# NP-hard problems still persist... ... despite Deep Learning

Josu Ceberio, May 2024



Universidad del País Vasco

Euskal Herriko Unibertsitatea





### **NP-Hard** This is about complexity

Given a NP-hard optimization problems,

In other words, it is the set of most challenging problems.

#### we do not know an algorithm that is able to solve all the instances of the problem in polynomial time.

# **Historical record Optimization approaches**

Minimal distance (Euclid, 300 BC) **Secretary problem (Kepler, 1615) Problem of minimal surfaces (Lagrange, 1754) Transportation problem (Monge, 1784)** Gradient method (Cauchy, 1847) **Travelling Salesman Problem (Menger, 1932)** WW II Linear Programming and Simplex (Dantzig, 1947) **Theory of duality (von Neumann, 1947) Quadratic Optimization (Markowitz, 1951) Dynamic Programming (Bellman, 1953)** Hungarian algorithm (Kuhn, 1955) Dijkstra's algorithm (Dijkstra, 1956) **Optimality principle (Bellman, 1957)** 

A\* algorithm (Hart, 1968) **Genetic Algorithms (Holland, 1975)** Scatter Search (Glover, 1977) Simulated Annealing (Kirkpatrick et al., 1983) **Genetic Programming (Koza, 1988) No Free Lunch (Wolpert & MacReady, 1997) Factorized Distribution Algorithm (Muhlenbein, 1999)** Iterated Local Search (Lourenço, 2001) **NSGA-II (Deb, 2002)** 



**Pointer-network model for TSP (Vinyals, 2015) Neural Combinatorial Optimization (Bello, 2016)** 

Source: http://www.mitrikitti.fi/opthist.html

#### **Deep Learning** But... what's really in it?

**Supervised Training** 



Vinyals O., Fortunato M., and Jaitly N. (2015). Pointer Networks. Advances in Neural Information Processing Systems 28.

