
Like Alice in Wonderland:
Unraveling Reasoning and Cognition Using

Analogies and Concept Blending

Tarek R. Besold

KRDB, Faculty of Computer Science, Free University of Bozen-Bolzano

16. June 2016

Tarek R. Besold Computational Models of Analogy and Concept Blending



Honour to whom honour is due...

The following is joint work with many people, most notably:

Robert Robere, Department of Computer Science, University of
Toronto (Canada).

Enric Plaza, IIIA-CSIC, Barcelona (Spain).

Kai-Uwe Kühnberger, Institute of Cognitive Science, University
of Osnabrück (Germany).

Tarek R. Besold Computational Models of Analogy and Concept Blending



And Who is Paying (Some of) the Bills?

The described work on concept blending has been conducted as part
of the European FP7 Concept Invention Theory (COINVENT) project
(FET-Open grant number 611553).

Consortium members are:

Free University of Bozen-Bolzano (Südtirol-Alto Adige, Italy)

University of Osnabrück (Germany)

University of Magdeburg (Germany)

University of Dundee (Scotland, UK)

University of Edinburgh (Scotland, UK)

Goldsmiths, University of London (UK)

IIIA-CSIC, Barcelona (Catalunya, Spain)

Aristotle University of Thessaloniki (Greece)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Non-Classical and Cross-Domain Reasoning

Tarek R. Besold Computational Models of Analogy and Concept Blending



Back in the Day (1)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Back in the Day (2)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Back in the Day (3)

Rutherford analogy (underlying the Bohr-Rutherford model of the
atom):

Analogy between solar system and
hydrogen atom:

...nucleus is more massive than electrons,
sun is more massive than planets.

...nucleus attracts electrons (Coulomb’s
law), sun attracts planets (Newton’s law of
gravity).

...attraction plus mass relation causes
electrons to revolve around nucleus,
similarly planets revolve around sun.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Analogy

Tarek R. Besold Computational Models of Analogy and Concept Blending



Intermezzo: Analogy (1)

Analogy

“ànalog–a” - analogia, “proportion”.

Informally: Claims of similarity, often used in argumentation or
when explaining complex situations.

A bit more formal: Analogy-making is the human ability of
perceiving dissimilar domains as similar with respect to
certain aspects based on shared commonalities in relational
structure or appearance.
(Incidental remark: In less complex forms also to be found in
some other primates.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Intermezzo: Analogy (2)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Non-Classical and Cross-Domain Reasoning

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (1)

Heuristic-Driven Theory Projection (HDTP)
Computing analogical relations and inferences (domains given
as many-sorted first-order logic representation/many-sorted term
algebras) using a generalisation-based approach.

Base and target of analogy defined in terms of axiomatisations,
i.e., given by a finite set of formulae.

Aligning pairs of formulae by means of anti-unification
(extending classical Plotkin-style first-order anti-unification to a
restricted form of higher-order anti-unification).

Proof-of-concept applications in modelling mathematical
reasoning and concept blending in mathematics.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (2)

Figure: Analogy-making in HDTP.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (3)

Anti-Unification
Dual to the unification problem (see, e.g., logic programming or
automated theorem proving).

Generalising terms in a meaningful way, yielding for each term
an anti-instance (distinct subterms replaced by variables).

Goal: Finding the most specific anti-unifier.

Plotkin: For a proper definition of generalisation, for a given pair
of terms there always is exactly one least general generalisation
(up to renaming of variables).

Problem: Structural commonalities embedded in different
contexts possibly not accessible by first-order anti-unification.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (4)

Restricted Higher-Order Anti-Unification
First-order terms extended by introducing variables taking
arguments (first-order variables become variables with arity 0),
making a term either a first-order or a higher-order term.
Class of substitutions restricted to (compositions of) the
following four cases:

1 Renamings rF ,F⇤
: F(t1, . . . , tn)

rF ,F⇤

�! F ⇤(t1, . . . , tn).

2 Fixations fF
c : F(t1, . . . , tn)

fF
f�! f (t1, . . . , tn).

