El extrano problema
de la informacion cuantica y
el comportamiento de los agentes
(Agreement between Observers)

Giannicola Scarpa

Universidad Politécnica de Madrid, Spain

Joint work: Patricia Contreras-Tejada (ICMAT), Aleksander M. Kubicki (UCM)
Adam Brandenburger (NYU) and Pierfrancesco La Mura (HHL Leipzig)

Nat Commun 12, 7021 (2021)

UNIVERSIDAD

POLITECNICA
DE MADRID E ,ﬁ.. como o

’

Comunidad
de Madrid

UNION EUROPEA

Invertimos en su futuro
EBIT ] cuantum intormation Te:

logiea in Madrid

chnol



Is the world quantum?

It is a well-known fact that quantum mechanics
made its own creators uncomfortable.
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Our contributions

We proposed a new physical principle
Based on a seminal theorem in epistemics

We checked that Quantum Mechanics respects this principle

We identified some other theories that do not respect it
In the process, we give a simple test for future theories



Quantum Correlations

Correletions between observers of bipartite systems are nowdays
the only way we proved that the world is nhot nhewtonian

Quantum computers still do not show quantum advantage

Entanglement is the key resource to show such correlations
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Correletions between observers of bipartite systems are nowdays
the only way we proved that the world is nhot nhewtonian

Quantum computers still do not show quantum advantage

Entanglement is the key resource to show such correlations
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Entanglement alone is not sufficient

You prepare a system, that when observed is either “UP - DOWN” or
“DOWN - UP”, perfectly correlated.



Entanglement alone is not sufficient

You prepare a system, that when observed is either “UP - DOWN” or
“DOWN - UP”, perfectly correlated.

¢AND SO WHAT?

One needs an additional tool, discovered by physicist John Bell in the
’60s, in order to rule out the “hidden variable theories”.



Games: creating correlations

- To demonstrate that a system is entangled, we analyze the
consequences of its use as a resource.

a N b oumn

You get a correlation: P(ab|xy)




Hierarchy of correlations

Nonsignalling

_— correlations

Classical
correlations

Quantum
correlations



Experiment in Delft (2015)




World isn’t classicall

People with small quantum computers will be able to create
quantum correlations p(ab|xy).

Applications:
Information security (quantum key distribution, device independence...)
Distributed computing

Trading & finance (e.g. high frequency trading)
Decision making
... And here begins our story.



Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”

Aumann, The Annals of Statistics, 4 (6) 1236.



Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”

* Making this precise:

common prior information:
states of the world/hidden variables
with known probabilities

Local model: P(ab|xy) = Y, p(@)Ps(alxw)Pg(b|yw)
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Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”

* Making this precise:

common prior information:
states of the world/hidden variables

Work out conditional probabilities based on known partition element
Estimates are common certainty = they must be equal



Example




STATE OF THE WORLD

Example

—

=

p(E[{wq, w,}) = 2/3 p(El{wy, w2}) = 2/3

They agree, and it is common knowledge



Example

STATE OF THE WORLD

p(El{ws, w,}) = 2/3 p(El{ws}) =1

They DISagree, and it is NOT common knowledge



Example (less trivial)

STATE OF THE WORLD

p(E[{wq, w,}) =2/3

p(El{w;, w3}) = 2/3

The assignments are common knowledge, and therefore they must be equal,
even if A&B reach the conclusion in different ways.



Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”
* Making this nonclassical:

common prior information:
states of the world/hidden variables

Bell’s Theorem: there is no local model that can reproduce the predictions of QM
i.e. no hidden variables



Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”
* Making this nonclassical:

1 P-4

Bell’s Theorem: there is no local model that can reproduce the predictions of QM
i.e. no hidden variables



Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”
* Making this nonclassical:

Bipartite probability distribution {p(ab|xy)}
* Not (necessarily) classical

* Nonsignalling: £ p(ab | xy) =X, p(ab|x’y)
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Aumann’s agreement theorem (1976)

* “Two agents who share a common prior cannot agree to disagree”
* Making this nonclassical:

p(ablxy)}

o nonsignalling
o box O
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disagreement?




