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Is the world quantum?

• It is a well-known fact that quantum mechanics 
made its own creators uncomfortable.
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Our contributions

• We proposed a new physical principle
• Based on a seminal theorem in epistemics

• We checked that Quantum Mechanics respects this principle

• We identified some other theories that do not respect it
• In the process, we give a simple test for future theories



Quantum Correlations

• Correletions between observers of bipartite systems are nowdays
the only way we proved that the world is not newtonian
• Quantum computers still do not show quantum advantage

• Entanglement is the key resource to show such correlations
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• Correletions between observers of bipartite systems are nowdays
the only way we proved that the world is not newtonian
• Quantum computers still do not show quantum advantage

• Entanglement is the key resource to show such correlations

collapse of the

wave function



Entanglement alone is not sufficient

You prepare a system, that when observed is either “UP - DOWN” or
“DOWN - UP”, perfectly correlated.



Entanglement alone is not sufficient

You prepare a system, that when observed is either “UP - DOWN” or
“DOWN - UP”, perfectly correlated.

¿AND SO WHAT?

One needs an additional tool, discovered by physicist John Bell in the
’60s, in order to rule out the “hidden variable theories”.



Games: creating correlations

• To demonstrate that a system is entangled, we analyze the 
consequences of its use as a resource. 

A B

You get a correlation:  𝑃 𝑎𝑏 𝑥𝑦

𝑥 𝑦

𝑎 𝑏

INPUT

OUTPUT



Hierarchy of correlations 

Classical 
correlations

Quantum 

correlations

Nonsignalling

correlations



Experiment in Delft (2015)



World isn’t classical!

• People with small quantum computers will be able to create 
quantum correlations p(ab|xy).

• Applications:
• Information security (quantum key distribution, device independence…)

• Distributed computing

• …

• Trading & finance (e.g. high frequency trading)

• Decision making

… And here begins our story.



Aumann’s agreement theorem (1976)

• “Two agents who share a common prior cannot agree to disagree”

Aumann, The Annals of Statistics, 4 (6) 1236.



Aumann’s agreement theorem (1976)

• “Two agents who share a common prior cannot agree to disagree”

• Making this precise:

A
B

common prior information:
states of the world/hidden variables

with known probabilities

Local model: 𝑃 𝑎𝑏 𝑥𝑦 = σ𝝎𝒑(𝝎)𝑃𝐴 𝑎 𝑥𝝎 𝑃𝐵(𝑏|𝑦𝝎)
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Alice and Bob divide the states of the world into different partitions
Know which partition element they’re in 
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Aumann’s agreement theorem (1976)

• “Two agents who share a common prior cannot agree to disagree”

• Making this precise:

A
B

common prior information:
states of the world/hidden variables

Work out conditional probabilities based on known partition element 
Estimates are common certainty⇒ they must be equal



Example

𝝎𝟑
𝑝 = 1/3

𝝎𝟏
𝑝 = 1/6

𝝎𝟐
𝑝 = 1/3

𝝎𝟒
𝑝 = 1/6

A B



Example

𝝎𝟑
𝑝 = 1/3

𝝎𝟏
𝑝 = 1/6

𝝎𝟐
𝑝 = 1/3

𝝎𝟒
𝑝 = 1/6

A B

STATE OF THE WORLD

𝑝 𝐸 𝜔1, 𝜔2 = 2/3
𝑝 𝐸 𝜔1, 𝜔2 = 2/3

They agree, and it is common knowledge



Example

𝝎𝟑
𝑝 = 1/3

𝝎𝟏
𝑝 = 1/6

𝝎𝟐
𝑝 = 1/3

𝝎𝟒
𝑝 = 1/6

A B

STATE OF THE WORLD

𝑝 𝐸 𝜔3, 𝜔4 = 2/3
𝑝 𝐸 𝜔3 =1

They DISagree, and it is NOT common knowledge



Example (less trivial)

𝝎𝟑
𝑝 = 1/3

𝝎𝟏
𝑝 = 1/6

𝝎𝟐
𝑝 = 1/3

𝝎𝟒
𝑝 = 1/6

A B

STATE OF THE WORLD

𝑝 𝐸 𝜔1, 𝜔3 = 2/3
𝑝 𝐸 𝜔1, 𝜔2 = 2/3

The assignments are common knowledge, and therefore they must be equal,

even if A&B reach the conclusion in different ways.