3 Argument insertions iF ,F⇤

G,i :

F(t1, . . . , tn)
iF ,F⇤
G,i�! F ⇤(t1, . . . , ti ,G(ti+1, . . . , ti+k ), ti+k+1, . . . , tn).

4 Permutations pF ,F⇤
a : F(t1, . . . , tn)

pF ,F⇤
a�! F ⇤(ta(1), . . . , ta(n)).

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (5)

Examples of higher-order anti-unifications:

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (6)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Heuristic-Driven Theory Projection (7)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity and Tractability in Cognitive Models and Systems

Tarek R. Besold Computational Models of Analogy and Concept Blending



Computer Metaphor and Church-Turing Thesis

Famous ideas at the heart of many endeavours in computational
cognitive modelling and/or AI:

1 “Computer metaphor” of the mind (i.e. the concept of a
computational theory of mind).

2 Church-Turing thesis.

1 Bridges gap between humans and computers:
Human mind and brain can be seen as information processing
system.
Reasoning and thinking corresponds to computation as formal
symbol manipulation.

2 Gives account of the nature and limitations of the computational
power of such a system.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Computer Metaphor and Church-Turing Thesis

Famous ideas at the heart of many endeavours in computational
cognitive modelling and/or AI:

1 “Computer metaphor” of the mind (i.e. the concept of a
computational theory of mind).

2 Church-Turing thesis.

1 Bridges gap between humans and computers:
Human mind and brain can be seen as information processing
system.
Reasoning and thinking corresponds to computation as formal
symbol manipulation.

2 Gives account of the nature and limitations of the computational
power of such a system.

Tarek R. Besold Computational Models of Analogy and Concept Blending



P-Cognition Thesis

Significant impact on cognitive science and cognitive psychology:

Explain human cognitive capacities modelled in terms of
computational-level theories (i.e., as precise characterisations of
hypothesised inputs and outputs of respective capacities together
with functional mappings between them).

Problem: Computational-level theories often underconstrained
by available empirical data!

) Use mathematical complexity theory as assisting tool:

NP-completeness!

P-Cognition thesis
Human cognitive capacities hypothesised to be of the polynomial-time
computable type.

(Interpretation: “Humans can comfortably solve non-trivial instances of
this problem, where the exact size depends on the problem at hand”.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



P-Cognition Thesis

Significant impact on cognitive science and cognitive psychology:

Explain human cognitive capacities modelled in terms of
computational-level theories (i.e., as precise characterisations of
hypothesised inputs and outputs of respective capacities together
with functional mappings between them).

Problem: Computational-level theories often underconstrained
by available empirical data!

) Use mathematical complexity theory as assisting tool:

NP-completeness!

P-Cognition thesis
Human cognitive capacities hypothesised to be of the polynomial-time
computable type.

(Interpretation: “Humans can comfortably solve non-trivial instances of
this problem, where the exact size depends on the problem at hand”.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



“polynomial-time computable” = “efficient”?

Humans able to solve problems which may be hard in general but
feasible if certain parameters of the problem restricted.

Parametrised complexity theory: “tractability” captured by
FPT.1

FPT-Cognition thesis (van Rooij, 2008)
Human cognitive capacities hypothesised to be fixed-parameter
tractable for one or more input parameters that are small in practice
(i.e., computational-level theories have to be in FPT).

Tractable AGI thesis (Besold & Robere, 2013)
Models of cognitive capacities in artificial intelligence and computational
cognitive systems have to be fixed-parameter tractable for one or more
input parameters that are small in practice (i.e., have to be in FPT).

1A problem P is in FPT if P admits an O(f (k)nc) algorithm, where n is the input
size, k is a parameter of the input constrained to be “small”, c is an independent
constant, and f is some computable function.

Tarek R. Besold Computational Models of Analogy and Concept Blending



“polynomial-time computable” = “efficient”?

Humans able to solve problems which may be hard in general but
feasible if certain parameters of the problem restricted.

Parametrised complexity theory: “tractability” captured by
FPT.1

FPT-Cognition thesis (van Rooij, 2008)
Human cognitive capacities hypothesised to be fixed-parameter
tractable for one or more input parameters that are small in practice
(i.e., computational-level theories have to be in FPT).