#### Infer (construct) a solution



### **Deep Learning** But... what's really in it?





#### Infer (construct) a solution



# Doon Loorning

| L             | Jeer                                                               |                                      | <b>_e</b> a                                                                   | ar                                      | n                               | no                                                                  |                               |                                |                               |                                |  | _         | Method                                                                                                                        | Obj.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n = 20 Gap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Obj.                                                                                   | n = 50<br>Gap                                                                        | Time                                                               | n<br>Obj.                                                    | n = 100<br>Gap                                                    | Time                             |
|---------------|--------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--|-----------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|
|               |                                                                    |                                      |                                                                               | <b>K</b> 0                              | <br>                            |                                                                     | )<br>;+つ                      | )                              |                               |                                |  |           | Concorde<br>LKH3<br>Gurobi<br>Gurobi (1s)                                                                                     | $  \begin{array}{c} 3.84 \\ 3.84 \\ 3.84 \\ 3.84 \\ 3.84 \end{array}  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.00\% \\ 0.00\% \\ 0.00\% \\ 0.00\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1m)<br>(18s)<br>(7s)<br>(8s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $5.70 \\ 5.70 \\ 5.70 \\ 5.70 \\ 5.70$                                                 | $\begin{array}{c} 0.00\% \\ 0.00\% \\ 0.00\% \\ 0.00\% \end{array}$                  | (2m)<br>(5m)<br>(2m)<br>(2m)                                       | $7.76 \\ 7.76 \\ 7.76$                                       | 0.00%<br>0.00%<br>0.00%<br>-                                      | (3m)<br>(21m)<br>(17m)           |
|               | Method                                                             | <sub>ОЪј.</sub>                      | n = 20<br>Gap                                                                 | Time                                    | Obj.                            | $n = 50 \\ { m Gap}$                                                | Time                          | Obj.                           | $n = 100 \\ { m Gap}$         | Time                           |  | TSP       | Nearest Insertion<br>Random Insertion<br>Farthest Insertion<br>Nearest Neighbor<br>Vinyals et al. (gr.)<br>Bello et al. (gr.) | $ \begin{array}{c cccc} 4.33 \\ 4.00 \\ 3.93 \\ 4.50 \\ 3.88 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.89 \\ 3.8$ | $12.91\% \\ 4.36\% \\ 2.36\% \\ 17.23\% \\ 1.15\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.42\% \\ 1.$ | (1s)<br>(0s)<br>(1s)<br>(0s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 6.78 \\ 6.13 \\ 6.01 \\ 7.00 \\ 7.66 \\ 5.95 \\ 5.90 \end{array}$    | $19.03\% \\ 7.65\% \\ 5.53\% \\ 22.94\% \\ 34.48\% \\ 4.46\% \\ 5.16\% \\ 5.16\% \\$ | (2s)<br>(1s)<br>(2s)<br>(0s)                                       | 9.46<br>8.52<br>8.35<br>9.68<br>8.30<br>8.31                 | $21.82\% \\ 9.69\% \\ 7.59\% \\ 24.73\% \\ - \\ 6.90\% \\ 7.03\%$ | (6s)<br>(3s)<br>(7s)<br>(0s)     |
| TSP           | Concorde<br>LKH3<br>Gurobi<br>Gurobi (1s)                          | 3.84<br>3.84<br>3.84<br>3.84         | $\begin{array}{c} 0.00\% \\ 0.00\% \\ 0.00\% \\ 0.00\% \end{array}$           | (1m)<br>(18s)<br>(7s)<br>(8s)           | 5.70<br>5.70<br>5.70<br>5.70    | $\begin{array}{c} 0.00\% \\ 0.00\% \\ 0.00\% \\ 0.00\% \end{array}$ | (2m)<br>(5m)<br>(2m)<br>(2m)  | 7.76<br>7.76<br>7.76           | 0.00%<br>0.00%<br>0.00%       | (3m)<br>(21m)<br>(17m)         |  |           | Nowak et al.<br>EAN (greedy)<br>AM (greedy)<br>OR Tools<br>Chr.f. + 2OPT<br>Bello et al. (s.)                                 | 3.93<br>3.86<br><b>3.85</b><br>3.85<br>3.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.42%<br>2.46%<br>0.66%<br>0.34%<br>0.37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2m)<br>(0s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.92<br>5.80<br>5.80<br>5.79<br>5.75                                                   |                                                                                      | (5m)<br>(2s)                                                       | 8.42<br>8.12<br>7.99<br>8.00                                 |                                                                   | (8m)<br>(6s)                     |
