El extraño problema de la información cuántica y el comportamiento de los agentes (Agreement between Observers)

Giannicola Scarpa

Universidad Politécnica de Madrid, Spain

Joint work: Patricia Contreras-Tejada (ICMAT), Aleksander M. Kubicki (UCM), Adam Brandenburger (NYU) and Pierfrancesco La Mura (HHL Leipzig)

Nat Commun 12, 7021 (2021)

UNIVERSIDAD POLITÉCNICA DE MADRID

It is a well-known fact that quantum mechanics made its own creators uncomfortable.

Published: November 2003

Characterizing Quantum Theory in Terms of Information-Theoretic Constraints

Rob Clifton, Jeffrey Bub & Hans Halvorson

Foundations of Physics 33, 1561–1591(2003) Cite this article 493 Accesses | 143 Citations | 25 Altmetric | Metrics

Published: 22 October 2009

Information causality as a physical principle

Marcin Pawłowski 🖂, Tomasz Paterek, Dagomir Kaszlikowski, Valerio Scarani, Andreas Winter & Marek Żukowski

Nature **461**, 1101–1104(2009) Cite this article 1006 Accesses 345 Citations 55 Altmetric Metrics

Published: March 1994

Quantum nonlocality as an axiom

Sandu Popescu & Daniel Rohrlich

Foundations of Physics 24, 379–385(1994) Cite this article

2153 Accesses 725 Citations 26 Altmetric Metrics

Published: November 2(Published: 20 February 2015			
Characterizii	Almost quantum correlations			
Information	Miguel Navascués, Yelena Guryanova, Matty J. Hoban <mark>&</mark> Antonio Acín 🖂	a physical		
Rob Clifton, Jeffrey Bub	<i>Nature Communications</i> 6 , Article number: 6288 (2015) Cite this article			
Foundations of Physics	1308 Accesses 74 Citations 4 Altmetric Metrics	szlikowski, Valerio Scarani, Andreas		
493 Accesses 143 Ci				
Publis	shed: March 1994 1006 Accesses 345 Citations 55 Altmetric	Metrics		
Qu	antum nonlocality as an axiom			
Sandu Popescu & Daniel Rohrlich				
Foundations of Physics 24, 379–385(1994) Cite this article				
2153	Accesses 725 Citations 26 Altmetric Metrics			

Our contributions

- We proposed a new physical principle
 - Based on a seminal theorem in epistemics
- We checked that Quantum Mechanics respects this principle
- We identified some other theories that do not respect it
 - In the process, we give a simple test for future theories

Quantum Correlations

- Correletions between observers of bipartite systems are nowdays the only way we proved that the world is not newtonian
 - Quantum computers still do not show *quantum advantage*
- *Entanglement* is the key resource to show such correlations

Quantum Correlations

- Correletions between observers of bipartite systems are nowdays the only way we proved that the world is not newtonian
 - Quantum computers still do not show *quantum advantage*
- *Entanglement* is the key resource to show such correlations

collapse of the wave function

Entanglement alone is not sufficient

You prepare a system, that when observed is either "UP - DOWN" or "DOWN - UP", perfectly correlated.

Entanglement alone is not sufficient

You prepare a system, that when observed is either "UP - DOWN" or "DOWN - UP", perfectly correlated.

¿AND SO WHAT?

One needs an additional tool, discovered by physicist John Bell in the '60s, in order to rule out the **"hidden variable theories".**

Games: creating correlations

 To demonstrate that a system is entangled, we analyze the consequences of its use as a resource.

You get a correlation: P(ab|xy)

Experiment in Delft (2015)

World isn't classical!

- People with small quantum computers will be able to create quantum correlations p(ab|xy).
- Applications:
 - Information security (quantum key distribution, device independence...)
 - Distributed computing
 - ...
 - Trading & finance (e.g. high frequency trading)
 - Decision making

... And here begins our story.

