Like Alice in Wonderland: Unraveling Reasoning and Cognition Using Analogies and Concept Blending

### Tarek R. Besold

#### KRDB, Faculty of Computer Science, Free University of Bozen-Bolzano

#### 16. June 2016





The following is joint work with many people, most notably:

- **Robert Robere**, Department of Computer Science, University of Toronto (Canada).
- Enric Plaza, IIIA-CSIC, Barcelona (Spain).
- Kai-Uwe Kühnberger, Institute of Cognitive Science, University of Osnabrück (Germany).

The described work on concept blending has been conducted as part of the European FP7 **Concept Invention Theory (COINVENT)** project (FET-Open grant number 611553).

Consortium members are:

- Free University of Bozen-Bolzano (Südtirol-Alto Adige, Italy)
- University of Osnabrück (Germany)
- University of Magdeburg (Germany)
- University of Dundee (Scotland, UK)
- University of Edinburgh (Scotland, UK)
- Goldsmiths, University of London (UK)
- IIIA-CSIC, Barcelona (Catalunya, Spain)
- Aristotle University of Thessaloniki (Greece)



#### Non-Classical and Cross-Domain Reasoning

# Back in the Day (1)



# Back in the Day (2)



**Rutherford analogy** (underlying the Bohr-Rutherford model of the atom):



- Analogy between solar system and hydrogen atom:
- ...nucleus is more massive than electrons, sun is more massive than planets.
- ...nucleus attracts electrons (Coulomb's law), sun attracts planets (Newton's law of gravity).
- ...attraction plus mass relation causes electrons to revolve around nucleus, similarly planets revolve around sun.



Analogy

#### Analogy

- "άναλογία" analogia, "proportion".
- Informally: Claims of similarity, often used in argumentation or when explaining complex situations.
- A bit more formal: Analogy-making is the human ability of perceiving dissimilar domains as similar with respect to certain aspects based on shared commonalities in relational structure or appearance.

(Incidental remark: In less complex forms also to be found in some other primates.)





#### Non-Classical and Cross-Domain Reasoning

#### Heuristic-Driven Theory Projection (HDTP)

- Computing analogical relations and inferences (domains given as many-sorted first-order logic representation/many-sorted term algebras) using a generalisation-based approach.
- Base and target of analogy defined in terms of axiomatisations, i.e., given by a finite set of formulae.
- Aligning pairs of formulae by means of **anti-unification** (extending classical Plotkin-style first-order anti-unification to a restricted form of higher-order anti-unification).
- Proof-of-concept applications in modelling mathematical reasoning and concept blending in mathematics.

### Heuristic-Driven Theory Projection (2)



Figure: Analogy-making in HDTP.

#### Anti-Unification

- Dual to the unification problem (see, e.g., logic programming or automated theorem proving).
- Generalising terms in a meaningful way, yielding for each term an **anti-instance** (distinct subterms replaced by variables).
- Goal: Finding the most specific anti-unifier.
- Plotkin: For a proper definition of generalisation, for a given pair of terms there always is exactly one least general generalisation (up to renaming of variables).
- Problem: Structural commonalities embedded in different contexts possibly not accessible by first-order anti-unification.

#### Restricted Higher-Order Anti-Unification

- First-order terms extended by **introducing variables taking arguments** (first-order variables become variables with arity 0), making a term either a first-order or a higher-order term.
- Class of substitutions restricted to (compositions of) the following four cases:

