum,
rates, bean, potato]]).

%% FACTS and RULES
% searchTerm(T,L1,L2), true if T is a (constant) term, L1 is a list of (constant)
% terms (model a text); L2 is a list of triples t(X,N,D), where X is a
% term similar to T with degree D, which occurs N times in the text L1
searchTerm(T,[],[]).
searchTerm(T,[X|R],L):- T∼X=AD,!,searchTerm(T,R,L1),insert(t(X,1,AD),L1,L).
searchTerm(T,[X|R],L):- searchTerm(T,R,L).

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 62 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Information Retrieval

Information Retrieval

insert(t(T,N,D), [], [t(T,N,D)]).
insert(t(T1,N1,D), [t(T2,N2, )|R],[t(T1,N,D)|R]) :- T1 == T2, N is N1+N2.
insert(t(T1,N1,D),[t(T2,N2,D2)|R2],[t(T2,N2,D2)|R]):-

T1\==T2,insert(t(T1,N1,D),R2,R).

%% GOAL
g(T,L):-searchTerm(T, [agriculture,department,report,farm,

own,reserve,national,average,price,loan,release,
price,reserves,matured,bean,grain,enter,corn,
sorghum,rates,bean,potato], L).

?- g(wheat,L).

L = [t(potato,1,0.43),t(bean,2,0.43),t(rates,1,0.43),t(sorghum,1,0.89),

t(corn,1,0.93),t(grain,1,0.42),t(reserves,1,0.35),t(price,2,0.375),

t(release,1,0.55),t(loan,1,0.43),t(average,1,0.35),t(national,1,0.61),

t(reserve,1,0.37),t(farm,1,0.44),t(report,1,0.37),t(department,1,0.35),

t(agriculture,1,0.35)]

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 63 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Approximate Reasoning

Approximate Reasoning

Approximate reasoning is basically the inference of an
imprecise conclusion from imprecise premises.

Fuzzy inference is a generalization of modus ponens. It can
be stated as:

if x is F then y is G
x is F ′

y is G ′

- x and y in crisp sets U and W ,
- F and F ′ are fuzzy subsets on U,
- G and G ′ are fuzzy subsets on W .

Roughly speaking, and following Zadeh, G ′ = F ′ ◦ R where R
is a fuzzy relation (the meaning of the conditional) such that
R(x , y) = min(µF (x), µG (y)), for all x ∈ U and y ∈W .

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 64 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Approximate Reasoning

Approximate Reasoning

Bousi∼Prolog proceeds differently by constructing (at compile
time) a fuzzy relation over the (declared) fuzzy domains,
which is used by the weak SLD resolution procedure to infer
an answer to a query.
:-domain(age,0,100,years).
:-fuzzy set(age,[young(0,0,30,50), middle(20,40,60,80), old(50,80,100,100)]).

:-domain(speed,0,40,’km/h’)).
:-fuzzy set(speed,[slow(0,0,15,20), normal(15,20,25,40), fast(25,30,40,40)]).

speed(X, fast) :- age(X, young). age(robert, middle).

?- speed(robert, somewhat#fast). Yes with 0.375

Last program models the fuzzy inference: “if x is young then
x is fast” and “Robert is middle” therefore “Robert is
somewhat fast” in a very natural way.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 65 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Approximate Reasoning

Real applications

We have developed several real applications coded with
Bousi∼Prolog:

Text categorization and cataloging [RJFG13JLRE] and
[AJRS22]
https://dectau.uclm.es/bousi-prolog/applications/

Abstract knowledge discovery [RJ15JIFS]
Linguistic feedback in computer games [RT16]
FuzzyDES: mapping Bousi∼Prolog to a deductive database.
Application to a recommender system
http://des.sourceforge.net/fuzzy/recommender.dl

Integration of WordNet into Bousi∼Prolog [JS19EUSFLAT]
and [JS21TPLP]: The idea is to provide Bousi∼Prolog with
linguistic resources
https://dectau.uclm.es/bousi-prolog/applications/

