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NP-hard problems still persist…
… despite Deep Learning



NP-Hard
This is about complexity

we do not know an algorithm that is able to solve all 
the instances of the problem in polynomial time.

Given a NP-hard optimization problems,

In other words, it is the set of most challenging problems.



Historical record
Optimization approaches

Linear Programming and Simplex (Dantzig, 1947)

Source: http://www.mitrikitti.fi/opthist.html

Theory of duality (von Neumann, 1947)

Minimal distance (Euclid, 300 BC)

Secretary problem (Kepler, 1615)

Problem of minimal surfaces (Lagrange, 1754)

Transportation problem (Monge, 1784)

Gradient method (Cauchy, 1847)

Travelling Salesman Problem (Menger, 1932)

Quadratic Optimization (Markowitz, 1951)

Dynamic Programming (Bellman, 1953)

Optimality principle (Bellman, 1957)

WW II

A* algorithm (Hart, 1968)

Dijkstra’s algorithm (Dijkstra, 1956)

Genetic Algorithms (Holland, 1975)

Scatter Search (Glover, 1977)

Simulated Annealing (Kirkpatrick et al., 1983)

Genetic Programming (Koza, 1988)

No Free Lunch (Wolpert & MacReady, 1997)

Factorized Distribution Algorithm (Muhlenbein, 1999)

NSGA-II (Deb, 2002)

…

…Hungarian algorithm (Kuhn, 1955)

Iterated Local Search (Lourenço, 2001)

Pointer-network model for TSP (Vinyals, 2015)

Neural Combinatorial Optimization (Bello, 2016)



Deep Learning
But… what’s really in it?

Supervised Training

+

+

+

Vinyals O., Fortunato M., and Jaitly N. (2015). Pointer Networks. Advances in Neural Information Processing Systems 28.

Infer (construct) a solution



Deep Learning
But… what’s really in it?

Infer (construct) a solution

Bello I., Pham H., Quoc V. L., Norouzi M., and Bengio S. (2017). Neural Combinatorial Optimization with Reinforcement Learning. ICLR 2017.

Reinforcement Learning

Interaction with 
environment



Deep Learning
But… what’s really in it?

Kool W., van Hoof H., and Welling M. (2019). Attention, Learn to Solve Routing Problems!. ICLR 2019.

Published as a conference paper at ICLR 2019

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.

n = 20 n = 50 n = 100
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

TS
P

Concorde 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)
LKH3 3.84 0.00% (18s) 5.70 0.00% (5m) 7.76 0.00% (21m)
Gurobi 3.84 0.00% (7s) 5.70 0.00% (2m) 7.76 0.00% (17m)
Gurobi (1s) 3.84 0.00% (8s) 5.70 0.00% (2m) -
Nearest Insertion 4.33 12.91% (1s) 6.78 19.03% (2s) 9.46 21.82% (6s)
Random Insertion 4.00 4.36% (0s) 6.13 7.65% (1s) 8.52 9.69% (3s)
Farthest Insertion 3.93 2.36% (1s) 6.01 5.53% (2s) 8.35 7.59% (7s)
Nearest Neighbor 4.50 17.23% (0s) 7.00 22.94% (0s) 9.68 24.73% (0s)
Vinyals et al. (gr.) 3.88 1.15% 7.66 34.48% -
Bello et al. (gr.) 3.89 1.42% 5.95 4.46% 8.30 6.90%
Dai et al. 3.89 1.42% 5.99 5.16% 8.31 7.03%
Nowak et al. 3.93 2.46% - -
EAN (greedy) 3.86 0.66% (2m) 5.92 3.98% (5m) 8.42 8.41% (8m)
AM (greedy) 3.85 0.34% (0s) 5.80 1.76% (2s) 8.12 4.53% (6s)
OR Tools 3.85 0.37% 5.80 1.83% 7.99 2.90%
Chr.f. + 2OPT 3.85 0.37% 5.79 1.65% -
Bello et al. (s.) - 5.75 0.95% 8.00 3.03%
EAN (gr. + 2OPT) 3.85 0.42% (4m) 5.85 2.77% (26m) 8.17 5.21% (3h)
EAN (sampling) 3.84 0.11% (5m) 5.77 1.28% (17m) 8.75 12.70% (56m)
EAN (s. + 2OPT) 3.84 0.09% (6m) 5.75 1.00% (32m) 8.12 4.64% (5h)
AM (sampling) 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)

