
Josu Ceberio, May 2024

NP-hard problems still persist…
… despite Deep Learning

NP-Hard
This is about complexity

we do not know an algorithm that is able to solve all
the instances of the problem in polynomial time.

Given a NP-hard optimization problems,

In other words, it is the set of most challenging problems.

Historical record
Optimization approaches

Linear Programming and Simplex (Dantzig, 1947)

Source: http://www.mitrikitti.fi/opthist.html

Theory of duality (von Neumann, 1947)

Minimal distance (Euclid, 300 BC)

Secretary problem (Kepler, 1615)

Problem of minimal surfaces (Lagrange, 1754)

Transportation problem (Monge, 1784)

Gradient method (Cauchy, 1847)

Travelling Salesman Problem (Menger, 1932)

Quadratic Optimization (Markowitz, 1951)

Dynamic Programming (Bellman, 1953)

Optimality principle (Bellman, 1957)

WW II

A* algorithm (Hart, 1968)

Dijkstra’s algorithm (Dijkstra, 1956)

Genetic Algorithms (Holland, 1975)

Scatter Search (Glover, 1977)

Simulated Annealing (Kirkpatrick et al., 1983)

Genetic Programming (Koza, 1988)

No Free Lunch (Wolpert & MacReady, 1997)

Factorized Distribution Algorithm (Muhlenbein, 1999)

NSGA-II (Deb, 2002)

…

…Hungarian algorithm (Kuhn, 1955)

Iterated Local Search (Lourenço, 2001)

Pointer-network model for TSP (Vinyals, 2015)

Neural Combinatorial Optimization (Bello, 2016)

Deep Learning
But… what’s really in it?

Supervised Training

+

+

+

Vinyals O., Fortunato M., and Jaitly N. (2015). Pointer Networks. Advances in Neural Information Processing Systems 28.

Infer (construct) a solution

Deep Learning
But… what’s really in it?

Infer (construct) a solution

Bello I., Pham H., Quoc V. L., Norouzi M., and Bengio S. (2017). Neural Combinatorial Optimization with Reinforcement Learning. ICLR 2017.

Reinforcement Learning

Interaction with
environment

Deep Learning
But… what’s really in it?

Kool W., van Hoof H., and Welling M. (2019). Attention, Learn to Solve Routing Problems!. ICLR 2019.

Published as a conference paper at ICLR 2019

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.

n = 20 n = 50 n = 100
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

TS
P

Concorde 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)
LKH3 3.84 0.00% (18s) 5.70 0.00% (5m) 7.76 0.00% (21m)
Gurobi 3.84 0.00% (7s) 5.70 0.00% (2m) 7.76 0.00% (17m)
Gurobi (1s) 3.84 0.00% (8s) 5.70 0.00% (2m) -
Nearest Insertion 4.33 12.91% (1s) 6.78 19.03% (2s) 9.46 21.82% (6s)
Random Insertion 4.00 4.36% (0s) 6.13 7.65% (1s) 8.52 9.69% (3s)
Farthest Insertion 3.93 2.36% (1s) 6.01 5.53% (2s) 8.35 7.59% (7s)
Nearest Neighbor 4.50 17.23% (0s) 7.00 22.94% (0s) 9.68 24.73% (0s)
Vinyals et al. (gr.) 3.88 1.15% 7.66 34.48% -
Bello et al. (gr.) 3.89 1.42% 5.95 4.46% 8.30 6.90%
Dai et al. 3.89 1.42% 5.99 5.16% 8.31 7.03%
Nowak et al. 3.93 2.46% - -
EAN (greedy) 3.86 0.66% (2m) 5.92 3.98% (5m) 8.42 8.41% (8m)
AM (greedy) 3.85 0.34% (0s) 5.80 1.76% (2s) 8.12 4.53% (6s)
OR Tools 3.85 0.37% 5.80 1.83% 7.99 2.90%
Chr.f. + 2OPT 3.85 0.37% 5.79 1.65% -
Bello et al. (s.) - 5.75 0.95% 8.00 3.03%
EAN (gr. + 2OPT) 3.85 0.42% (4m) 5.85 2.77% (26m) 8.17 5.21% (3h)
EAN (sampling) 3.84 0.11% (5m) 5.77 1.28% (17m) 8.75 12.70% (56m)
EAN (s. + 2OPT) 3.84 0.09% (6m) 5.75 1.00% (32m) 8.12 4.64% (5h)
AM (sampling) 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)