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 66 / 73

https://dectau.uclm.es/bousi-prolog/applications/
http://des.sourceforge.net/fuzzy/recommender.dl
https://dectau.uclm.es/bousi-prolog/applications/


Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Outline

1 Introduction
Fuzzy Logic Programming
Bousi∼Prolog general features

2 Bousi∼Prolog Fundamentals and its Implementation
Proximity Relations and Similarity Relations
The Similarity-based Unification Algorithm
Pros and Cons of Proximity Relations
Proximity Blocks vs. Proximity Classes
A New Notion of Proximity Between Expressions
An Efficient Proximity-based Unification Algorithm
Weak SLD Resolution

3 Some Bousi∼Prolog Applications
Pattern Matching in Strings
Flexible Query Answering in Deductive Databases
Information Retrieval
Approximate Reasoning

4 Conclusions

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 67 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Conclusions

Throughout this talk we have presented part of the work
developed over almost two decades.

Motivated by the objective to introduce weak unification
within (fuzzy) logic languages,

We have designed Bousi∼Prolog: a Prolog programming
language extension; and

Developed the BPL system: a high level implementation of
Bousi∼Prolog.

BPL programs are “compiled” into SWI-Prolog programs

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 68 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Conclusions

We have presented the main features and some
implementation details of Bousi∼Prolog.

Through a number of (small but meaningful) examples we
have shown the potential power of Bousi∼Prolog and how it
is useful for:

Pattern matching in strings;

Flexible query answering;

Dealing with approximate reasoning; and

Modeling vagueness.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 69 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Future Work

We need to delve deeper into the formal properties of
Bousi∼Prolog.

A new declarative semantics for programs in the context of
proximity relations and arbitrary t-norms.

Soundness and completness properties in that context.

A study of (fuzzy) negation in Bousi∼Prolog.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 70 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Acknowledgments

I would like to thank the efforts of the people who have
contributed to the development of the BPL system in the past:

Clemente Rubio-Manzano (University of Castilla-La Mancha –
now at the B́ıo-B́ıo University -Chile-)

Juan Gallardo-Casero (University of Castilla-La Mancha – now
at INDRA Sistemas).

Special thanks to Fernando Sáenz-Pérez, from Complutense
University of Madrid, for its involvement during the last years
that boosted the BPL system to another level.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 71 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bibliography: Introduction

[Baldwin et al-84] J. F. Baldwin, T. P. Martin, and B. W. Pilsworth. “Fril - Fuzzy and Evidential
Reasoning in Artificial Intelligence”. John Wiley & Sons, Inc., 1995.

[Fontana & Formato-99] F. A. Fontana and F. Formato. “Likelog: A logic programming language for
flexible data retrieval”. In Proc. of the ACM Symposium on Applied Computing (SAC’99), pages 260–267,
1999.

[Julián et al-08] Pascual Julián-Iranzo and Clemente Rubio-Manzano and J. Gallardo-Casero.
“Bousi∼Prolog: a Prolog extension language for flexible query answering”. VIII Jornadas sobre
Programación y Lenguajes, PROLE’2008, Gijón, España, October, 7-10, Páginas: 41-55.

[Julián & Sáenz-23] Pascual Julián Iranzo, Fernando Sáenz-Pérez: “Bousi∼Prolog: Design and
implementation of a proximity-based fuzzy logic programming language”. Expert Syst. Appl. 213(Part):
118858 (2023)

[Lee-72] R.C.T. Lee, “Fuzzy Logic and the Resolution Principle”, J. of the ACM, 19(1): 109-119, 1972.

[S. Muñoz et al-04] S. Guadarrama, S. Mu noz, and C. Vaucheret. “Fuzzy Prolog: A new approach using
soft constraints propagation”. Fuzzy Sets and Systems, Elsevier, 144(1):127–150, 2004.

[Ojeda et al-01] J. Medina and M. Ojeda-Aciego and P. Vojtáš, “A procedural semantics for multi-adjoint
logic programming”. Proc. of Progress in Artificial Intelligence, EPIA’01, Springer-Verlag, LNAI 2258,
pages 290–297, 2001.

