El extraño problema de la información cuántica y el comportamiento de los agentes (Agreement between Observers)

Giannicola Scarpa

Universidad Politécnica de Madrid, Spain
Joint work: Patricia Contreras-Tejada (ICMAT), Aleksander M. Kubicki (UCM), Adam Brandenburger (NYU) and Pierfrancesco La Mura (HHL Leipzig)

Nat Commun 12, 7021 (2021)

Is the world quantum?

It is a well-known fact that quantum mechanics made its own creators uncomfortable.

Is the world quantum?

Published: November 2003

Characterizing Quantum Theory in Terms of Information-Theoretic Constraints
 Rob Clifton, Jeffrey Bub \& Hans Halvorson
 Information causality as a physical principle

$\underline{\text { Foundations of Physics }} \mathbf{3 3 , 1 5 6 1 - 1 5 9 1 (2 0 0 3)} \mid \underline{\text { Cite this article }}$
$\mathbf{4 9 3}$ Accesses $\mid \mathbf{1 4 3}$ Citations $\mid \mathbf{2 5}$ Altmetric $\mid \underline{\text { Metrics }}$

Marcin Pawłowski ๒, Tomasz Paterek, Dagomir Kaszlikowski, Valerio Scarani, Andreas
Winter \& Marek Żukowski

Nature 461, 1101-1104(2009) | Cite this article
1006 Accesses | $\mathbf{3 4 5}$ Citations | $\mathbf{5 5}$ Altmetric \mid Metrics

Quantum nonlocality as an axiom

```
Sandu Popescu \& Daniel Rohrlich
Foundations of Physics 24, 379-385(1994) \(\mid\) Cite this article
2153 Accesses \(\mid \mathbf{7 2 5}\) Citations | 26 Altmetric \(\mid\) Metrics
```


Is the world quantum?

Published: November 2(Published: 20 February 2015
Characterizil Almost quantum correlations
Information- Miguel Navascués, Yelena Guryanova, Matty J. Hoban \& Antonio Acín \boxtimes
Rob Clifton, Jeffrey Bub
Foundations of Physics :
493 Accesses 143 Ci

Published: March 1994
1006 Accesses $\mid \mathbf{3 4 5}$ Citations $\mid \mathbf{5 5}$ Altmetric \mid Metrics

Quantum nonlocality as an axiom

Sandu Popescu \& Daniel Rohrlich
Foundations of Physics 24, 379-385(1994) Cite this article
2153 Accesses $\mid 725$ Citations $\mid 26$ Altmetric \mid Metrics

Is the world quantum?

Published: November 2(Published: 20 February 2015
Characterizii Almost quantum correlations InformationMiguel Navascués, Yelena Guryanova, Matty J. Hoban \& Antonio Acín \boxtimes a physical

Rob Clifton, Jeffre
 Foundations of Ph

PHYSICAL REVIEW LETTERS
493 Accesses
Highlights Recent Accepted Collections Authors Referees Search Press

Almost-Quantum Correlations Violate the No-Restriction Hypothesis
Ana Belén Sainz, Yelena Guryanova, Antonio Acín, and Miguel Navascués Phys. Rev. Lett. 120, 200402 - Published 18 May 2018

```
2153 Accesses }7\mathbf{725}\mathrm{ Citations }\mathbf{26}\mathrm{ Altmetric Metrics
```


Our contributions

- We proposed a new physical principle

- Based on a seminal theorem in epistemics
- We checked that Quantum Mechanics respects this principle
- We identified some other theories that do not respect it
- In the process, we give a simple test for future theories

Quantum Correlations

- Correletions between observers of bipartite systems are nowdays the only way we proved that the world is not newtonian
- Quantum computers still do not show quantum advantage
- Entanglement is the key resource to show such correlations

Quantum Correlations

- Correletions between observers of bipartite systems are nowdays the only way we proved that the world is not newtonian
- Quantum computers still do not show quantum advantage
- Entanglement is the key resource to show such correlations

Entanglement alone is not sufficient

You prepare a system, that when observed is either "UP - DOWN" or "DOWN - UP", perfectly correlated.

Entanglement alone is not sufficient

You prepare a system, that when observed is either "UP - DOWN" or "DOWN - UP", perfectly correlated.

¿AND SO WHAT?

One needs an additional tool, discovered by physicist John Bell in the '60s, in order to rule out the "hidden variable theories".

Games: creating correlations

- To demonstrate that a system is entangled, we analyze the consequences of its use as a resource.

You get a correlation: $P(a b \mid x y)$

Hierarchy of correlations

Experiment in Delft (2015)

World isn't classical!