Tractable AGI thesis (Besold & Robere, 2013)
Models of cognitive capacities in artificial intelligence and computational
cognitive systems have to be fixed-parameter tractable for one or more
input parameters that are small in practice (i.e., have to be in FPT).

1A problem P is in FPT if P admits an O(f (k)nc) algorithm, where n is the input
size, k is a parameter of the input constrained to be “small”, c is an independent
constant, and f is some computable function.

Tarek R. Besold Computational Models of Analogy and Concept Blending



“polynomial-time computable” = “efficient”?

Humans able to solve problems which may be hard in general but
feasible if certain parameters of the problem restricted.

Parametrised complexity theory: “tractability” captured by
FPT.1

FPT-Cognition thesis (van Rooij, 2008)
Human cognitive capacities hypothesised to be fixed-parameter
tractable for one or more input parameters that are small in practice
(i.e., computational-level theories have to be in FPT).

Tractable AGI thesis (Besold & Robere, 2013)
Models of cognitive capacities in artificial intelligence and computational
cognitive systems have to be fixed-parameter tractable for one or more
input parameters that are small in practice (i.e., have to be in FPT).

1A problem P is in FPT if P admits an O(f (k)nc) algorithm, where n is the input
size, k is a parameter of the input constrained to be “small”, c is an independent
constant, and f is some computable function.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity of HDTP (1)

HDTP is naturally split into two mechanisms:

Analogical matching of input theories.

Re-representation of input theories by deduction in FOL.

) Re-representation is undecidable (undecidability of FOL).
) Focus on mechanism for analogical matching.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity of HDTP (2)

Problem 1. F Anti-Unification
Input: Two terms f ,g, and a natural k 2 N
Problem: Is there an anti-unifier h, containing at least k variables, using only
renamings and fixations?

Problem 2. FP Anti-Unification
Input: Two terms f ,g, and naturals l,m,p 2 N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables and at
least m higher arity variables, and two substitutions s,t using only renamings,
fixations, and at most p permutations such that h s�! f and h t�! g?

Problem 3. FPA Anti-Unification
Input: Two terms f ,g and naturals l,m,p,a 2 N.
Problem: Is there an anti-unifier h, containing at least l 0-ary variables, at least
m higher arity variables, and two substitutions s,t using renamings, fixations,
at most p permutations, and at most a argument insertions such that h s�! f
and h t�! g?

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity of HDTP (3)

...a fair share of formal magic involving a Canadian and some
“Subgraph Isomorphism to Clique” reductions later...

Complexity of HDTP (Higher-Order Anti-Unification)
1 F Anti-Unification is solvable in polynomial time.
2 Let m denote the minimum number of higher arity variables and

let p be the maximum number of permutations applied. Then FP
Anti-Unification is NP-complete and W[1]-hard w.r.t.
parameter set {m,p}.

3 Let r be the maximum arity and s be the maximum number of
subterms of the input terms. Then FP Anti-Unification is in FPT
w.r.t. parameter set {s, r ,p}.

4 FPA Anti-Unification is NP-complete and W[1]-hard w.r.t.
parameter set {m,p,a}.

(For proofs: R. Robere and T. R. Besold. Complex Analogies: Remarks on the Complexity of HDTP. In Proceedings of the
25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity of HDTP (3)

...a fair share of formal magic involving a Canadian and some
“Subgraph Isomorphism to Clique” reductions later...

Complexity of HDTP (Higher-Order Anti-Unification)
1 F Anti-Unification is solvable in polynomial time.
2 Let m denote the minimum number of higher arity variables and

let p be the maximum number of permutations applied. Then FP
Anti-Unification is NP-complete and W[1]-hard w.r.t.
parameter set {m,p}.

3 Let r be the maximum arity and s be the maximum number of
subterms of the input terms. Then FP Anti-Unification is in FPT
w.r.t. parameter set {s, r ,p}.

