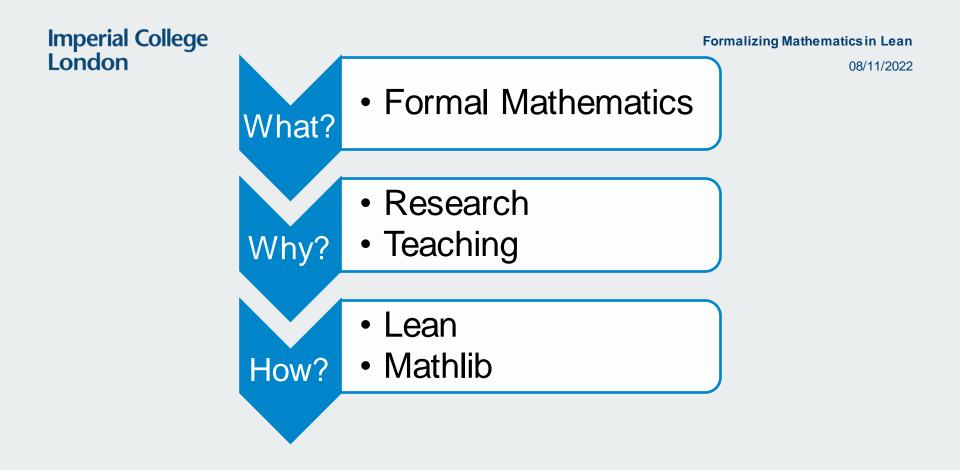
Formalizing Mathematics in Lean 08/11/2022