|               | Nearest Insertion<br>Random Insertion<br>Farthest Insertion        | 4.33 4.00 3.93                       | 12.91%<br>4.36%<br>2.36%                                                      | (1s)<br>(0s)<br>(1s)                    | 6.78<br>6.13<br>6.01            | 19.03%<br>7.65%<br>5.53%                                            | (2s)<br>(1s)<br>(2s)          | 9.46<br>8.52<br>8.35           | 21.82%<br>9.69%<br>7.59%      | (6s)<br>(3s)<br>(7s)           |  |           | EAN (gr. + 2OPT)<br>EAN (sampling)<br>EAN (s. + 2OPT)<br>AM (sampling)<br>Gurobi                                              | ) 3.85<br>3.84<br>3.84<br><b>3.84</b><br><b>3.84</b><br><b>3.84</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.42%<br>0.11%<br>0.09%<br>0.08%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4m)<br>(5m)<br>(6m)<br>(5m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.75<br>5.85<br>5.77<br>5.75<br><b>5.73</b>                                            | 0.93%<br>2.77%<br>1.28%<br>1.00%<br>0.52%                                            | (26m)<br>(17m)<br>(32m)<br>(24m)                                   | 8.00<br>8.17<br>8.75<br>8.12<br><b>7.94</b>                  | 5.03%<br>5.21%<br>12.70%<br>4.64%<br><b>2.26</b> %                | (3h)<br>(56m)<br>(5h)<br>(1h)    |
|               | Nearest Neighbor<br>Vinyals et al. (gr.)<br>Bello et al. (gr.)     | 4.50<br>3.88<br>3.89                 | 17.23%<br>1.15%<br>1.42%                                                      | (0s)                                    | 7.00<br>7.66<br>5.95            | 22.94%<br>34.48%<br>4.46%                                           | (0s)                          | 9.68                           | 24.73%<br>6.90%               | (0s)                           |  | CVRP      | LKH3<br>RL (greedy)<br>AM (greedy)                                                                                            | 6.10<br>6.14<br>6.59<br>6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.58%<br>8.03%<br>4.97%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.38<br>11.39<br><b>10.98</b>                                                         | 0.00%<br>9.78%<br><b>5.86</b> %                                                      | (7h)                                                               | 15.65<br>17.23<br>16.80                                      | 0.00%<br>10.12%<br><b>7.34</b> %                                  | (13h)<br>(8s)                    |
|               | Dai et al.<br>Nowak et al.<br>EAN (greedy)                         | 3.89<br>3.93<br>3.86                 | 1.42%<br>2.46%<br>0.66%                                                       | (2m)                                    | 5.99<br>5.92                    | 5.16%                                                               | (5m)                          | 8.31<br>8.42                   | 7.03%<br>8.41%                | (8m)                           |  |           | RL (beam 10)<br>Random CW<br>Random Sweep<br>OR Tools<br>AM (sampling)                                                        | 6.40<br>6.81<br>7.08<br>6.43<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 4.92\% \\ 11.64\% \\ 16.07\% \\ 5.41\% \\ \mathbf{2.49\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (6m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.15<br>12.25<br>12.96<br>11.31<br><b>10.62</b>                                       | 7.46%<br>18.07%<br>24.91%<br>9.01%<br><b>2.40</b> %                                  | (28m)                                                              | 16.96<br>18.96<br>20.33<br>17.16<br>16.23                    | 8.39%<br>21.18%<br>29.93%<br>9.67%<br><b>3.72</b> %               | (2h)                             |
|               | AM (greedy)<br>OR Tools<br>Chrf. + 20PT                            | 3.85                                 | 0.34%                                                                         | (0s)                                    | 5.80<br>5.80                    | 1.76%<br>1.83%<br>1.65%                                             | (2s)                          | 8.12                           | 4.53%<br>2.90%                | (6s)                           |  | SDVRP     | RL (greedy)<br>AM (greedy)<br>RL (beam 10)<br>AM (sampling)                                                                   | 6.51<br>6.39<br>6.34<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.19%<br>2.34%<br>1.47%<br>0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1s)<br>(9m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.32<br>10.92<br>11.08<br>10.59                                                       | 6.88%<br>3.08%<br>4.61%<br>0.00%                                                     | $(4s) \begin{vmatrix} z \\ z \\ (42m) \end{vmatrix}$               | 17.12<br>16.83<br>16.86<br>16.27                             | 5.23%<br>3.42%<br>3.63%<br>0.00%                                  | (11s)<br>(3h)                    |
| OP (distance) | EAN (gr. + 20PT)<br>EAN (sampling)                                 | 3.85<br>3.84                         | 0.42%                                                                         | (4m)<br>(5m)                            | 5.75<br>5.85<br>5.77            | 0.95%<br>2.77%<br>1.28%                                             | (26m)<br>(17m)                | 8.00<br>8.17<br>8.75           | 3.03%<br>5.21%<br>12.70%      | (3h)<br>(56m)                  |  | distance) | Gurobi<br>Gurobi (1s)<br>Gurobi (10s)<br>Gurobi (30s)<br>Compass                                                              | $ \begin{array}{c c} 5.39 \\ 4.62 \\ 5.37 \\ 5.38 \\ 5.37 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.00\% \\ 14.22\% \\ 0.33\% \\ 0.05\% \\ 0.36\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (16m)<br>(4m)<br>(12m)<br>(14m)<br>(2m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.29 \\ 10.96 \\ 13.57 \\ 16.17$                                                      | 92.03%<br>32.20%<br>16.09%<br>0.00%                                                  | (6m)<br>(51m)<br>(2h)<br>(5m)                                      | $\begin{array}{c} 0.58 \\ 1.34 \\ 3.23 \\ 33.19 \end{array}$ | -<br>98.25%<br>95.97%<br>90.28%<br>0.00%                          | (7m)<br>(53m)<br>(3h)<br>(15m)   |