C
V

R
P

Gurobi 6.10 0.00% - -
LKH3 6.14 0.58% (2h) 10.38 0.00% (7h) 15.65 0.00% (13h)
RL (greedy) 6.59 8.03% 11.39 9.78% 17.23 10.12%
AM (greedy) 6.40 4.97% (1s) 10.98 5.86% (3s) 16.80 7.34% (8s)
RL (beam 10) 6.40 4.92% 11.15 7.46% 16.96 8.39%
Random CW 6.81 11.64% 12.25 18.07% 18.96 21.18%
Random Sweep 7.08 16.07% 12.96 24.91% 20.33 29.93%
OR Tools 6.43 5.41% 11.31 9.01% 17.16 9.67%
AM (sampling) 6.25 2.49% (6m) 10.62 2.40% (28m) 16.23 3.72% (2h)

SD
V

R
P RL (greedy) 6.51 4.19% 11.32 6.88% 17.12 5.23%

AM (greedy) 6.39 2.34% (1s) 10.92 3.08% (4s) 16.83 3.42% (11s)
RL (beam 10) 6.34 1.47% 11.08 4.61% 16.86 3.63%
AM (sampling) 6.25 0.00% (9m) 10.59 0.00% (42m) 16.27 0.00% (3h)

O
P

(d
is

ta
nc

e)

Gurobi 5.39 0.00% (16m) - -
Gurobi (1s) 4.62 14.22% (4m) 1.29 92.03% (6m) 0.58 98.25% (7m)
Gurobi (10s) 5.37 0.33% (12m) 10.96 32.20% (51m) 1.34 95.97% (53m)
Gurobi (30s) 5.38 0.05% (14m) 13.57 16.09% (2h) 3.23 90.28% (3h)
Compass 5.37 0.36% (2m) 16.17 0.00% (5m) 33.19 0.00% (15m)
Tsili (greedy) 4.08 24.25% (4s) 12.46 22.94% (4s) 25.69 22.59% (5s)
AM (greedy) 5.19 3.64% (0s) 15.64 3.23% (1s) 31.62 4.75% (5s)
GA (Python) 5.12 4.88% (10m) 10.90 32.59% (1h) 14.91 55.08% (5h)
OR Tools (10s) 4.09 24.05% (52m) - -
Tsili (sampling) 5.30 1.62% (28s) 15.50 4.14% (2m) 30.52 8.05% (6m)
AM (sampling) 5.30 1.56% (4m) 16.07 0.60% (16m) 32.68 1.55% (53m)

PC
TS

P

Gurobi 3.13 0.00% (2m) - -
Gurobi (1s) 3.14 0.07% (1m) - -
Gurobi (10s) 3.13 0.00% (2m) 4.54 1.36% (32m) -
Gurobi (30s) 3.13 0.00% (2m) 4.48 0.03% (54m) -
AM (greedy) 3.18 1.62% (0s) 4.60 2.66% (2s) 6.25 4.46% (5s)
ILS (C++) 3.16 0.77% (16m) 4.50 0.36% (2h) 5.98 0.00% (12h)
OR Tools (10s) 3.14 0.05% (52m) 4.51 0.70% (52m) 6.35 6.21% (52m)
OR Tools (60s) 3.13 0.01% (5h) 4.48 0.00% (5h) 6.07 1.56% (5h)
ILS (Python 10x) 5.21 66.19% (4m) 12.51 179.05% (3m) 23.98 300.95% (3m)
AM (sampling) 3.15 0.45% (5m) 4.52 0.74% (19m) 6.08 1.67% (1h)

SP
C

TS
P REOPT (all) 3.34 2.38% (17m) 4.68 1.04% (2h) 6.22 1.10% (12h)

REOPT (half) 3.31 1.38% (25m) 4.64 0.00% (3h) 6.16 0.00% (16h)
REOPT (first) 3.31 1.60% (1h) 4.66 0.44% (22h) -
AM (greedy) 3.26 0.00% (0s) 4.65 0.33% (2s) 6.32 2.69% (5s)
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Competitive performance.

Low inference times.

Deep Learning
But… what’s really in it?

Questionable comparisons.

All are constructive.

PROS CONS



The Challenge
Prove me wrong!

“Do NCO models outperform 
metaheuristics ?”