C
V

R
P

Gurobi 6.10 0.00% - -
LKH3 6.14 0.58% (2h) 10.38 0.00% (7h) 15.65 0.00% (13h)
RL (greedy) 6.59 8.03% 11.39 9.78% 17.23 10.12%
AM (greedy) 6.40 4.97% (1s) 10.98 5.86% (3s) 16.80 7.34% (8s)
RL (beam 10) 6.40 4.92% 11.15 7.46% 16.96 8.39%
Random CW 6.81 11.64% 12.25 18.07% 18.96 21.18%
Random Sweep 7.08 16.07% 12.96 24.91% 20.33 29.93%
OR Tools 6.43 5.41% 11.31 9.01% 17.16 9.67%
AM (sampling) 6.25 2.49% (6m) 10.62 2.40% (28m) 16.23 3.72% (2h)

SD
V

R
P RL (greedy) 6.51 4.19% 11.32 6.88% 17.12 5.23%

AM (greedy) 6.39 2.34% (1s) 10.92 3.08% (4s) 16.83 3.42% (11s)
RL (beam 10) 6.34 1.47% 11.08 4.61% 16.86 3.63%
AM (sampling) 6.25 0.00% (9m) 10.59 0.00% (42m) 16.27 0.00% (3h)

O
P

(d
is

ta
nc

e)

Gurobi 5.39 0.00% (16m) - -
Gurobi (1s) 4.62 14.22% (4m) 1.29 92.03% (6m) 0.58 98.25% (7m)
Gurobi (10s) 5.37 0.33% (12m) 10.96 32.20% (51m) 1.34 95.97% (53m)
Gurobi (30s) 5.38 0.05% (14m) 13.57 16.09% (2h) 3.23 90.28% (3h)
Compass 5.37 0.36% (2m) 16.17 0.00% (5m) 33.19 0.00% (15m)
Tsili (greedy) 4.08 24.25% (4s) 12.46 22.94% (4s) 25.69 22.59% (5s)
AM (greedy) 5.19 3.64% (0s) 15.64 3.23% (1s) 31.62 4.75% (5s)
GA (Python) 5.12 4.88% (10m) 10.90 32.59% (1h) 14.91 55.08% (5h)
OR Tools (10s) 4.09 24.05% (52m) - -
Tsili (sampling) 5.30 1.62% (28s) 15.50 4.14% (2m) 30.52 8.05% (6m)
AM (sampling) 5.30 1.56% (4m) 16.07 0.60% (16m) 32.68 1.55% (53m)

PC
TS

P

Gurobi 3.13 0.00% (2m) - -
Gurobi (1s) 3.14 0.07% (1m) - -
Gurobi (10s) 3.13 0.00% (2m) 4.54 1.36% (32m) -
Gurobi (30s) 3.13 0.00% (2m) 4.48 0.03% (54m) -
AM (greedy) 3.18 1.62% (0s) 4.60 2.66% (2s) 6.25 4.46% (5s)
ILS (C++) 3.16 0.77% (16m) 4.50 0.36% (2h) 5.98 0.00% (12h)
OR Tools (10s) 3.14 0.05% (52m) 4.51 0.70% (52m) 6.35 6.21% (52m)
OR Tools (60s) 3.13 0.01% (5h) 4.48 0.00% (5h) 6.07 1.56% (5h)
ILS (Python 10x) 5.21 66.19% (4m) 12.51 179.05% (3m) 23.98 300.95% (3m)
AM (sampling) 3.15 0.45% (5m) 4.52 0.74% (19m) 6.08 1.67% (1h)

SP
C

TS
P REOPT (all) 3.34 2.38% (17m) 4.68 1.04% (2h) 6.22 1.10% (12h)

REOPT (half) 3.31 1.38% (25m) 4.64 0.00% (3h) 6.16 0.00% (16h)
REOPT (first) 3.31 1.60% (1h) 4.66 0.44% (22h) -
AM (greedy) 3.26 0.00% (0s) 4.65 0.33% (2s) 6.32 2.69% (5s)

7

Competitive performance.