Formalizing Mathematics in Lean

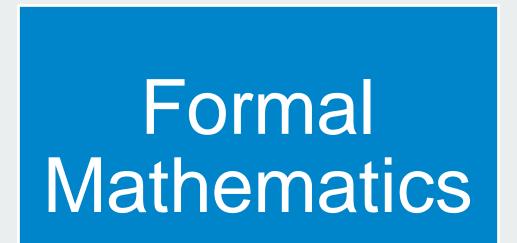
Conferencias de Posgrado UCM

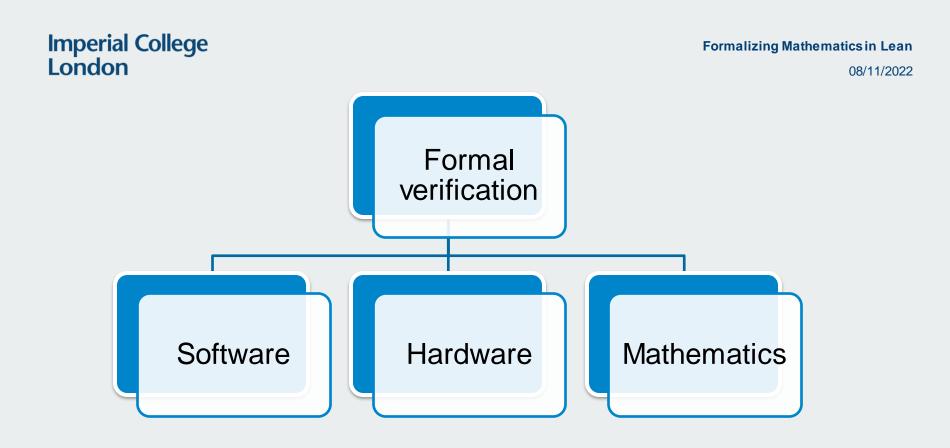
María Inés de Frutos Fernández



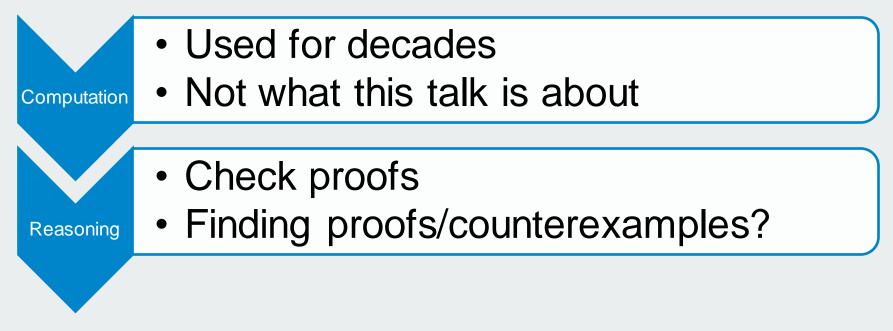
Formalizing Mathematics in Lean

08/11/2022





Computers in Mathematics



History

G. Gonthier (2005), <u>A computer-checked proof of the four colour</u> theorem.

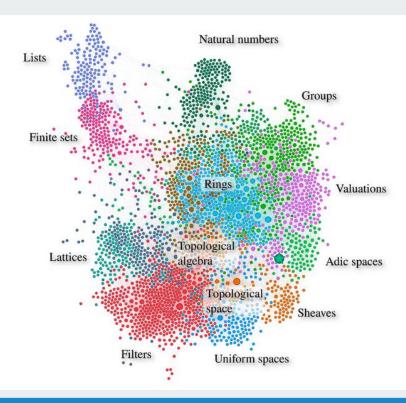
Formalizing Mathematics in Lean 08/11/2022

T. Hales et. al. (2017), <u>A formal proof of the Kepler conjecture</u>.

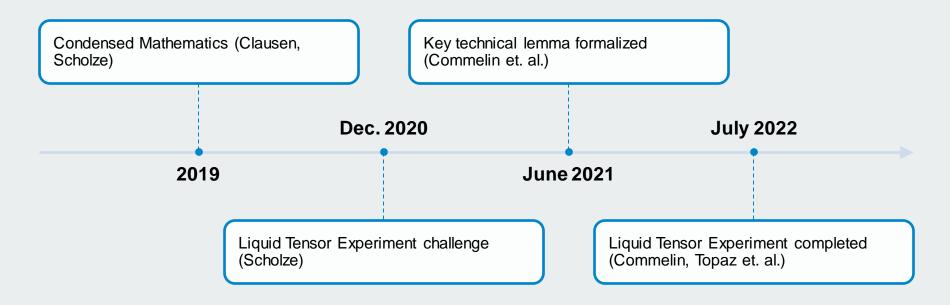
Formalizing perfectoid spaces

- K. Buzzard, J. Commelin, and P. Massot (2020) "Formalising perfectoid spaces". <u>https://doi.org/10.1145/3372885.33</u> 73830
- More than 3000 definitions or statements used in this definition

Formalizing Mathematics in Lean



The Liquid Tensor Experiment



Liquid tensor experiment

Posted on December 5, 2020 by xenaproject

This is a guest post, written by Peter Scholze, explaining a liquid real vector space mathematical formalisation challenge. For a pdf version of the challenge, see <u>here</u>. For comments about formalisation, see section 6. Now over to Peter.

nature

Explore content v About the journal v Publish with us v Subscribe

nature > news > article

NEWS | 18 June 2021

Mathematicians welcome computer-assisted proof in 'grand unification' theory

Proof-assistant software handles an abstract concept at the cutting edge of research, revealing a bigger role for software in mathematics.

Davide Castelvecchi

Formalizing Mathematics in Lean

08/11/2022

🗘 Quanta magazine

e Physics Mather

cs Mathematics Biology

Computer Science Topics Archive

ROOFS

Proof Assistant Makes Jump to Big-League Math

7 Mathematicians using the computer program Lean have verified the accuracy of a difficult theorem at the cutting edge of research mathematics.

Completion of the Liquid Tensor Experiment

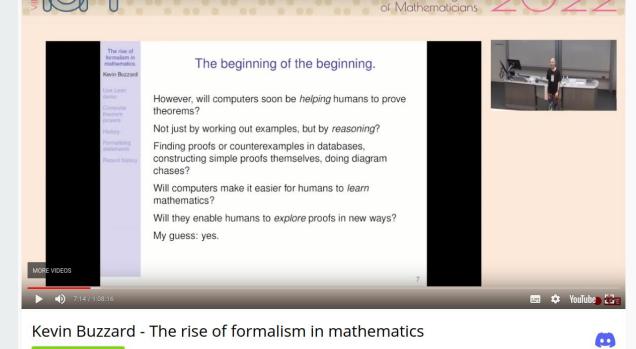
Mathlib community - 2022-07-15 15:00 - Source

We are proud to announce that as of 15:46:13 (EST) on Thursday, July 14 2022 the Liquid Tensor Experiment has been completed. A year and a half after the challenge was posed by Peter Scholze we have finally formally verified the main theorem of liquid vector spaces using the Lean proof assistant. The blueprint for the project can be found here and the formalization itself is available on GitHub.