4 FPA Anti-Unification is NP-complete and W[1]-hard w.r.t.
parameter set {m,p,a}.

(For proofs: R. Robere and T. R. Besold. Complex Analogies: Remarks on the Complexity of HDTP. In Proceedings of the
25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Concept Blending

Tarek R. Besold Computational Models of Analogy and Concept Blending



Concept blending: A + B = ? (1)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Concept blending: A + B = ? (2)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Concept blending: A + B = ? (3)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Concept blending: A + B = ? (4)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Foundations of Theory Blending (1)

Concept Blending
Given two domain theories I1 and I2, representing two
conceptualisations...

...look for a generalisation G...

...construct the blend space B in such a way as to preserve the
correlations between I1 and I2 established by G.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Foundations of Theory Blending (2)

Example: Houseboat vs. boathouse
Concept blends of HOUSE and BOAT into BOATHOUSE and
HOUSEBOAT .

I1 = {HOUSE v 8LIVES � IN.RESIDENT}
I2 = {BOAT v 8RIDES �ON.PASSENGER}

HOUSEBOAT : Aligning parts of the conceptual spaces...
RESIDENT $ PASSENGER
LIVES � IN $ RIDES �ON
HOUSE $ BOAT

BOATHOUSE : Aligning parts of the conceptual spaces...
RESIDENT $ BOAT

Tarek R. Besold Computational Models of Analogy and Concept Blending



The Concept Invention Theory (COINVENT) Project (1)

To develop a novel, computationally feasible, formal model of
conceptual blending based on Fauconnier and Turner’s theory.

To gain a deeper understanding of conceptual blending and
its role in computational creativity.

To design a generic, creative computational system capable of
serendipitous invention and manipulation of novel abstract
concepts.

To validate our model and its computational realisation in two
representative working domains: mathematics and music.

Tarek R. Besold Computational Models of Analogy and Concept Blending



The Concept Invention Theory (COINVENT) Project (2)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Amalgamation 101 (1)

I1 I2

Ī2Ī1

G = I1 u I2

A = Ī1 t Ī2

v
v

v
vvv

v v

Amalgam

A description A 2 L is an amalgam of two inputs I1 and I2 (with
anti-unification G = I1 u I2) if there exist two generalisations Ī1 and Ī2
such that (1) G v Ī1 v I1, (2) G v Ī2 v I2, and (3) A = Ī1 t Ī2

Tarek R. Besold Computational Models of Analogy and Concept Blending



Amalgamation 101 (2)

v

vvv

v v

A = S� t T

S�

S

T

G = S u T

Asymmetric Amalgam

An asymmetric amalgam A 2 L of two inputs S (source) and T (target)
satisfies that A = S0 tT for some generalisation of the source S0 v S.

Tarek R. Besold Computational Models of Analogy and Concept Blending



COINVENT’s Blending Schema

1.) Compute shared generalisation G from S and T with fS(G) = Sc .
2.) Re-use fS in generalisation of S into S0.
3.) Combine S0 in asymmetric amalgam with T into proto-blend
T 0 = S0 tT .
4.) By application of fT , complete T 0 into blended output theory TB.
(✓: element-wise subset relationship between sets of axioms. v: subsumption
between theories in direction of respective arrows.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



...and the Implementation?

Use HDTP for computation of generalisation(s) and
substitution chains/higher-order anti-unifications.

Currently: Restrict HDTP to using only renamings and
fixations.
) Possibility to use “classical” semantic consequence |= as
ordering relationship.
(Also preserved by later unifications and addition of axioms.)

Use HDTP’s heuristics for selecting least general
generalisation G (among several options).

Currently: Naive consistency/inconsistency check with final
blend (both internally and against world knowledge).
) Clash resolution by re-start with reduced set of input
axioms.

Tarek R. Besold Computational Models of Analogy and Concept Blending



...and the Implementation?

Use HDTP for computation of generalisation(s) and
substitution chains/higher-order anti-unifications.

Currently: Restrict HDTP to using only renamings and
fixations.
) Possibility to use “classical” semantic consequence |= as
ordering relationship.
(Also preserved by later unifications and addition of axioms.)

Use HDTP’s heuristics for selecting least general
generalisation G (among several options).