|               | EAN (s. + 20PT)<br>AM (sampling)                                   | 3.84                                 | 0.09%                                                                         | (6m)<br>(5m)                            | 5.75<br><b>5.73</b>             | 1.00%<br>0.52%                                                      | (32m)<br>(24m)                | 8.12<br>7.94                   | 4.64%<br>2.26%                | (5h)<br>(1h)                   |  | OP ((     | <ul> <li>Tsili (greedy)</li> <li>AM (greedy)</li> <li>GA (Python)</li> <li>OR Tools (10s)</li> </ul>                          | $ \begin{array}{r} 4.08 \\ 5.19 \\ 5.12 \\ 4.09 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} 24.25\% \\ \mathbf{3.64\%} \\ 4.88\% \\ 24.05\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(4s) \\ (0s) \\ (10m) \\ (52m) \\ (52m) \\ (4s) \\ (10m) \\ (52m) \\ (10m) \\$ | 12.46<br><b>15.64</b><br>10.90                                                         | 22.94%<br><b>3.23</b> %<br>32.59%                                                    | $\begin{array}{c c} (4s) \\ (1s) \\ \hline \\ (1h) \\ \end{array}$ | 25.69<br><b>31.62</b><br>14.91                               | 22.59%<br>4.75%<br>55.08%                                         |                                  |
|               | Gurobi (1s)<br>Gurobi (10s)<br>Gurobi (30s)<br>Compass             | 5.39<br>4.62<br>5.37<br>5.38<br>5.38 | 0.00%<br>14.22%<br>0.33%<br>0.05%<br>0.36%                                    | (16m)<br>(4m)<br>(12m)<br>(14m)<br>(2m) | 1.29<br>10.96<br>13.57<br>16.17 | -<br>92.03%<br>32.20%<br>16.09%<br>0.00%                            | (6m)<br>(51m)<br>(2h)<br>(5m) | 0.58<br>1.34<br>3.23<br>33 10  | 98.25%<br>95.97%<br>90.28%    | (7m)<br>(53m)<br>(3h)<br>(15m) |  | SP        | Tsili (sampling)<br>AM (sampling)<br>Gurobi<br>Gurobi (1s)<br>Gurobi (10s)<br>Gurobi (30s)                                    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 1.62\% \\ \mathbf{1.56\%} \\ 0.00\% \\ 0.07\% \\ 0.00\% \\ 0.00\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (28s)<br>(4m)<br>(2m)<br>(1m)<br>(2m)<br>(2m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.50<br><b>16.07</b><br>4.54<br>4.48                                                  | 4.14%<br><b>0.60</b> %<br>-<br>1.36%<br>0.03%                                        | (2m)<br>(16m) 3<br>(32m)<br>(54m)                                  | 30.52<br><b>32.68</b>                                        | 8.05%<br><b>1.55</b> %<br>-<br>-<br>-<br>-                        | (6m)<br>(53m)                    |
|               | Tsili (greedy)<br>AM (greedy)                                      | 4.08<br>5.19                         | 24.25%<br>3.64%                                                               | (4s)<br>(0s)                            | 12.46<br>15.64                  | 22.94%<br>3.23%                                                     | (4s)<br>(1s)                  | 25.69<br>31.62                 | 22.59%<br>4.75%               | (15fi)<br>(5s)<br>(5s)         |  | PCT       | AM (greedy)<br>ILS (C++)<br>OR Tools (10s)<br>OR Tools (60s)                                                                  | <b>3.18</b><br><b>3.16</b><br><b>3.14</b><br><b>3.13</b><br><b>5.21</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.62%<br>0.77%<br>0.05%<br>0.01%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0s)<br>(16m)<br>(52m)<br>(5h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.60<br>4.50<br>4.51<br>4.48                                                           | 2.66%<br>0.36%<br>0.70%<br>0.00%                                                     | (2s)  <br>(2h)<br>(52m)<br>(5h)                                    | 6.25<br>5.98<br>6.35<br>6.07                                 | 4.46%<br>0.00%<br>6.21%<br>1.56%                                  |                                  |
|               | GA (Python)<br>OR Tools (10s)<br>Tsili (sampling)<br>AM (sampling) | 5.12<br>4.09<br>5.30<br>5.30         | $\begin{array}{r} 4.88\% \\ 24.05\% \\ 1.62\% \\ \textbf{1.56\%} \end{array}$ | (10m)<br>(52m)<br>(28s)<br>(4m)         | 10.90<br>15.50<br><b>16.07</b>  | 32.59%<br>4.14%<br>0.60%                                            | (1h)<br>(2m)<br>(16m)         | 14.91<br>30.52<br><b>32.68</b> | 55.08%<br>-<br>8.05%<br>1.55% | (5h)<br>(6m)<br>(53m)          |  | SPCTSP    | AM (sampling)<br>REOPT (all)<br>REOPT (half)<br>REOPT (first)<br>AM (greedy)                                                  | 5.21       3.15       3.34       3.31       3.31       3.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.45%<br>0.45%<br>2.38%<br>1.38%<br>1.60%<br>0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (4m)<br>(5m)<br>(17m)<br>(25m)<br>(1h)<br>(0s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} 12.51 \\ 4.52 \\ \hline 4.68 \\ 4.64 \\ 4.66 \\ 4.65 \\ \end{array}$ | 1.04%<br>0.74%<br>1.04%<br>0.00%<br>0.44%<br>0.33%                                   | (3m)<br>(19m)<br>(2h)<br>(3h)<br>(22h)<br>(2s)                     | 6.22<br>6.32<br>6.32                                         | 1.67%<br>1.10%<br>0.00%<br>-<br>2.69%                             | (3m) (1h) (12h) (12h) (16h) (5s) |