#### Examples of higher-order anti-unifications:



### Heuristic-Driven Theory Projection (6)

| Solar System                                                                  | Rutherford Atom                                                           |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| sorts                                                                         | sorts                                                                     |
| real, object, time                                                            | real, object, time                                                        |
| entities                                                                      | entities                                                                  |
| $sun: object, \ planet: object$                                               | nucleus : object, electron : object                                       |
| functions                                                                     | functions                                                                 |
| mass: $object \rightarrow real \times \{kg\}$                                 | $mass: object \rightarrow real \times \{kg\}$                             |
| $dist: object \times object \times time \rightarrow real \times \{m\}$        | $dist: object \times object \times time \rightarrow real \times \{m\}$    |
| force : $object \times object \times time \rightarrow real \times \{N\}$      | $coulomb: object \times object \times time \rightarrow real \times \{N\}$ |
| $gravity: object \times object \times time \rightarrow real \times \{N\}$     | facts                                                                     |
| centrifugal: $object \times object \times time \rightarrow real \times \{N\}$ | $\beta_1$ : mass(nucleus) > mass(electron)                                |
| predicates                                                                    | $\beta_2$ : mass(electron) > 0                                            |
| $revolves$ around : $object \times object$                                    | $\beta_3: \forall t: time: coulomb(electron, nucleus, t) > 0$             |
| facts                                                                         | $\beta_4: \forall t: time: dist(electron, nucleus, t) > 0$                |
| $\alpha_1: mass(sun) > mass(planet)$                                          |                                                                           |
| $\alpha_2: mass(planet) > 0$                                                  |                                                                           |
| $\alpha_3: \forall t: time: gravity(planet, sun, t) > 0$                      |                                                                           |
| $\alpha_4: \forall t: time: dist(planet, sun, t) > 0$                         |                                                                           |
| laws                                                                          |                                                                           |
| $\alpha_5$ : $\forall t$ : time, $o_1$ : object, $o_2$ : object:              |                                                                           |
| $dist(o_1, o_2, t) > 0 \land qravity(o_1, o_2, t) > 0$                        |                                                                           |
| $\rightarrow centrifugal(o_1, o_2, t) = -gravity(o_1, o_2, t)$                |                                                                           |
| $\alpha_6$ : $\forall t$ : time, $o_1$ : object, $o_2$ : object:              |                                                                           |
| $0 < mass(o_1) < mass(o_2) \land dist(o_1, o_2, t) > 0 \land$                 |                                                                           |
| $centrifugal(o_1, o_2, t) < 0$                                                |                                                                           |
| $\rightarrow$ revolves around( $o_1, o_2$ )                                   |                                                                           |

### Heuristic-Driven Theory Projection (7)

types real. object. time constants X: object, Y: objectfunctions mass:  $object \rightarrow real \times \{kq\}$  $dist: object \times object \times time \rightarrow real \times \{m\}$  $F: object \times object \times time \rightarrow real \times \{N\}$ centrifugal:  $object \times object \times time \rightarrow real \times \{N\}$ predicates revolves around :  $object \times object \times object$ facts  $\gamma_1: mass(X) > mass(Y)$  $\gamma_2: mass(Y) > 0$  $\gamma_3: \forall t: time: F(X, Y, t) > 0$  $\gamma_4: \forall t: time: dist(X, Y, t) > 0$ laws  $\gamma_{5*}$ :  $\forall t: time, o_1: object, o_2: object:$  $dist(o_1, o_2, t) > 0 \land F(o_1, o_2, t) > 0$  $\rightarrow centrifugal(o_1, o_2, t) = -F(o_1, o_2, t)$  $\gamma_6 *$ :  $\forall t$ : time,  $o_1$ : object,  $o_2$ : object:  $0 < mass(o_1) < mass(o_2) \land dist(o_1, o_2, t) > 0 \land centrifugal(o_1, o_2, t) < 0$  $\rightarrow$  revolves around( $o_1, o_2$ )



#### **Complexity and Tractability in Cognitive Models and Systems**

Famous ideas at the heart of many endeavours in computational cognitive modelling and/or AI:

- "Computer metaphor" of the mind (i.e. the concept of a computational theory of mind).
- Ohurch-Turing thesis.
- I Bridges gap between humans and computers:
  - Human mind and brain can be seen as information processing system.
  - Reasoning and thinking corresponds to computation as formal symbol manipulation.
- Q Gives account of the nature and limitations of the computational power of such a system.

Famous ideas at the heart of many endeavours in computational cognitive modelling and/or AI:

- "Computer metaphor" of the mind (i.e. the concept of a computational theory of mind).
- Ohurch-Turing thesis.
- Bridges gap between humans and computers:
  - Human mind and brain can be seen as information processing system.
  - Reasoning and thinking corresponds to computation as formal symbol manipulation.
- Gives account of the nature and limitations of the computational power of such a system.

## **P-Cognition Thesis**

Significant impact on cognitive science and cognitive psychology:

- Explain human cognitive capacities modelled in terms of computational-level theories (i.e., as precise characterisations of hypothesised inputs and outputs of respective capacities together with functional mappings between them).
- **Problem:** Computational-level theories often underconstrained by available empirical data!
- $\Rightarrow$  Use mathematical complexity theory as assisting tool:

NP-completeness!

#### P-Cognition thesis

Human cognitive capacities hypothesised to be of the polynomial-time computable type.