Imperial College London Kevin Buzzard: The rise of formalism in mathematics

Formalizing Mathematics in Lean

08/11/2022

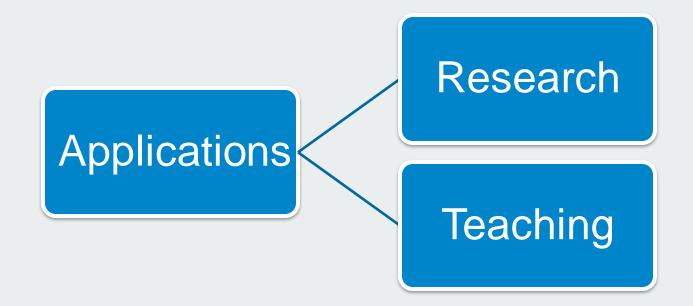


Congress

Special Plenary Lecture

Formalizing Mathematics in Lean

08/11/2022



Checking proofs

Big proofs

Formalizing Mathematics in Lean

08/11/2022

Technical parts

Consistency at all scales

Formalizing Mathematics in Lean

08/11/2022

Creating mathematics

Routine steps

Assumptions/ dependencies

Al

Better understanding

Solving (Some) Formal Math Olympiad Problems

We built a neural theorem prover for <u>Lean</u> that learned to solve a variety of challenging high-school olympiad problems, including problems from the <u>AMC12</u> and <u>AIME</u> competitions, as well as two problems adapted from the <u>IMO</u>.^[1] The prover uses a language model to find proofs of formal statements. Each time we find a new proof, we use it as new training data, which improves the neural network and enables it to iteratively find solutions to harder and harder statements.

These problems are not standard math exercises, they are used to let the best highschool students from the US (AMC12, AIME) or the world (IMO) compete against each other.

Formalizing Mathematics in Lean

Semantic Search Engines for Mathematics

View the Project on GitHub formalabstracts/formalabstracts

Formal Abstracts

About the project

The *Formal Abstracts* project was initiated by Thomas Hales in 2017. See his talk Big conjectures from the Big Proof meeting in Cambridge.

A **formal abstract**, or **fabstract** for short, is a formalization of the main results (constructions, definitions, proofs, conjectures) of a piece of informal mathematics, such as a research paper. There is no requirement that the entire text be formalized. Proofs of statements are omitted. A formal abstract is *not* the formalization of the abstract itself.

A vision

The Formal Abstracts (FAbstracts) project will establish a formal abstract service that will express the results of mathematical publications in a computer-readable form that captures the semantic content of publications.

Teaching

Pros

- Proof understanding
- Precision
- Immediate feedback

Formalizing Mathematics in Lean

08/11/2022

Cons

- Barrier to entry
- Lack of graphical inferface/documentation
- Tradition

A new kind of mathematical document

1.2 Preliminaries

In this section, E is a real vector space with (finite) dimension d. We'll need the Carathéodory lemma:

Lemma 1.4 (Carathéodory's lemma)√# 🎺 L∃∀N

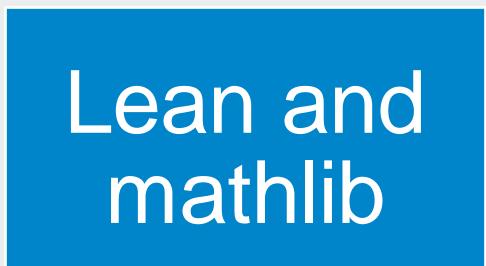
If a point x of E lies in the convex hull of a set P, then x belongs to the convex hull of a finite set of affinely independent points of P.

Proof ►

By assumption	Lean declarations $ imes$	points t_i in P and weights f_i such that $x = \sum f_i t_i$,				
each f_i is non- We argue by c		Choose such a set of points of minimum cardinality. set must be affinely independent.				
Thus suppose that there is some vanishing combination $\sum g_i t_i$ with $\sum g_i = 0$ and not all g_i vanish. Let $S = \{i g_i > 0\}$. Let i_0 in S be an index minimizing f_i/g_i . We shall obtain our contradiction by showing that x belongs to the convex hull of the set $\{t_i i \neq i_0\}$, which has cardinality strictly smaller than $\{t_i\}$.						
We thus define new weights $k_i = f_i - g_i f_{i_0}/g_{i_0}$. These weights sum to $\sum f_i - (\sum g_i) f_{i_0}/g_{i_0} = 1$ and $k_{i_0} = 0$. Each k_i is non-negative, thanks to the choice of i_0 if i						

Formalizing Mathematics in Lean

08/11/2022



Formalizing Mathematics in Lean

08/11/2022

Theorem provers

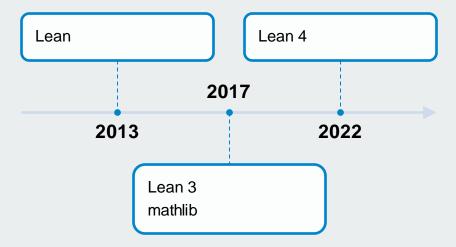
- Coq
- Isabelle/HOL
- HOL Light
- Agda
- Metamath
- Mizar
- Lean
 -) ...