From LHVs to boxes and back again




From LHVs to boxes and back again

A% = set of LHVs corresponding to output a given input x.



From LHVs to boxes and back again

B}? = set of LHVs corresponding to output b given input y.



From LHVs to boxes and back again

Perfectly correlated events: same set of LHVs (except prob zero)



From LHVs to boxes and back again

p(ablxy) = P(A$ N BY)



NS-box formalism




An operational interpretation _k

NS box




An operational interpretation _k i _k

1. Measure x,y = 0,0, obtain a,b = 0,0 (but don’t talk)




An operational interpretation _k NS box

1. Measure x,y = 0,0, obtain a,b = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1...
... but they’'re constrained by nonlocality.
Still, they try.

p(ab|xy)
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An operational interpretation _k NS box

1. Measure x,y = 0,0, obtain a,b = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1:
Alice:p(b=1la=0,x =0,y =1) =:qu
Bob:p(a=1|b =0,x =1,y =0) =:qp

3. Announce g4, gp

p(ab|xy)



An operational interpretation _k

NS box

1. Measure x,y = 0,0, obtain a,b = 0,0 (but don’t talk)

2. Want to find out about each other’s output 1 on input 1:
Alice:p(b=1la=0,x=0,y =1) =:q,
Bob:p(a=1b=0,x =1,y = 0) =: g5

3. Announce g4, gp

4. Calculate a sequence of sets of

input-output pairs in order to reach
common certainty

p(ab|xy)



An operational interpretation

i ?
What output did Bob get: B, = {(a, b, x, y):

B, = {Outputs of Bob that lead him to p(a " 1|b,x =1,y = 0) — CIB}

announce the estimate gg}

What output did Alice get? Ao =4la b, X V)

p(b=1la,x =0,y =1) = qa}
Ay = {Outputs of Alice that lead her to

announce the estimate qA}



How to disagree

Can | be :s:rt‘zltr;‘it:a:nBlo;b?obtamed By = {(a, b, x,y):
s Zo! p(a=1lb,x =1,y = 0) = qz)}

Aq = {Alice’s outputs s.t. By is certain} A = {(a, b, x, y):
p(BO|a'x = O,y = 0) = 1}

Can | be certain that Alice obtained Ao =4la b, X V)
something in A,? pb=llax =0,y =11L= qa}

B, = {Bob’s outputs s.t. A, is certain} o {(a, b, x, y):
p(4glb,x =0,y = 0) = 1}



An operational interpretation

Can | be cert:;‘r-l th:at Zob o?btamed By = {(a, b, x,y):

A,, = {Alice’s outputs s.t. B,,_4 is certain} A, ={(a,b,x,y):
p(BO|a'x = O,y = 0) = 1}

Can | be certain that Alice obtained Ao =4la b, X V)
something in A,? pb=llax =0,y =11L= qa}

B,, = {Bob’s outputs s.t. A, _; is certain} B; ={(a,b,x,y):
p(Aglh, x. =0y = 0) =1}



Common certainty of disagreement

Common certainty of
disagreement
&

da #* qp &
vn, (0,0,0,0) € A, N B,




Common certainty of disagreement

Common certainty of
disagreement
&

Aumann:
impossible classically




Common certainty of disagreement

Common certainty of
disagreement
&

Can it arise in
quantum/nonsignalling
settings?