• "Two agents who share a common prior cannot agree to disagree"

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Local model: $P(ab|xy) = \sum_{\boldsymbol{\omega}} p(\boldsymbol{\omega}) P_A(a|x\boldsymbol{\omega}) P_B(b|y\boldsymbol{\omega})$

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Alice and Bob divide the states of the world into different **partitions** Know which partition element they're in

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Alice and Bob divide the states of the world into different **partitions** Events of interest: sets of states of the world

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Alice and Bob divide the states of the world into different **partitions** Events of interest: sets of states of the world Work out conditional probabilities based on known partition element

- "Two agents who share a common prior cannot agree to disagree"
- Making this precise:

Work out conditional probabilities based on known partition element Estimates are *common certainty* \Rightarrow they must be equal

Example

A

 $p(E|\{\omega_1,\omega_2\}) = 2/3$

They agree, and it is common knowledge

They DISagree, and it is NOT common knowledge

The assignments are common knowledge, and therefore they must be equal, even if A&B reach the conclusion in different ways.

- "Two agents who share a common prior cannot agree to disagree"
- Making this **nonclassical**:

Bell's Theorem: there is no local model that can reproduce the predictions of QM **i.e. no hidden variables**

- "Two agents who share a common prior cannot agree to disagree"
- Making this **nonclassical**:

Bell's Theorem: there is no local model that can reproduce the predictions of QM **i.e. no hidden variables**

- "Two agents who share a common prior cannot agree to disagree"
- Making this **nonclassical**:

Bipartite probability distribution $\{p(ab|xy)\}$

- Not (necessarily) classical
- Nonsignalling: $\Sigma_a p(ab | xy) = \Sigma_a p(ab | x'y)$

- "Two agents who share a common prior cannot agree to disagree"
- Making this **nonclassical**:

- "Two agents who share a common prior cannot agree to disagree"
- Making this **nonclassical**:

 A_x^a = set of LHVs corresponding to output *a* given input *x*.

 B_y^b = set of LHVs corresponding to output b given input y.

Perfectly correlated events: same set of LHVs (except prob zero)

 $p(ab|xy) = P(A_x^a \cap B_y^b)$

NS-box formalism

Input 0 to observe her partition, 1 to observe the Event

xy∖ab	00	01	10	11
00	1/6	1/3	1/3	1/6
01				
10				
11	1/3	0	0	2/3

1. Measure x, y = 0, 0, obtain a, b = 0, 0 (but don't talk)

- 1. Measure x, y = 0, 0, obtain a, b = 0, 0 (but don't talk)
- Want to find out about each other's output 1 on input 1...
 ... but they're constrained by nonlocality.
 Still, they try.

- 1. Measure x, y = 0, 0, obtain a, b = 0, 0 (but don't talk)
- 2. Want to find out about each other's output 1 on input 1: Alice: $p(b = 1 | a = 0, x = 0, y = 1) =: q_A$

- 1. Measure x, y = 0, 0, obtain a, b = 0, 0 (but don't talk)
- 2. Want to find out about each other's output 1 on input 1: Alice: $p(b = 1 | a = 0, x = 0, y = 1) =: q_A$ Bob: $p(a = 1 | b = 0, x = 1, y = 0) =: q_B$
- 3. Announce q_A , q_B

- 1. Measure x, y = 0, 0, obtain a, b = 0, 0 (but don't talk)
- 2. Want to find out about each other's output 1 on input 1: Alice: $p(b = 1 | a = 0, x = 0, y = 1) =: q_A$ Bob: $p(a = 1 | b = 0, x = 1, y = 0) =: q_B$
- 3. Announce q_A , q_B
- 4. Calculate a *sequence of sets* of input-output pairs in order to reach common certainty

What output did Bob get?

 $B_0 = \{ \text{Outputs of Bob that lead him to} \\ announce the estimate <math>q_B \}$

$$B_0 = \{(a, b, x, y):$$

$$p(a = 1 | b, x = 1, y = 0) = q_B\}$$

What output did Alice get?

 $A_0 = \{ \text{Outputs of Alice that lead her to} \\ announce the estimate <math>q_A \}$

Β

$$A_0 = \{(a, b, x, y): \\ p(b = 1 | a, x = 0, y = 1) = q_A\}$$

Can I be certain that Bob obtained something in B_{n-1} ?

 $A_n = \{ A | ice's outputs s.t. B_{n-1} is certain \}$

 $B_0 = \{(a, b, x, y):$ $p(a = 1 | b, x = 1, y = 0) = q_B$ $A_1 = \{(a, b, x, y):$ $p(B_0|a, x = 0, y = 0) = 1$

Can I be certain that Alice obtained something in A_0 ?