Low inference times.

Deep Learning
But… what’s really in it?

Questionable comparisons.

All are constructive.

PROS CONS

The Challenge
Prove me wrong!

“Do NCO models outperform
metaheuristics ?”

Combinatorial Optimization Problems
Formal definition

s⇤ = argmax
s2⌦

f(s)

<latexit sha1_base64="9OQWB7+PaXky4MB2e2bpxuWB8oE=">AAACEnicdVBBSxtBGJ3VqjFajXr0MjQUooewqy7qQQjUg7cqNFHIxvDt5Ns4ODO7zMyKYclv6KV/pRcPinjtyZv/xtmYQi3tg4HHe+/jm+/FmeDG+v6LNzP7YW5+obJYXVr+uLJaW1vvmDTXDNssFam+iMGg4ArblluBF5lGkLHA8/j6S+mf36A2PFXf7CjDnoSh4glnYJ3Ur22Zy+2jCPQwytXA5dAWJuIq+ipxCOMiknBLxzRpmK1+re43d4Lw0N+lJQnC4HBCwtA/oEHTn6BOpjjt156jQcpyicoyAcZ0Az+zvQK05UzguBrlBjNg1zDErqMKJJpeMTlpTD87ZUCTVLunLJ2of04UII0ZydglJdgr87dXiv/yurlNDnoFV1luUbG3RUkuqE1p2Q8dcI3MipEjwDR3f6XsCjQw69qpuhJ+X0r/Tzo7zWCvGZ7t1VvH0zoqZJN8Ig0SkH3SIifklLQJI9/JT3JPHrwf3p336D29RWe86cwGeQfv1yuEu54G</latexit>

Finite search space of solutions

Objective function

The aim:

Ω

f : Ω → ℝ

Combinatorial Optimization Problems
Some examples

22

12

13

9

0

11

1116

14

26

22

242530

21 15

26 23 0

0

28

0

0

15 7

54321

5

4

3

2

1

Linear Ordering Problem

1

4
3

2

2

5

x1

x2

x3

x4

x5

x6

Max-Cut Problem

Travelling Salesman Problem

Flowshop Scheduling Problem

Maximum Independent Set

The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Encoder Decoder

The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Encoder Decoder Solution OutputInstance Input

22

12

13

9

0

11

1116

14

26

22

242530

21 15

26 23 0

0

28

0

0

15 7

54321

5

4

3

2

1

Linear Ordering Problem

2 1 5 4 3

0.1 0.80 0.0 0.07 0.03

0.04 0.05 0.0 0.01 0.9

0.0 0.5 0.45 0.0 0.05

0.98 0.0 0.0 0.02 0.0

0.0 0.2 0.03 0.77 0.0

Po
s

Item

Procedure:

- Autoregressive.

- End-to-end

Relevant aspects:

- Model the problem as a GNN or similar.

- Keep a rich representation.

The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Graph features:

- Edge features taken from the instance
matrix.

- Node features , a priori, meaningless.

- This information feeds the GNN encoder.

yij

xi

The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Encoder: GNN layers

- From features to node and edge embeddings.

- Embeddings linear initialization:

- Message passing:

- Result of the last layer: and .

hl
i el

ij

hl=1
i = xT

i * Ax + Bx

el=1
ij = yT

ij * Ay + By

hl+1
i = hl

i + gelu BN Wl
1h

l
i + ∑

j∈ℕi

(σ(el
ij) ⊙ Wl

2h
l
j)

el+1
ij = el

ij + gelu (BN (Wl
3e

l
ij + Wl

4h
l
i + Wl

5h
l
j))

hG =
1
n

n

∑
i=1

hL
i hL

The constructive
A Neural Combinatorial Optimization approach

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

Decoder:

- Multi-Head Attention was used.

- Later, tests showed MLP performed equally.

Learning:

- REINFORCE algorithm.

- Fundamentals:

ℒ(θ |s) = 𝔼pθ(π|s)[− (R(π) − b(s))log pθ(π |s)]

The constructive
A Neural Combinatorial Optimization approach

Performance results Computational cost

The constructive
A Neural Combinatorial Optimization approach

Performance results Computational cost

Constructive…

…Metaheuristics

Why not improving?
Don’t want to construct!