Currently: Naive consistency/inconsistency check with final
blend (both internally and against world knowledge).
) Clash resolution by re-start with reduced set of input
axioms.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Example: Brillo, the Foldable Toothbrush

Tarek R. Besold Computational Models of Analogy and Concept Blending



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

Stereotypical 
characterization for a 

pocketknife:

Stereotypical 
characterization for a 

toothbrush:



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

Computing a 
shared 

generalization:

Applied substitutions:



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

Applied substitutions:



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle) Applied substitutions:
pocketknife, toothbrush => E



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle) Applied substitutions:
pocketknife, toothbrush => E



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle) Applied substitutions:
pocketknife, toothbrush => E



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, F)

Shared 
generalization:

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, F)

Computing the 
generalized 

source theory:

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, F)

Computing the 
generalized 

source theory:

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Generalized 
source theory:

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F

Computing the 
proto-blend/
asymmetric 
amalgam:



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(E, P)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(E, P)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(E, hinge)

has_functionality(E, fold)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F

Proto-blend/
asymmetric 
amalgam:



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F

Computing the 
final blend:

has_functionality(toothbrush, 
brush)

has_part(E, hinge)

has_functionality(E, fold)



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E

blade, brush_head => P
cut, brush => F

has_functionality(toothbrush, 
brush)

has_part(E, hinge)

has_functionality(E, fold)



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E 

blade, brush_head => P
cut, brush => F

has_functionality(toothbrush, 
brush)

has_part(E, hinge)

has_functionality(E, fold)



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E 

blade, brush_head => P
cut, brush => F

has_functionality(toothbrush, 
brush)

has_part(toothbrush, hinge)

has_functionality(E, fold)



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E 

blade, brush_head => P
cut, brush => F

has_functionality(toothbrush, 
brush)

has_part(toothbrush, hinge)

has_functionality(E, fold)



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E 

blade, brush_head => P
cut, brush => F

has_functionality(toothbrush, 
brush)

has_part(toothbrush, hinge)

has_functionality(E, fold)



has_part(pocketknife, handle)

has_part(pocketknife, blade)

has_functionality(pocketknife, 
cut)

has_part(pocketknife, hinge)

has_functionality(pocketknife, 
fold)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

has_functionality(toothbrush, 
brush)

has_part(toothbrush, handle)

has_part(toothbrush, 
brush_head)

Applied substitutions:
pocketknife, toothbrush => E 

blade, brush_head => P
cut, brush => F

has_functionality(toothbrush, 
brush)

has_part(toothbrush, hinge)

has_functionality(E, fold)

Final blend:



Conclusion

Tarek R. Besold Computational Models of Analogy and Concept Blending



(Definitely Not) The End!

If you are interested in non-classical reasoning, tractability,
approximability and similar topics in A(G)I and/or cognitive science,
you are happily invited to...

1 ...talk to me after the presentation.
2 ...get in touch by e-mail:

TarekRichard.Besold@unibz.it.
3 ...occasionally have a look at our publications.2

2For instance:
Besold, T. R., and Robere, R.. When Thinking Never Comes to a Halt: Using Formal
Methods in Making Sure Your AI Gets the Job Done Good Enough. In
V. C. Müller (ed.), Fundamental Issues of Artificial Intelligence (Synthese Library, vol.
376). Springer, 2016.
Besold, T. R., and Plaza, E. Generalize and Blend: Concept Blending Based on
Generalization, Analogy, and Amalgams. In H. Toivonen, S. Colton, M. Cook, and D.
Ventura, Proceedings of the Sixth International Conference on Computational
Creativity (ICCC) 2015. Brigham Young University Press, 2015.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Postludium

Tarek R. Besold Computational Models of Analogy and Concept Blending



Disclaimer

Frequent criticism:
Demanding for cognitive systems and models to work within
certain complexity limits overly restrictive.
Maybe: Human mental activities actually performed as
exponential-time procedures, but never noticed as exponent for
some reason always very small.

Reply:
Possibility currently cannot be excluded.
Instead: No claim that cognitive processes without exception
within FPT, APX, FPA, or what-have-you...
...but staying within boundaries makes cognitive systems and
models plausible candidates for application in resource-bounded
general-purpose cognitive agents.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Disclaimer

Frequent criticism:
Demanding for cognitive systems and models to work within
certain complexity limits overly restrictive.
Maybe: Human mental activities actually performed as
exponential-time procedures, but never noticed as exponent for
some reason always very small.