Kool W., van Hoof H., and Welling M. (2019). Attention, Learn to Solve Routing Problems!. ICLR 2019.

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.









### **Deep Learning** But... what's really in it?

Competitive performance.

Low inference times.



#### Questionable comparisons. All are constructive.

### The Challenge Prove me wrong!

# **"Do NCO models outperform metaheuristics ?"**



# **Combinatorial Optimization Problems** Formal definition

Finite search space of solutions  $\Omega$ Objective function  $f: \Omega \to \mathbb{R}$ The aim:

$$s^* = \operatorname*{arg\,m}_s$$

 $\max_{\in \Omega} f(s)$ 

# **Combinatorial Optimization Problems Some examples**





#### Travelling Salesman Problem



Flowshop Scheduling Problem

Maximum Independent Set

|   | 1  | 2  | 3  | 4  | 5  |
|---|----|----|----|----|----|
| 1 | 0  | 16 | 11 | 15 | 7  |
| 2 | 21 | 0  | 14 | 15 | 9  |
| 3 | 26 | 23 | 0  | 26 | 12 |
| 4 | 22 | 22 | 11 | 0  | 13 |
| 5 | 30 | 28 | 25 | 24 | 0  |

#### Linear Ordering Problem



**Max-Cut Problem** 

Encoder



Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2024). Applicability of Neural Combinatorial Optimization: A Critical View. ACM Trans. on Evolutionary Learning and Optimization.

#### Decoder

#### **Instance Input**

Encoder



- Keep a rich representation.

#### Decoder

#### **Solution Output**

- End-to-end





#### **Graph features:**

- Edge features  $y_{ii}$  taken from the instance matrix.
- Node features  $x_i$ , a priori, meaningless.
- This information feeds the GNN encoder.



#### **Encoder: GNN layers**

- From features to node  $h_i^l$  and edge  $e_{ij}^l$  embeddings.
- Embeddings linear initialization:

 $h_i^{l=1} = x_i^T * A_x + B_x$  $e_{ij}^{l=1} = y_{ij}^T * A_v + B_v$ 



#### **Decoder:**

- Multi-Head Attention was used.
- Later, tests showed MLP performed equally.