Aumann’s agreement theorem (1976)

• “Two agents who share a common prior cannot agree to disagree”

• Making this nonclassical:

A
B

common prior information:
states of the world/hidden variables

Bell’s Theorem: there is no local model that can reproduce the predictions of QM
i.e. no hidden variables
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• “Two agents who share a common prior cannot agree to disagree”
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A
B

common prior information:
states of the world/hidden variables

Bell’s Theorem: there is no local model that can reproduce the predictions of QM
i.e. no hidden variables



• “Two agents who share a common prior cannot agree to disagree”

• Making this nonclassical:

Bipartite probability distribution {𝑝(𝑎𝑏|𝑥𝑦)}

• Not (necessarily) classical

• Nonsignalling: Σ𝑎 𝑝(𝑎𝑏│𝑥𝑦) = Σ𝑎 𝑝(𝑎𝑏|𝑥’𝑦)

Aumann’s agreement theorem (1976)

A
B
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Aumann’s agreement theorem (1976)

• “Two agents who share a common prior cannot agree to disagree”

• Making this nonclassical:

nonsignalling 
box

disagreement?

A
B



From LHVs to boxes and back again



From LHVs to boxes and back again

𝐴𝑥
𝑎 = set of LHVs corresponding to output 𝑎 given input 𝑥.



𝐵𝑦
𝑏 = set of LHVs corresponding to output 𝑏 given input 𝑦.

From LHVs to boxes and back again



Perfectly correlated events: same set of LHVs (except prob zero)

From LHVs to boxes and back again



𝑝 𝑎𝑏 𝑥𝑦 = 𝑃 𝐴𝑥
𝑎 ∩ 𝐵𝑦

𝑏

From LHVs to boxes and back again



NS-box formalism

𝝎𝟑
𝑝 = 1/3

𝝎𝟏
𝑝 = 1/6

𝝎𝟐
𝑝 = 1/3

𝝎𝟒
𝑝 = 1/6

xy\ab 00 01 10 11

00 1/6 1/3 1/3 1/6

01 … … … …

10 … … … …

11 1/3 0 0 2/3

A BNS box0 1

0

1

1

Input 0 to observe her partition, 1 to observe the Event



An operational interpretation A BNS box



An operational interpretation

1. Measure 𝑥, 𝑦 = 0,0, obtain 𝑎, 𝑏 = 0,0 (but don’t talk)

A BNS box

xy\ab 00 01 10 11

00

01

10

11

𝑝(𝑎𝑏|𝑥𝑦)



xy\ab 00 01 10 11

00

01

10

11

𝑝(𝑎𝑏|𝑥𝑦)

An operational interpretation

1. Measure 𝑥, 𝑦 = 0,0, obtain 𝑎, 𝑏 = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1…

… but they’re constrained by nonlocality.

Still, they try.

A BNS box



xy\ab 00 01 10 11

00

01

10

11

An operational interpretation

1. Measure 𝑥, 𝑦 = 0,0, obtain 𝑎, 𝑏 = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1:

Alice: 𝑝 𝑏 = 1 𝑎 = 0, 𝑥 = 0, 𝑦 = 1 =: 𝑞𝐴

A BNS box

𝑝(𝑎𝑏|𝑥𝑦)



xy\ab 00 01 10 11

00

01

10

11

An operational interpretation

1. Measure 𝑥, 𝑦 = 0,0, obtain 𝑎, 𝑏 = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1:

Alice: 𝑝 𝑏 = 1 𝑎 = 0, 𝑥 = 0, 𝑦 = 1 =: 𝑞𝐴
Bob: 𝑝 𝑎 = 1 𝑏 = 0, 𝑥 = 1, 𝑦 = 0 =: 𝑞𝐵

3. Announce 𝑞𝐴, 𝑞𝐵

A BNS box

𝑝(𝑎𝑏|𝑥𝑦)