Reply:
Possibility currently cannot be excluded.
Instead: No claim that cognitive processes without exception
within FPT, APX, FPA, or what-have-you...
...but staying within boundaries makes cognitive systems and
models plausible candidates for application in resource-bounded
general-purpose cognitive agents.

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity of the First HDTP Generation

As an aside:
Once upon a time, there was HDTP-old based on reducing certain
higher-order to first-order anti-unifications by introduction of subterms
built from “admissible sequences” over equational theories (i.e.,
conjunctions of FOL formulae with equality over a term algebra).

Complexity of HDTP-old
1 HDTP-old is NP-complete.
2 HDTP-old is W[2]-hard with respect to a minimal bound on

the cardinality of the set of all subterms of the term against
which admissibility is checked.

(For proofs: R. Robere and T. R. Besold. Complex Analogies: Remarks on the Complexity of HDTP. In Proceedings of the
25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



Complexity of the First HDTP Generation

As an aside:
Once upon a time, there was HDTP-old based on reducing certain
higher-order to first-order anti-unifications by introduction of subterms
built from “admissible sequences” over equational theories (i.e.,
conjunctions of FOL formulae with equality over a term algebra).

Complexity of HDTP-old
1 HDTP-old is NP-complete.
2 HDTP-old is W[2]-hard with respect to a minimal bound on

the cardinality of the set of all subterms of the term against
which admissibility is checked.

(For proofs: R. Robere and T. R. Besold. Complex Analogies: Remarks on the Complexity of HDTP. In Proceedings of the
25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

Tarek R. Besold Computational Models of Analogy and Concept Blending



A Primer on Approximation Theory

Approximability Classes
In the following, let...

...PTAS denote the class of all NP optimisation problems that
admit a polynomial-time approximation scheme.

...APX be the class of NP optimisation problems allowing for
constant-factor approximation algorithms.

...APX-poly be the class of NP optimisation problems allowing for
polynomial-factor approximation algorithms.

Please note that PTAS ✓ APX ✓ APX-poly (with each inclusion being
proper in case P 6= NP).

Tarek R. Besold Computational Models of Analogy and Concept Blending



Approximability Analysis of HDTP (1)

FP Anti-Unification W[1]-hard to compute for parameter set m,p
(m number of higher-arity variables, p number of permutations).

) No polynomial-time algorithm computing “sufficiently complex”
generalisations (i.e., with lower bound on number of higher-arity
variables), upper bounding number of permutations
(W[1]-hardness for single permutation).

What if one considers generalisations which merely
approximate the “optimal” generalisation in some sense?

Tarek R. Besold Computational Models of Analogy and Concept Blending



Approximability Analysis of HDTP (2)

Complexity of a Substitution
The complexity of a basic substitution s is defined as

C(s) =

8
><

>:

0, if s is a renaming.

1, if s is a fixation or permutation.

k +1, if s is a k -ary argument insertion.
The complexity of a restricted substitution s = s1 � · · ·�sn (i.e., the
composition of any sequence of unit substitutions) is the sum of the
composed substitutions: C(s) = Ân

i=1 C(si).

Tarek R. Besold Computational Models of Analogy and Concept Blending



Approximability Analysis of HDTP (3)

Consider problem of finding generalisation which maximises
complexity over all generalisations:

Complex generalisation would contain “most information” present
over all of the generalisations chosen (i.e., maximising the
“information load”).

Using approximability results on MAXCLIQUE:

Approximation Complexity of HDTP Analogy-Making
FP anti-unification is not in APX (i.e., does not allow for
constant-factor approximation algorithms) and is hard for APX-poly.

(For proofs: T. R. Besold and R. Robere. When Almost Is Not Even Close: Remarks on the Approximability of HDTP. In
Artificial General Intelligence - 6th International Conference (AGI 2013), LNCS. Springer, 2013.)

Tarek R. Besold Computational Models of Analogy and Concept Blending