(Interpretation: "Humans can comfortably solve non-trivial instances of this problem, where the exact size depends on the problem at hand".)

## **P-Cognition Thesis**

Significant impact on cognitive science and cognitive psychology:

- Explain human cognitive capacities modelled in terms of computational-level theories (i.e., as precise characterisations of hypothesised inputs and outputs of respective capacities together with functional mappings between them).
- **Problem:** Computational-level theories often underconstrained by available empirical data!
- $\Rightarrow$  Use mathematical complexity theory as assisting tool:

#### NP-completeness!

#### P-Cognition thesis

Human cognitive capacities hypothesised to be of the polynomial-time computable type.

(Interpretation: "Humans can comfortably solve non-trivial instances of this problem, where the exact size depends on the problem at hand".)

### "polynomial-time computable" = "efficient"?

- Humans able to solve problems which may be hard in general but feasible if certain parameters of the problem restricted.
- **Parametrised complexity theory**: "tractability" captured by FPT.<sup>1</sup>

#### FPT-Cognition thesis (van Rooij, 2008)

Human cognitive capacities hypothesised to be fixed-parameter tractable for one or more input parameters that are small in practice (i.e., computational-level theories have to be in FPT).

**Tractable AGI thesis** (Besold & Robere, 2013) Models of cognitive capacities in artificial intelligence and computational cognitive systems have to be fixed-parameter tractable for one or more input parameters that are small in practice (i.e., have to be in FPT).

<sup>1</sup>A problem *P* is in FPT if *P* admits an  $O(f(\kappa)n^c)$  algorithm, where *n* is the input size,  $\kappa$  is a parameter of the input constrained to be "small", *c* is an independent constant, and *f* is some computable function.

### "polynomial-time computable" = "efficient"?

- Humans able to solve problems which may be hard in general but feasible if certain parameters of the problem restricted.
- **Parametrised complexity theory**: "tractability" captured by FPT.<sup>1</sup>

### FPT-Cognition thesis (van Rooij, 2008)

Human cognitive capacities hypothesised to be fixed-parameter tractable for one or more input parameters that are small in practice (i.e., computational-level theories have to be in FPT).

**Tractable AGI thesis** (Besold & Robere, 2013) Models of cognitive capacities in artificial intelligence and computational cognitive systems have to be fixed-parameter tractable for one or more input parameters that are small in practice (i.e., have to be in FPT).

<sup>1</sup>A problem *P* is in FPT if *P* admits an  $O(f(\kappa)n^c)$  algorithm, where *n* is the input size,  $\kappa$  is a parameter of the input constrained to be "small", *c* is an independent constant, and *f* is some computable function.

### "polynomial-time computable" = "efficient"?

- Humans able to solve problems which may be hard in general but feasible if certain parameters of the problem restricted.
- **Parametrised complexity theory**: "tractability" captured by FPT.<sup>1</sup>

#### FPT-Cognition thesis (van Rooij, 2008)

Human cognitive capacities hypothesised to be fixed-parameter tractable for one or more input parameters that are small in practice (i.e., computational-level theories have to be in FPT).

**Tractable AGI thesis** (Besold & Robere, 2013) Models of cognitive capacities in artificial intelligence and computational cognitive systems have to be fixed-parameter tractable for one or more input parameters that are small in practice (i.e., have to be in FPT).

<sup>1</sup>A problem *P* is in FPT if *P* admits an  $O(f(\kappa)n^c)$  algorithm, where *n* is the input size,  $\kappa$  is a parameter of the input constrained to be "small", *c* is an independent constant, and *f* is some computable function.

## Complexity of HDTP (1)

HDTP is naturally split into two mechanisms:

- Analogical matching of input theories.
- Re-representation of input theories by deduction in FOL.



- $\Rightarrow$  Re-representation is undecidable (undecidability of FOL).
- $\Rightarrow$  Focus on mechanism for analogical matching.

Problem 1. F Anti-Unification **Input**: Two terms *f*, *g*, and a natural  $k \in \mathbb{N}$ **Problem**: Is there an anti-unifier h, containing at least k variables, using only renamings and fixations?

Problem 2. FP Anti-Unification

**Input**: Two terms *f*, *g*, and naturals *I*, *m*, *p*  $\in \mathbb{N}$ .

Problem: Is there an anti-unifier h, containing at least / 0-ary variables and at least *m* higher arity variables, and two substitutions  $\sigma, \tau$  using only renamings,

fixations, and at most p permutations such that  $h \xrightarrow{\sigma} f$  and  $h \xrightarrow{\tau} q$ ?