xy\ab 00 01 10 11

00

01

10

11

An operational interpretation

1. Measure 𝑥, 𝑦 = 0,0, obtain 𝑎, 𝑏 = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1:

Alice: 𝑝 𝑏 = 1 𝑎 = 0, 𝑥 = 0, 𝑦 = 1 =: 𝑞𝐴
Bob: 𝑝 𝑎 = 1 𝑏 = 0, 𝑥 = 1, 𝑦 = 0 =: 𝑞𝐵

3. Announce 𝑞𝐴, 𝑞𝐵
4. Calculate a sequence of sets of 

input-output pairs in order to reach 
common certainty

A BNS box

𝑝(𝑎𝑏|𝑥𝑦)



An operational interpretation

A

B

What output did Bob get? 

𝐵0 = {Outputs of Bob that lead him to 
announce the estimate 𝑞𝐵}

What output did Alice get? 

𝐴0 = {Outputs of Alice that lead her to 
announce the estimate 𝑞𝐴}

𝐵0 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝑎 = 1 𝑏, 𝑥 = 1, 𝑦 = 0 = 𝑞𝐵}

𝐴0 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝑏 = 1 𝑎, 𝑥 = 0, 𝑦 = 1 = 𝑞𝐴}



How to disagree

A

B

Can I be certain that Bob obtained 
something in 𝑩𝟎?

𝐴1 = {Alice’s outputs s.t. 𝐵0 is certain}

Can I be certain that Alice obtained 
something in 𝑨𝟎?

𝐵1 = {Bob’s outputs s.t. 𝐴0 is certain}

𝐵0 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝑎 = 1 𝑏, 𝑥 = 1, 𝑦 = 0 = 𝑞𝐵}

𝐴0 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝑏 = 1 𝑎, 𝑥 = 0, 𝑦 = 1 = 𝑞𝐴}

𝐴1 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝐵0 𝑎, 𝑥 = 0, 𝑦 = 0 = 1}

𝐵1 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝐴0 𝑏, 𝑥 = 0, 𝑦 = 0 = 1}



An operational interpretation

A

B

Can I be certain that Bob obtained 
something in 𝑩𝒏−𝟏?

𝐴𝑛 = {Alice’s outputs s.t. 𝐵𝑛−1 is certain}

Can I be certain that Alice obtained 
something in 𝑨𝟎?

𝐵𝑛 = {Bob’s outputs s.t. 𝐴𝑛−1 is certain}

𝐵0 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝑎 = 1 𝑏, 𝑥 = 1, 𝑦 = 0 = 𝑞𝐵}

𝐴0 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝑏 = 1 𝑎, 𝑥 = 0, 𝑦 = 1 = 𝑞𝐴}

𝐴1 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝐵0 𝑎, 𝑥 = 0, 𝑦 = 0 = 1}

𝐵1 = { 𝑎, 𝑏, 𝑥, 𝑦 :
𝑝 𝐴0 𝑏, 𝑥 = 0, 𝑦 = 0 = 1}

…

…



Common certainty of disagreement

A

B

Common certainty of 
disagreement

⇔
𝑞𝐴 ≠ 𝑞𝐵 &

∀𝑛, 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛



Common certainty of 
disagreement

⇔
𝑞𝐴 ≠ 𝑞𝐵 &

∀𝑛, 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛

Common certainty of disagreement

A

B

Aumann:
impossible classically



Common certainty of 
disagreement

⇔
𝑞𝐴 ≠ 𝑞𝐵 &

∀𝑛, 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛

Common certainty of disagreement

A

B

Can it arise in 
quantum/nonsignalling 

settings?



Characterising common certainty of 
disagreement

Can it arise in 
nonsignalling settings?

Theorem: Yes!



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: zeros from perfect correlations and sets 𝐴𝑛, 𝐵𝑛.
Rest from normalisation & nonsignalling constraints.