- People with small quantum computers will be able to create quantum correlations $\mathrm{p}(\mathrm{ab} \mid \mathrm{xy})$.
- Applications:
- Information security (quantum key distribution, device independence...)
- Distributed computing
- ...
- Trading \& finance (e.g. high frequency trading)
- Decision making

> ... And here begins our story.

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Local model: $P(a b \mid x y)=\sum_{\omega} \boldsymbol{p}(\boldsymbol{\omega}) P_{A}(a \mid x \boldsymbol{\omega}) P_{B}(b \mid y \omega)$

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"

Alice and Bob divide the states of the world into different partitions Know which partition element they're in

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:
common prior information:

Alice and Bob divide the states of the world into different partitions
Events of interest: sets of states of the world

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Alice and Bob divide the states of the world into different partitions
Events of interest: sets of states of the world
Work out conditional probabilities based on known partition element

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:
common prior information:

Work out conditional probabilities based on known partition element Estimates are common certainty \Rightarrow they must be equal

Example

i

Example

$p\left(E \mid\left\{\omega_{1}, \omega_{2}\right\}\right)=2 / 3$

$$
p\left(E \mid\left\{\omega_{1}, \omega_{2}\right\}\right)=2 / 3
$$

They agree, and it is common knowledge

Example

They DISagree, and it is NOT common knowledge

Example (less trivial)

$$
p\left(E \mid\left\{\omega_{1}, \omega_{2}\right\}\right)=2 / 3
$$

The assignments are common knowledge, and therefore they must be equal, even if A\&B reach the conclusion in different ways.

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this nonclassical:

Bell's Theorem: there is no local model that can reproduce the predictions of QM i.e. no hidden variables

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this nonclassical:

Bell's Theorem: there is no local model that can reproduce the predictions of QM i.e. no hidden variables

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this nonclassical:

Bipartite probability distribution $\{p(a b \mid x y)\}$

- Not (necessarily) classical
- Nonsignalling: $\Sigma_{a} p(a b \mid x y)=\Sigma_{a} p\left(a b \mid x^{\prime} y\right)$

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this nonclassical:

Aumann's agreement theorem (1976)

- "Two agents who share a common prior cannot agree to disagree"
- Making this nonclassical:

From LHVs to boxes and back again

From LHVs to boxes and back again

$A_{x}^{a}=$ set of LHVs corresponding to output a given input x.

From LHVs to boxes and back again

$B_{y}^{b}=$ set of LHVs corresponding to output b given input y.

From LHVs to boxes and back again

Perfectly correlated events: same set of LHVs (except prob zero)

From LHVs to boxes and back again

NS-box formalism

Input 0 to observe her partition, 1 to observe the Event

Xylab	00	01	10	11
00	$1 / 6$	$1 / 3$	$1 / 3$	$1 / 6$
01	\ldots	\ldots	\ldots	\ldots
10	\ldots	\ldots	\ldots	\ldots
11	$1 / 3$	0	0	$2 / 3$

An operational interpretation

An operational interpretation

1. Measure $x, y=0,0$, obtain $a, b=0,0$ (but don't talk)

xylab	00	01	10	11
00				
01				
10		$p(a b$	$x y)$	
11				

An operational interpretation

1. Measure $x, y=0,0$, obtain $a, b=0,0$ (but don't talk)
2. Want to find out about each other's output 1 on input 1 ...
... but they're constrained by nonlocality.
Still, they try.

xylab	00	01	10	
00				11
01				
10		$p(a b$	$x y)$	
11				

An operational interpretation

1. Measure $x, y=0,0$, obtain $a, b=0,0$ (but don't talk)
2. Want to find out about each other's output 1 on input 1:

Alice: $p(b=1 \mid a=0, x=0, y=1)=: q_{A}$

	$p(a b \mid x y)$		

An operational interpretation

1. Measure $x, y=0,0$, obtain $a, b=0,0$ (but don't talk)
2. Want to find out about each other's output 1 on input 1:

Alice: $p(b=1 \mid a=0, x=0, y=1)=: q_{A}$
Bob: $p(a=1 \mid b=0, x=1, y=0)=: q_{B}$
3. Announce q_{A}, q_{B}

xylab	00	01	10	11
00				
01				
10		$p(a b$	$x y)$	
11				

An operational interpretation

1. Measure $x, y=0,0$, obtain $a, b=0,0$ (but don't talk)
2. Want to find out about each other's output 1 on input 1:

Alice: $p(b=1 \mid a=0, x=0, y=1)=: q_{A}$
Bob: $p(a=1 \mid b=0, x=1, y=0)=: q_{B}$
3. Announce q_{A}, q_{B}
4. Calculate a sequence of sets of input-output pairs in order to reach common certainty

xylab	00	01	10	11
00				
01				
10		$p(a b$	$x y)$	
11				

An operational interpretation

How to disagree

An operational interpretation

Common certainty of disagreement

Common certainty of disagreement \Leftrightarrow
$q_{A} \neq q_{B}$ \&
$\forall n,(0,0,0,0) \in A_{n} \cap B_{n}$

Common certainty of disagreement

Common certainty of disagreement \Leftrightarrow

Aumann: impossible classically

Common certainty of disagreement

Characterising common certainty of disagreement

Can it arise in nonsignalling settings?