Characterising common certainty of
disagreement

Can it arise in
nonsignalling settings?
Theorem: Yes!
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Can it arise In . 5
nonsignalling settings? s | s | arirs | 72s
Theorem: Yes! u r-t+u 1-r-u

t-u
t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)



Characterising common certainty of
disagreement

Can it arise In

0 0 1-r
nonsignalling settings? rs | s | rtths | Its

r-t+u 1-r-u

Theorem: Yes!
t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)

Proof: zeros from perfect correlations and sets 4,,, B,,.
Rest from normalisation & nonsignalling constraints.
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(0,0,00)eB;=>pla=0b=0,x=0,y=0)=1



Characterising common certainty of
disagreement

Can it arise in ,
nonsignalling settings? rs | s | rtths | Its

Theorem: Yes! r-t+u 1-r-u
4 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)

Proof: Assume (0,0,0,0) € A,, N B,

Assume first A, = {a = 0}; B, = {b = 0} (other cases will reduce to this)
(0,0,00) EB, > p(a=0b=0,x=0,y =0) =1
=>pa=1b=0,x=0,y=0)=0



Characterising common certainty of
disagreement

Can it arise In

0 0 1-r
nonsignalling settings? rs | s | rtths | Its

r-t+u 1-r-u

Theorem: Yes!
t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)

Proof: Assume (0,0,0,0) € A,, N B,
Assume first A, = {a = 0}; B, = {b = 0} (other cases will reduce to this)
Similarly for 4;.



Characterising common certainty of
disagreement

Can it arise In

0 0 1-r
nonsignalling settings? rs | s | rtths | Its

r

t-u r-t+u 1-r-u

Theorem: Yes!
t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)

Proof: Assume (0,0,0,0) € A, N B,

Assume first A, = {a = 0}; B, = {b = 0} (other cases will reduce to this)
Similarly for 4;.

NS constraints & normalisation. gga #qp & S—u #r—Lt.



Characterising common certainty of
disagreement

Can it arise In . 5
nonsignalling settings? s | s | arirs | 72s
Theorem: Yes! u r-t+u 1-r-u

t-u
t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)

Proof: Reverse implication quite easy.



Characterising common certainty of
disagreement

Can it arise In . 5
guantum settings? rs | s | rttes It
Theorem: No. u rt+u 1-ru

t-u
t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)



Characterising common certainty of
disagreement

Can it arise In . ,
guantum settings? rs | s | rtks | Its
Theorem: No. tu_ | U rttu Lru

t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)
Proof:

1. Theorem by Tsirelson: if the box is quantum, there is a vectorial representation of
the system whose inner products relate to the elements of the box.

2. One checks that the parameters r,s,t,u above create a quantum box with s-u=r-t
(i.e., a classical box and therefore obeying Aumann’s original theorem).



Characterising common certainty of
disagreement

Can it arise In

r 0 0 1-r

guantum settings? rs | s | rtks | Its
Theorem: No. . L S O W

t 0 0 1-t

withr > 0,s —u # r — t (otherwise classical)

Fully general: distributions of more inputs and outputs reduce to 2x2
by local transformations.

So if 2x2 can’t be quantum, nor can larger ones.



Implications

- First, we are closer to understanding why QM is a successful theory.

- We also provide a simple test for new physical theories (use the box!)

- The quantum internet will soon be a reality: agents will use it to
trade, take decisions, communicate securely, perform calculations...

- We are closer to showing that all of this will make sense: modelling

the applications of new technologies will be sound.



Where to? NS box

- Agreement as a requirement for physical theories of nature
- Approximate notions of disagreement?

- Application to distributed computation

- Further connections between epistemics and quantum information?



Where to? NS box

- Agreement as a requirement for physical theories of nature
. Approximate notions of disagreement?

- Application to distributed computation

- Further connections between epistemics and quantum information?



New model (work in progress!)

1 kK




New model (work in progress!)

L

- There is no box, no communication
- A single system observed in sequence by two agents

- Models the system like in standard quantum computing (and not with
an approximation as we have seen before)

- Moreover: we compare the quantum scenario with a classical

scenario by Hellman, which considers degrees of disagreement:
- O-distance in prior distributions = Jd-disagreement



Recap

e Can Alice & Bob disagree?

* |local x
e quantum x
» post-quantum (nonsignaling) v/

« Consequences for computer scientists:
we can have fun researching the quantum internet!

« Next step: approximate version, with single system

EEHHZH,
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