[Ojeda et al-04] J. Medina, M. Ojeda-Aciego, and P. Vojtáš. “Similarity-based unification: a multi-adjoint
approach”. Fuzzy Sets and Systems, 146(1):43–62, 2004.

[M. Sessa-01] V. Loia, S. Senatore, and M. I. Sessa. “Similarity-based SLD resolution and its
implementation in an extended prolog system”. In FUZZ-IEEE, pages 650–653, 2001.

[Vojtas & Pauĺık-96] P. Vojtáš and L. Pauĺık, “Soundness and completeness of non-classical extended
SLD-resolution”. Proc. ELP’96 Leipzig, LNCS 1050, Springer Verlag, pages 289-301, 1996.

[Vojtas-01] P. Vojtáš. “Fuzzy Logic Programming”. Fuzzy Sets and Systems, 124(1):361–370, 2001.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 72 / 73



Introduction Bousi∼Prolog Fundamentals and its Implementation Some Bousi∼Prolog Applications Conclusions

Bibliography: Real applications

[AJRS22] Al-Sayadi, Sami H. and Julian-Iranzo, Pascual and Romero, Francisco P. and Sáenz-Pérez,
Fernando, “A Fuzzy Declarative Approach to Classify Unlabeled Short Texts Based on Automatically
Constructed WordNet Ontologies”, Computational Intelligence and Mathematics for Tackling Complex
Problems 3, Springer International Publishing, pages 157–164, 2022.
https://doi.org/10.1007/978-3-030-74970-5_18

[JS18IEEE-TFS] Pascual Julián Iranzo, Fernando Sáenz-Pérez: “A Fuzzy Datalog Deductive Database
System”. IEEE Trans. Fuzzy Syst. 26(5): 2634-2648 (2018)

[JS19EUSFLAT] Pascual Julián Iranzo, Fernando Sáenz-Pérez: “WordNet and Prolog: why not?”.
Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT
2019, pages 1–8, 2019.

[JS21TPLP] Pascual Julián Iranzo, Fernando Sáenz-Pérez: “Implementing WordNet Measures of Lexical
Semantic Similarity in a Fuzzy Logic Programming System”. Theory Pract. Log. Program. 21(2):
264-282, 2021.

[RJ15JIFS] Rubio-Manzano, C., Julián-Iranzo, P. “Incorporation of abstraction capability in a logic-based
framework by using proximity relations”. Journal of Intelligent and Fuzzy Systems 29 (4), 1671–1683,
2015. http://dx.doi.org/10.3233/IFS-151645

[RJFG13JLRE] Romero, F. P., Julián-Iranzo, P., Soto, A., Ferreira, M., Gallardo-Casero, J. “Classifying
unlabeled short texts using a fuzzy declarative approach”. Language Resources and Evaluation 47 (1),
151–178, 2013. http://dx.doi.org/10.1007/s10579-012-9203-2

[RT16] C. Rubio-Manzano and G. Triviño. “Improving player experience in Computer Games by using
players’ behavior analysis and linguistic descriptions”, International Journal of Human-Computer Studies,
vol. 95, pages 27–38, 2016.

Talk at the Complutense University of Madrid July 4, 2024. Madrid (Spain) 73 / 73

https://doi.org/10.1007/978-3-030-74970-5_18
http://dx.doi.org/10.3233/IFS-151645
http://dx.doi.org/10.1007/s10579-012-9203-2

	Introduction
	Fuzzy Logic Programming
	BousiProlog general features

	BousiProlog Fundamentals and its Implementation
	Proximity Relations and Similarity Relations
	The Similarity-based Unification Algorithm
	Pros and Cons of Proximity Relations
	Proximity Blocks vs. Proximity Classes
	A New Notion of Proximity Between Expressions
	An Efficient Proximity-based Unification Algorithm
	Weak SLD Resolution

	Some BousiProlog Applications
	Pattern Matching in Strings
	Flexible Query Answering in Deductive Databases
	Information Retrieval
	Approximate Reasoning

	Conclusions