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Encoder DecoderInstance

22

12

13

9

0

11

1116

14

26

22

242530

21 15

26 23 0

0

28

0

0

15 7

54321

5

4

3

2

1

Linear Ordering Problem

Improvement
Movement

2 1 5 4 3

Solution 2 1 5 4 3

0.02

0.01

0.0

0.95

0.0

.

.

.

.

.

.

0.02

Sw
ap

s

All possible pairwise
swap operations

The cost of revising the neighborhood greedily is !!O(n2)

Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Graph features:

- Edge features taken from the
instance matrix.

- Node features , random vector from .

- Embeddings linear initialization:

xij ∈ ℝ2

n ℝN

hl=1
i = ni * Vh + Uh

el=1
ij = xij * Ve + Ue

Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Encoder: GNN layers

- Message passing:

- Result of the last layer edge embeddings:

hl+1
i = hl

i + Relu BN Wl
1h

l
i +

N

∑
j=1

(σ(el
ij) ⊙ Wl

2h
l
j)

el+1
ij = el

ij + Relu (BN (Wl
3e

l
ij + Wl

4h
l
i + Wl

5h
l
j))

eL
ij

Graph features:

- Edge features taken from the
instance matrix.

- Node features , random vector from .

- Embeddings linear initialization:

xij ∈ ℝ2

n ℝN

hl=1
i = ni * Vh + Uh

el=1
ij = xij * Ve + Ue

Encoder: GNN layers

- Message passing:

- Result of the last layer edge embeddings:

hl+1
i = hl

i + Relu BN Wl
1h

l
i +

N

∑
j=1

(σ(el
ij) ⊙ Wl

2h
l
j)

el+1
ij = el

ij + Relu (BN (Wl
3e

l
ij + Wl

4h
l
i + Wl

5h
l
j))

eL
ij

Modifications on the architecture

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Why not improving?

Decoder:

- Multi-Layer Perceptron and softmax layer.

Learning:

- REINFORCE algorithm: ℒ(θ |s) = 𝔼pθ(s,ωt)[−Rt log pθ(s, ωt)]

Graph features:

- Edge features taken from the
instance matrix.

- Node features , random vector from .

- Embeddings linear initialization:

xij ∈ ℝ2

n ℝN

hl=1
i = ni * Vh + Uh

el=1
ij = xij * Ve + Ue

Improvement strategies
Low-complexity local search

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Some results:

Do
w

ns
id

e

Don’t want to repeat!
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

- In the ideal scenario, no
solutions would be revisited.

- An internal memory?

- Avoid tabu search (external
memory).

Incorporating memory
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

- Memory design dependent
on the scheme and the
problem.

- Similarity-based search
mechanism to retrieve past
relevant information.

Incorporating memory
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Constructive scheme for permutations problems

- Records: visited solutions .

- For every partial solution, retrieve the allocation of
the items to positions in similar solutions.

- Result : weighted average of the remaining items
that were placed in the most similar solutions.

θt

ht
k

Incorporating memory
Avoid revisiting

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Improvement scheme for binary problems

- Records: visited solutions and adopted action
(bit-flip)

- Retrieve the actions performed in similar solutions.

- Result : weighted average of the actions that
were executed in the most similar solutions.

θt

ht
k

Incorporating memory
Avoid revisiting - did we succeed?

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Some results during training: Avoid previous action

Incorporating memory
Avoid revisiting - did we succeed?

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Some results during inference:

Incorporating memory
Memory complexity

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

Incorporating memory
Implicitly population-based?

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). MARCO: A Memory-Augmented Reinforcement Framework for Combinatorial Optimization. International Joint Conference on Artificial Intelligence.

“In the improvement scheme, multiple
threads were run, simultaneously,

sharing the same memory”.

- Close to metaheuristics’ performance.

- Population-based approaches look the next step.

- What if the problem cannot be represented as a graph?Which
encoder should we use?

- Get closer to the real-world practitioners. At this point we are even
further.

- Greener algorithms. Prohibitive energy consumption.

Food for thought

Josu Ceberio, May 2024

NP-hard problems still persist…
… despite Deep Learning don’t you think?