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Assume 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
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xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Assume 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛
Assume first 𝐴0 = 𝑎 = 0 ; 𝐵0 = {𝑏 = 0} (other cases will reduce to this)

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Assume 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛
Assume first 𝐴0 = 𝑎 = 0 ; 𝐵0 = {𝑏 = 0} (other cases will reduce to this)
0,0,0,0 ∈ 𝐵1 ⇒ 𝑝 𝑎 = 0 𝑏 = 0, 𝑥 = 0, 𝑦 = 0 = 1

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Assume 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛
Assume first 𝐴0 = 𝑎 = 0 ; 𝐵0 = {𝑏 = 0} (other cases will reduce to this)
0,0,0,0 ∈ 𝐵1 ⇒ 𝑝 𝑎 = 0 𝑏 = 0, 𝑥 = 0, 𝑦 = 0 = 1
⇒ 𝑝 𝑎 = 1 𝑏 = 0, 𝑥 = 0, 𝑦 = 0 = 0

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Assume 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛
Assume first 𝐴0 = 𝑎 = 0 ; 𝐵0 = {𝑏 = 0} (other cases will reduce to this)
Similarly for 𝐴1.

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Assume 0,0,0,0 ∈ 𝐴𝑛 ∩ 𝐵𝑛
Assume first 𝐴0 = 𝑎 = 0 ; 𝐵0 = {𝑏 = 0} (other cases will reduce to this)
Similarly for 𝐴1.
NS constraints & normalisation. 𝑞𝐴 ≠ 𝑞𝐵 ⇔ 𝑠 − 𝑢 ≠ 𝑟 − 𝑡.

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Characterising common certainty of 
disagreement

xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in 
nonsignalling settings?

Theorem: Yes!

Proof: Reverse implication quite easy.

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Can it arise in
quantum settings?

Theorem: No.

Characterising common certainty of 
disagreement

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Characterising common certainty of 
disagreement

Can it arise in
quantum settings?

Theorem: No.

Proof: 
1. Theorem by Tsirelson: if the box is quantum, there is a vectorial representation of 

the system whose inner products relate to the elements of the box. 
2. One checks that the parameters r,s,t,u above create a quantum box with s-u=r-t

(i.e., a classical box and therefore obeying Aumann’s original theorem).

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



xy\ab 00 01 10 11

00 r 0 0 1-r

01 r-s s -r+t+s 1-t-s

10 t-u u r-t+u 1-r-u

11 t 0 0 1-t

Characterising common certainty of 
disagreement

Can it arise in
quantum settings?

Theorem: No.

Fully general: distributions of more inputs and outputs reduce to 2x2
by local transformations.
So if 2x2 can’t be quantum, nor can larger ones.

with 𝑟 > 0, 𝑠 − 𝑢 ≠ 𝑟 − 𝑡 (otherwise classical)



Implications

• First, we are closer to understanding why QM is a successful theory.

• We also provide a simple test for new physical theories (use the box!)

• The quantum internet will soon be a reality: agents will use it to 

trade, take decisions, communicate securely, perform calculations...

• We are closer to showing that all of this will make sense: modelling 

the applications of new technologies will be sound.



Where to?

• Agreement as a requirement for physical theories of nature

• Approximate notions of disagreement?

• Application to distributed computation

• Further connections between epistemics and quantum information?

A BNS box



Where to?

• Agreement as a requirement for physical theories of nature

• Approximate notions of disagreement?

• Application to distributed computation

• Further connections between epistemics and quantum information?

A BNS box



New model (work in progress!)

A BNS box



New model (work in progress!)

A B

• There is no box, no communication
• A single system observed in sequence by two agents
• Models the system like in standard quantum computing (and not with 

an approximation as we have seen before)

• Moreover: we compare the quantum scenario with a classical 
scenario by Hellman, which considers degrees of disagreement:

• 𝛿-distance in prior distributions ⟹ 𝛿-disagreement 



g.scarpa@upm.es

Recap

• Can Alice & Bob disagree?

• local 🗶

• quantum 🗶

• post-quantum (nonsignaling)  ✔

• Consequences for computer scientists: 
we can have fun researching the quantum internet!

• Next step: approximate version, with single system

Nat. Comm. 12, 7021