#### Learning:

- REINFORCE algorithm.
- Fundamentals:

 $\mathscr{L}(\theta \,|\, s) = \mathbb{E}_{p_{\theta}(\pi \,|\, s)}[-(R(\pi) - b(s))\log p_{\theta}(\pi \,|\, s)]$ 

#### **Performance results**

Table 2. LOP. Analysis of the performance using instance sizes Table 4. LOP. Execution times. The term max denotes that at the model has been trained with. The given value is the average least one of the executions of the exact algorithm has reached and standard deviation gap (%) to the best known value for 1000 the maximum time (h, m, s refer to hours, minutes and seconds, instances over 5 different executions. Lower is better. Non-optimal respectively). results from the exact method are marked with \*.

|              |                   |                   |                   |                     | Method       | n=20   | n=30   | n=40   | n=50   | n=100 | n=200 | n=1 |
|--------------|-------------------|-------------------|-------------------|---------------------|--------------|--------|--------|--------|--------|-------|-------|-----|
| Method       | n=20              | n=30              | n=40              | n=50                | Exact (SCIP) | 0.52s  | 13 Ac  | 5.3m   | may    | may   | may   | r   |
| Exact (SCIP) | $0.00 \pm 0.00\%$ | $0.00 \pm 0.00\%$ | $0.00 \pm 0.00\%$ | $1.11 \pm 0.50\%$ * |              | 0.525  | 13.45  | 5.511  | шах    | шах   | шах   | 1   |
| Exact (SCIP) | $0.00 \pm 0.00\%$ | $0.00 \pm 0.00\%$ | $0.00 \pm 0.00\%$ | $1.11 \pm 0.30\%$   | MA           | 0.10s  | 0.18s  | 0.29s  | 0.43s  | 2.5s  | 19.6s | 20  |
| MA           | $0.00 \pm 0.00\%$ | $0.00 \pm 0.00\%$ | $0.00 \pm 0.00\%$ | <b>0.00</b> ± 0.00% | Becker       | 0.001s | 0.002s | 0.004s | 0.006s | 0.02s | 0.10s | 3.  |
| Becker       | $3.38\pm0.00\%$   | $3.44\pm0.00\%$   | $3.35 \pm 0.00\%$ | $3.27 \pm 0.00\%$   | GNN          | 0.07s  | 0.11s  | 0.16s  | 0.19s  | 0.36s | 0.74s | 1   |
| GNN          | $0.24\pm0.00\%$   | $0.29 \pm 0.00\%$ | $0.41 \pm 0.01\%$ | $0.48 \pm 0.01\%$   | GNN-training | 20h    | 41h    | 73h    | 94h    | -     | -     | _   |
| GNN-Pop      | $0.14\pm0.00\%$   | $0.18\pm0.00\%$   | $0.28\pm0.00\%$   | $0.34\pm0.00\%$     | 8            |        |        |        |        |       |       |     |

**Computational cost** 





**Performance results** 



#### **Computational cost**









# Why not improving? Don't want to construct!



#### The cost of revising the neighborhood greedily is $O(n^2)$ !!

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

All possible pairwise swap operations





#### **Graph features:**

- Edge features  $x_{ij} \in \mathbb{R}^2$  taken from the instance matrix.
- Node features **n**, random vector from  $\mathbb{R}^N$ .
- Embeddings linear initialization:

$$h_i^{l=1} = n_i * V_h + U_h$$
$$e_{ij}^{l=1} = x_{ij} * V_e + U_e$$



features)

(edge

×

X<sub>1,1</sub>

Х<sub>п,1</sub>

#### **Graph features:**

- Edge features  $x_{ij} \in \mathbb{R}^2$  taken from the instance matrix.
- Node features **n**, random vector from  $\mathbb{R}^N$ .
- Embeddings linear initialization:

$$h_i^{l=1} = n_i * V_h + U_h$$
  
 $e_{ij}^{l=1} = x_{ij} * V_e + U_e$ 

#### **Encoder: GNN layers**

- Message passing:

$$\begin{split} h_{i}^{l+1} &= h_{i}^{l} + Relu \left( BN \left( W_{1}^{l}h_{i}^{l} + \sum_{j=1}^{N} \left( \sigma(e_{ij}^{l}) \odot W_{2}^{l}h_{j}^{l} \right) \right) \right) \stackrel{\textbf{b}_{11}}{=} \frac{m}{|\textbf{b}_{n1}|} \\ e_{ij}^{l+1} &= e_{ij}^{l} + Relu \left( BN \left( W_{3}^{l}e_{ij}^{l} + W_{4}^{l}h_{i}^{l} + W_{5}^{l}h_{j}^{l} \right) \right) \quad \text{Instance} \quad \end{split}$$