Theorem: Yes!

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)

Proof: zeros from perfect correlations and sets A_{n}, B_{n}. Rest from normalisation \& nonsignalling constraints.

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Assume $(0,0,0,0) \in A_{n} \cap B_{n}$

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Assume $(0,0,0,0) \in A_{n} \cap B_{n}$
Assume first $A_{0}=\{a=0\} ; B_{0}=\{b=0\}$ (other cases will reduce to this)

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Assume $(0,0,0,0) \in A_{n} \cap B_{n}$
Assume first $A_{0}=\{a=0\} ; B_{0}=\{b=0\}$ (other cases will reduce to this)
$(0,0,0,0) \in B_{1} \Rightarrow p(a=0 \mid b=0, x=0, y=0)=1$

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Assume $(0,0,0,0) \in A_{n} \cap B_{n}$
Assume first $A_{0}=\{a=0\}$; $B_{0}=\{b=0\}$ (other cases will reduce to this)
$(0,0,0,0) \in B_{1} \Rightarrow p(a=0 \mid b=0, x=0, y=0)=1$
$\Rightarrow p(a=1 \mid b=0, x=0, y=0)=0$

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Assume $(0,0,0,0) \in A_{n} \cap B_{n}$
Assume first $A_{0}=\{a=0\} ; B_{0}=\{b=0\}$ (other cases will reduce to this)
Similarly for A_{1}.

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Assume $(0,0,0,0) \in A_{n} \cap B_{n}$ Assume first $A_{0}=\{a=0\} ; B_{0}=\{b=0\}$ (other cases will reduce to this) Similarly for A_{1}.
NS constraints \& normalisation. $\quad q_{A} \neq q_{B} \Leftrightarrow s-u \neq r-t$.

Characterising common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)
Proof: Reverse implication quite easy.

Characterising common certainty of disagreement

Can it arise in quantum settings? Theorem: No.

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)

Characterising common certainty of disagreement

Can it arise in quantum settings? Theorem: No.

Proof:

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)

1. Theorem by Tsirelson: if the box is quantum, there is a vectorial representation of the system whose inner products relate to the elements of the box.
2. One checks that the parameters r, s, t, u above create a quantum box with $s-u=r-t$ (i.e., a classical box and therefore obeying Aumann's original theorem).

Characterising common certainty of disagreement

Can it arise in quantum settings? Theorem: No.

xylab	00	01	10	11
00	r	0	0	$1-r$
01	$r-s$	s	$-r+t+s$	$1-t-s$
10	$t-u$	u	$r-t+u$	$1-r-u$
11	t	0	0	$1-t$

with $r>0, s-u \neq r-t$ (otherwise classical)

Fully general: distributions of more inputs and outputs reduce to 2×2 by local transformations.
So if 2×2 can't be quantum, nor can larger ones.

Implications

- First, we are closer to understanding why QM is a successful theory.
- We also provide a simple test for new physical theories (use the box!)
- The quantum internet will soon be a reality: agents will use it to trade, take decisions, communicate securely, perform calculations...
- We are closer to showing that all of this will make sense: modelling the applications of new technologies will be sound.

Where to?

- Agreement as a requirement for physical theories of nature
- Approximate notions of disagreement?
- Application to distributed computation
- Further connections between epistemics and quantum information?

Where to?

- Agreement as a requirement for physical theories of nature
- Approximate notions of disagreement?
- Application to distributed computation
- Further connections between epistemics and quantum information?

New model (work in progress!)

New model (work in progress!)

- There is no box, no communication
- A single system observed in sequence by two agents
- Models the system like in standard quantum computing (and not with an approximation as we have seen before)
- Moreover: we compare the quantum scenario with a classical scenario by Hellman, which considers degrees of disagreement:
- δ-distance in prior distributions $\Rightarrow \delta$-disagreement

Recap

- Can Alice \& Bob disagree?
- local x
- quantum x
- post-quantum (nonsignaling) \checkmark
- Consequences for computer scientists:
we can have fun researching the quantum internet!
- Next step: approximate version, with single system

Nat. Comm. 12, 7021
g.scarpa@upm.es