 $B_n = \{\text{Bob's outputs s.t. } A_{n-1} \text{ is certain} \}$

В

 $A_{0} = \{(a, b, x, y):$ $p(b = 1 | a, x = 0, y = 1) = q_{A}\}$ $B_{1} = \{(a, b, x, y):$ $p(A_{0} | b, x = 0, y = 0) = 1\}$...

Common certainty of disagreement

Common certainty of disagreement

В

Common certainty of disagreement

Can it arise in nonsignalling settings? Theorem: Yes!

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: zeros from perfect correlations and sets A_n , B_n . Rest from normalisation & nonsignalling constraints.

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Assume $(0,0,0,0) \in A_n \cap B_n$

Can it arise in nonsignalling settings? Theorem: Yes!

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Assume $(0,0,0,0) \in A_n \cap B_n$ Assume first $A_0 = \{a = 0\}$; $B_0 = \{b = 0\}$ (other cases will reduce to this)

Can it arise in nonsignalling settings? Theorem: Yes!

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Assume $(0,0,0,0) \in A_n \cap B_n$ Assume first $A_0 = \{a = 0\}$; $B_0 = \{b = 0\}$ (other cases will reduce to this) $(0,0,0,0) \in B_1 \Rightarrow p(a = 0 | b = 0, x = 0, y = 0) = 1$

Can it arise in nonsignalling settings? Theorem: Yes!

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Assume $(0,0,0,0) \in A_n \cap B_n$ Assume first $A_0 = \{a = 0\}; B_0 = \{b = 0\}$ (other cases will reduce to this) $(0,0,0,0) \in B_1 \Rightarrow p(a = 0|b = 0, x = 0, y = 0) = 1$ $\Rightarrow p(a = 1|b = 0, x = 0, y = 0) = 0$

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Assume $(0,0,0,0) \in A_n \cap B_n$ Assume first $A_0 = \{a = 0\}$; $B_0 = \{b = 0\}$ (other cases will reduce to this) Similarly for A_1 .

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Assume $(0,0,0,0) \in A_n \cap B_n$ Assume first $A_0 = \{a = 0\}$; $B_0 = \{b = 0\}$ (other cases will reduce to this) Similarly for A_1 . NS constraints & normalisation. $q_A \neq q_B \iff s - u \neq r - t$.

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof: Reverse implication quite easy.

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Proof:

- 1. Theorem by Tsirelson: if the box is quantum, there is a vectorial representation of the system whose inner products relate to the elements of the box.
- One checks that the parameters r,s,t,u above create a quantum box with s-u=r-t (i.e., a classical box and therefore obeying Aumann's original theorem).

xy\ab	00	01	10	11
00	r	0	0	1-r
01	r-s	S	-r+t+s	1-t-s
10	t-u	U	r-t+u	1-r-u
11	t	0	0	1-t

with r > 0, $s - u \neq r - t$ (otherwise classical)

Fully general: distributions of more inputs and outputs reduce to 2x2 by local transformations.

So if 2x2 can't be quantum, nor can larger ones.

Implications

- First, we are closer to understanding why QM is a successful theory.
 - We also provide a simple test for new physical theories (use the box!)
- The quantum internet will soon be a reality: agents will use it to
 - trade, take decisions, communicate securely, perform calculations...
- We are closer to showing that all of this <u>will make sense</u>: modelling the applications of new technologies will be sound.

Where to?

- Agreement as a requirement for physical theories of nature
- Approximate notions of disagreement?
- Application to distributed computation

• Further connections between epistemics and quantum information?

Where to?

- Agreement as a requirement for physical theories of nature
- Approximate notions of disagreement?
- Application to distributed computation

• Further connections between epistemics and quantum information?

New model (work in progress!)

New model (work in progress!)

- There is no box, no communication
- A single system observed in sequence by two agents
- Models the system like in standard quantum computing (and not with an approximation as we have seen before)
- Moreover: we compare the quantum scenario with a classical scenario by Hellman, which considers *degrees* of disagreement:
 - δ -distance in prior distributions $\Rightarrow \delta$ -disagreement

Recap

- Can Alice & Bob disagree?
 - local ×
 - quantum ×
 - post-quantum (nonsignaling) ✓
- Consequences for computer scientists: we can have fun researching the quantum internet!
- Next step: approximate version, with single system