Combinatorial Optimization Problems
Formal definition

s⇤ = argmax
s2⌦

f(s)

<latexit sha1_base64="9OQWB7+PaXky4MB2e2bpxuWB8oE="></latexit>

Finite search space of solutions  


Objective function  


The aim:

Ω

f : Ω → ℝ



Combinatorial Optimization Problems
Some examples
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The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Encoder Decoder



The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Encoder Decoder Solution OutputInstance Input
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Linear Ordering Problem

2 1 5 4 3

0.1 0.80 0.0 0.07 0.03

0.04 0.05 0.0 0.01 0.9

0.0 0.5 0.45 0.0 0.05

0.98 0.0 0.0 0.02 0.0

0.0 0.2 0.03 0.77 0.0

Po
s

Item

Procedure:


- Autoregressive.

- End-to-end

Relevant aspects:


- Model the problem as a GNN or similar.

- Keep a rich representation.



The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.



The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Graph features:


- Edge features  taken from the instance 
matrix.


- Node features ,  a priori, meaningless.

- This information feeds the GNN encoder.

yij

xi



The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Encoder: GNN layers 

- From features to node  and edge  embeddings.


- Embeddings linear initialization:







- Message passing:








- Result of the last layer:  and .
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The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Decoder:


- Multi-Head Attention was used.

- Later, tests showed MLP performed equally.

Learning:

- REINFORCE algorithm.

- Fundamentals:


ℒ(θ |s) = 𝔼pθ(π|s)[ − (R(π) − b(s))log pθ(π |s)]



The constructive
A Neural Combinatorial Optimization approach

Performance results Computational cost



The constructive
A Neural Combinatorial Optimization approach

Performance results Computational cost



Constructive…

…Metaheuristics



Why not improving?
Don’t want to construct!

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.
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The cost of revising the neighborhood greedily is !!O(n2)



Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?



Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Graph features:


- Edge features  taken from the 
instance matrix.


- Node features ,  random vector from .

- Embeddings linear initialization:





xij ∈ ℝ2

n ℝN

hl=1
i = ni * Vh + Uh

el=1
ij = xij * Ve + Ue



Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Encoder: GNN layers

- Message passing:








- Result of the last layer edge embeddings: 
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Graph features:


- Edge features  taken from the 
instance matrix.


- Node features ,  random vector from .

- Embeddings linear initialization:
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Encoder: GNN layers

- Message passing:








- Result of the last layer edge embeddings: 
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Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Decoder:

- Multi-Layer Perceptron and softmax layer.

Learning:


- REINFORCE algorithm: ℒ(θ |s) = 𝔼pθ(s,ωt)[−Rt log pθ(s, ωt)]

Graph features:


- Edge features  taken from the 
instance matrix.


- Node features ,  random vector from .

- Embeddings linear initialization:





xij ∈ ℝ2

n ℝN

hl=1
i = ni * Vh + Uh

el=1
ij = xij * Ve + Ue



Improvement strategies
Low-complexity local search

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Some results:
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Don’t want to repeat!
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

- In the ideal scenario, no 
solutions would be revisited.


- An internal memory?


- Avoid tabu search (external 
memory).



Incorporating memory
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

- Memory design dependent 
on the scheme and the 
problem.


- Similarity-based search 
mechanism to retrieve past 
relevant information.



Incorporating memory
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Constructive scheme for permutations problems 

- Records: visited solutions .


- For every partial solution, retrieve the allocation of 
the items to positions in similar solutions.


- Result  : weighted average of the remaining items 
that were placed in the  most similar solutions.

θt

ht
k



Incorporating memory
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Improvement scheme for binary problems 

- Records: visited solutions  and adopted action 
(bit-flip)


- Retrieve the actions performed in similar solutions.


- Result  : weighted average of the actions that 
were executed in the  most similar solutions.

θt

ht
k



Incorporating memory
Avoid revisiting - did we succeed?

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Some results during training: Avoid previous action



Incorporating memory
Avoid revisiting - did we succeed?

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Some results during inference:



Incorporating memory
Memory complexity

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.



Incorporating memory
Implicitly population-based?

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

“In the improvement scheme, multiple 
threads were run, simultaneously, 

sharing the same memory”.



- Close to metaheuristics’ performance.


- Population-based approaches look the next step.


- What if the problem cannot be represented as a graph?Which 
encoder should we use?


- Get closer to the real-world practitioners. At this point we are even 
further.


- Greener algorithms. Prohibitive energy consumption.


Food for thought



Josu Ceberio, May 2024

NP-hard problems still persist…
… despite Deep Learning                      don’t you think?