- Result of the last layer edge embeddings:  $\mathbf{e}_{ii}^{L}$ 



#### **Graph features:**

- Edge features  $x_{ij} \in \mathbb{R}^2$  taken from the instance matrix.
- Node features **n**, random vector from  $\mathbb{R}^N$ .
- Embeddings linear initialization:

$$h_i^{l=1} = n_i * V_h + U_h$$
$$e_{ij}^{l=1} = x_{ij} * V_e + U_e$$

#### **Encoder: GNN layers**

- Message passing:

$$\begin{split} h_{i}^{l+1} &= h_{i}^{l} + Relu \left( BN \left( W_{1}^{l}h_{i}^{l} + \sum_{j=1}^{N} \left( \sigma(e_{ij}^{l}) \odot W_{2}^{l}h_{j}^{l} \right) \right) \right) \stackrel{\textbf{b}_{1,1}}{=} \frac{m}{|\textbf{b}_{n,1}| \dots} \\ e_{ij}^{l+1} &= e_{ij}^{l} + Relu \left( BN \left( W_{3}^{l}e_{ij}^{l} + W_{4}^{l}h_{i}^{l} + W_{5}^{l}h_{j}^{l} \right) \right) \quad \text{Instance} \end{split}$$

- Result of the last layer edge embeddings:  $\mathbf{e}_{ii}^L$ 

#### **Decoder:**

- Multi-Layer Perceptron and softmax layer.

Garmendia, A.I., Ceberio, J., and Mendiburu, A. (2023). Neural Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE Trans. on Neural Networks and Learning Systems.

Linear Projection X<sub>1,1</sub> Х<sub>п,1</sub>

features)

(edge

×

Learning:



#### - REINFORCE algorithm: $\mathscr{L}(\theta \mid s) = \mathbb{E}_{p_{\theta}(s,\omega_t)}[-R_t \log p_{\theta}(s,\omega_t)]$



### **Improvement strategies** Low-complexity local search

Some results:









# Don't want to repeat! **Avoid revisiting**

- In the ideal scenario, no solutions would be revisited.
- An internal memory?
- Avoid tabu search (external memory).





# Incorporating memory **Avoid revisiting**

- Memory design dependent on the scheme and the problem.
- Similarity-based search mechanism to retrieve past relevant information.





# Incorporating memory **Avoid revisiting**

**Constructive scheme for permutations problems** 

- **Records:** visited solutions  $\theta_t$ .
- For every partial solution, retrieve the allocation of the items to positions in similar solutions.
- **Result**  $h_t$ : weighted average of the remaining items that were placed in the k most similar solutions.





# Incorporating memory **Avoid revisiting**

**Improvement scheme for binary problems** 

- **Records**: visited solutions  $\theta_t$  and adopted action (bit-flip)
- Retrieve the actions performed in similar solutions.
- **Result**  $h_t$ : weighted average of the actions that were executed in the k most similar solutions.







#### Incorporating memory Avoid revisiting - did we succeed?

Some results during training:







### Incorporating memory Avoid revisiting - did we succeed?

Some results during inference:





### Incorporating memory Memory complexity





### Incorporating memory **Implicitly population-based?**

#### "In the improvement scheme, <u>multiple</u> threads were run, simultaneously, sharing the same memory".



# Food for thought

- Close to metaheuristics' performance.
- Population-based approaches look the next step.
- What if the problem cannot be represented as a graph? Which encoder should we use?
- Get closer to the real-world practitioners. At this point we are even further.
- Greener algorithms. Prohibitive energy consumption.



#### NP-hard problems still persist... don't you think? ... despite Deep Learning

Josu Ceberio, May 2024



Universidad del País Vasco

Euskal Herriko Unibertsitatea

FAKULTATEA FACULTAD