Formalizing Mathematics in Lean

08/11/2022

Lean

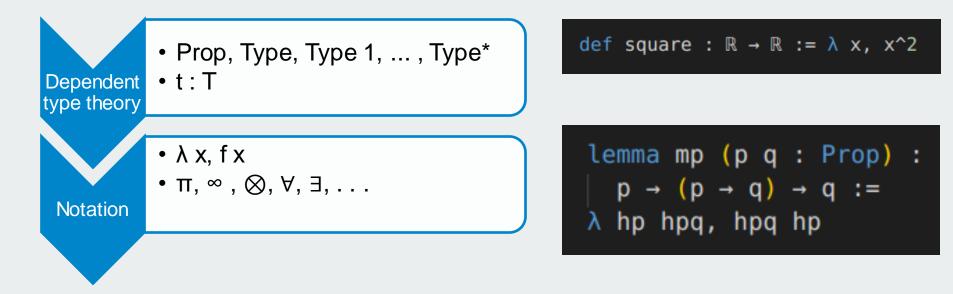
Interactive	Microsoft
Theorem Prover	Research
 Dependent type theory Proof irrelevance 	 Leonardo de Moura



Formalizing Mathematics in Lean

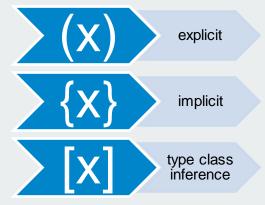
08/11/2022

Dependent type theory



Type class inference

- We can declare **type classes** and **instances**.
- Variables can be:



class in h	nabited'	(α : Τ	Гуре*) :=
(default	: α)		
instance	: inhab	oited' N	N := (1)
			-

Tactics

Basic

- intro
- apply
- rw
- simp

• • • •

Math-specific

- continuity
- linarith
- ring
- polyrith

• ...

Formalizing Mathematics in Lean

08/11/2022

Search

- library_search
- suggest
- hint

Formalizing Mathematics in Lean

08/11/2022

Example

Example

Formalizing Mathematics in Lean

08/11/2022

Formalizing Mathematics in Lean

08/11/2022

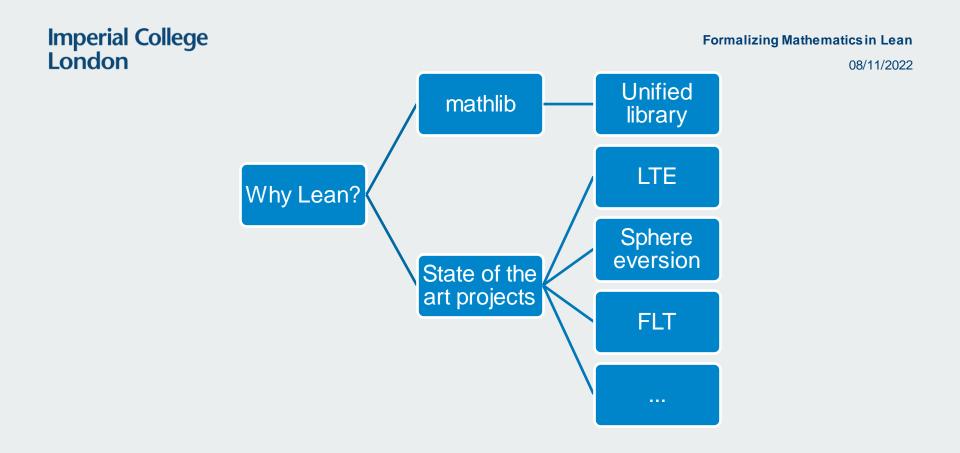
Example

Example

Formalizing Mathematics in Lean

08/11/2022

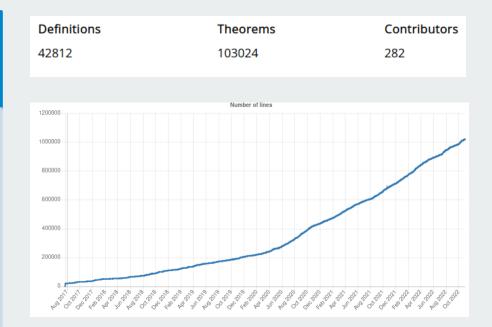
		~ =		
sr	c > ≡ test.lean			▼ test.lean:7:15
	1 import t	actic.basic		▼ Tactic state
	2			
		dus_ponens (p q : Prop) : $p \rightarrow (p \rightarrow q) \rightarrow q :=$		goals accomplished 🎉
	4 begin			goals accomplished M
	5 intro	hp,	- 8	
	6 intro	hpq ,		► All Messages (0)
	7 exact	hpq hp,		
	8 end			
	9			



Formalizing Mathematics in Lean

mathlib

- Open source
- Decentralized
- Monolithic
- <u>Overview</u>

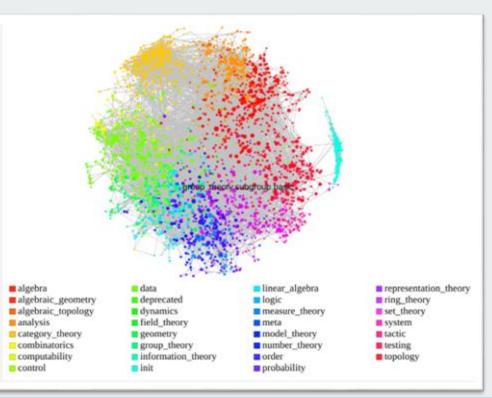


Formalizing Mathematics in Lean

08/11/2022

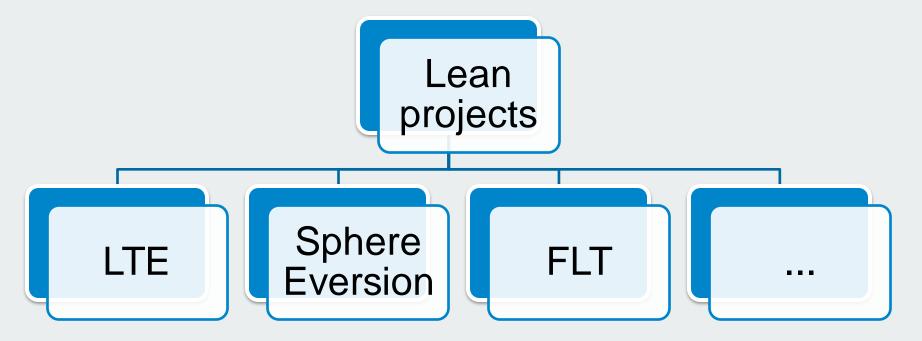
Mathlib's dependency graph:

- By Eric Wieser
- Interactive version



Formalizing Mathematics in Lean

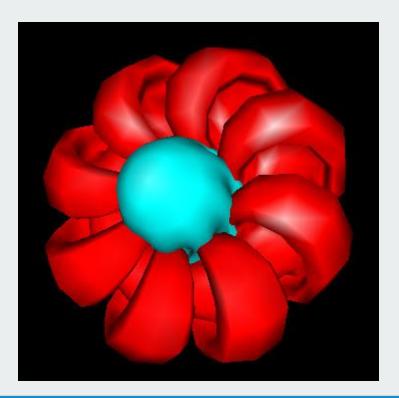
08/11/2022



Sphere eversion

- Led by Patrick Massot
- Turn a sphere inside-out in 3D space
- Differential topology
- Blueprint

Formalizing Mathematics in Lean 08/11/2022



08/11/2022

Formalizing Number Theory: guiding goals

Fermat's Last Theorem

"If $x^n + y^n = z^n$ for $n \ge 3$, then xyz = 0."

- Formulated around 1637.
- Proven by Wiles and Taylor in 1995.
- Proof uses elliptic curves, modular forms, Galois representations, class field theory...

The Langlands Program

- Deep conjectures relating algebra and analysis, number theory and geometry.
- Largest research program in modern mathematics.

My Contributions

Formalized

- Adèles and idèles of global fields.
- Stating Global Class Field Theory.
- Extensions of norms.
- The p-adic complex numbers.

Ongoing

- Local Class Field Theory (with Filippo Nuccio).
- Divided powers (with Antoine Chambert-Loir).
- Fontaine's period rings.

Other Number Theory projects

Formalized

- p-adic numbers (R. Lewis).
- Witt vectors (J. Commelin, R.Lewis).
- Elliptic curves (K. Buzzard).
- Modular forms (C. Birkbeck).
- Galois cohomology (A. Livingston).

Ongoing

- FLT for regular primes (led by R. Brasca).
- Iwasawa Theory (A. Narayanan).
- Modularity Conjecture (K. Buzzard, M. Karatarakis).

Formalizing Mathematics in Lean

08/11/2022

Thank you! Questions?