Problem 3, FPA Anti-Unification

**Input**: Two terms f, g and naturals  $I, m, p, a \in \mathbb{N}$ .

**Problem**: Is there an anti-unifier *h*, containing at least *l* 0-ary variables, at least *m* higher arity variables, and two substitutions  $\sigma$ ,  $\tau$  using renamings, fixations, at most *p* permutations, and **at most** *a* **argument insertions** such that  $h \stackrel{\sigma}{\rightarrow} f$ and  $h \xrightarrow{\tau} q$ ?

### Complexity of HDTP (3)

...a fair share of formal magic involving a Canadian and some "Subgraph Isomorphism to Clique" reductions later...

#### Complexity of HDTP (Higher-Order Anti-Unification)

- **F** Anti-Unification is solvable in polynomial time.
- Let *m* denote the minimum number of higher arity variables and let *p* be the maximum number of permutations applied. Then **FP** Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {*m*,*p*}.
- Let *r* be the maximum arity and *s* be the maximum number of subterms of the input terms. Then **FP Anti-Unification is in** FPT w.r.t. parameter set {*s*,*r*,*p*}.
- FPA Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m,p,a}.

(For proofs: R. Robere and T. R. Besold. *Complex Analogies: Remarks on the Complexity of HDTP*. In Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

...a fair share of formal magic involving a Canadian and some "Subgraph Isomorphism to Clique" reductions later...

#### Complexity of HDTP (Higher-Order Anti-Unification)

- **I** F Anti-Unification is solvable in polynomial time.
- Let *m* denote the minimum number of higher arity variables and let *p* be the maximum number of permutations applied. Then FP Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {*m*,*p*}.
- Let *r* be the maximum arity and *s* be the maximum number of subterms of the input terms. Then **FP Anti-Unification is in** FPT w.r.t. parameter set {*s*, *r*, *p*}.
- FPA Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m,p,a}.

(For proofs: R. Robere and T. R. Besold. *Complex Analogies: Remarks on the Complexity of HDTP*. In Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)



### **Concept Blending**

### Concept blending: A + B = ?(1)





## Concept blending: A + B = ? (2)



### Concept blending: A + B = ? (3)





### Concept blending: A + B = ? (4)





### **Concept Blending**

- Given two domain theories *I*<sub>1</sub> and *I*<sub>2</sub>, representing two conceptualisations...
- ...look for a generalisation G...
- ...construct the blend space *B* in such a way as to preserve the correlations between *I*<sub>1</sub> and *I*<sub>2</sub> established by *G*.


#### Foundations of Theory Blending (2)

#### Example: Houseboat vs. boathouse

- Concept blends of HOUSE and BOAT into BOATHOUSE and HOUSEBOAT.
  - $I_1 = \{HOUSE \sqsubseteq \forall LIVES IN.RESIDENT\}$
  - $I_2 = \{BOAT \sqsubseteq \forall RIDES ON.PASSENGER\}$
- HOUSEBOAT: Aligning parts of the conceptual spaces...
  - RESIDENT  $\leftrightarrow$  PASSENGER
  - $LIVES IN \leftrightarrow RIDES ON$
  - HOUSE  $\leftrightarrow$  BOAT
- BOATHOUSE: Aligning parts of the conceptual spaces...
  - $\bullet \ \textit{RESIDENT} \leftrightarrow \textit{BOAT}$

#### The Concept Invention Theory (COINVENT) Project (1)

- To develop a novel, computationally feasible, formal model of conceptual blending based on Fauconnier and Turner's theory.
- To gain a deeper understanding of conceptual blending and its role in computational creativity.
- To design a generic, creative computational system capable of serendipitous invention and manipulation of novel abstract concepts.
- To validate our model and its computational realisation in two representative working domains: **mathematics and music**.



#### The Concept Invention Theory (COINVENT) Project (2)



#### Amalgamation 101 (1)



#### Amalgam

A description  $A \in \mathcal{L}$  is an amalgam of two inputs  $I_1$  and  $I_2$  (with anti-unification  $G = I_1 \sqcap I_2$ ) if there exist two generalisations  $\overline{I}_1$  and  $\overline{I}_2$  such that (1)  $G \sqsubseteq \overline{I}_1 \sqsubseteq I_1$ , (2)  $G \sqsubseteq \overline{I}_2 \sqsubseteq I_2$ , and (3)  $A = \overline{I}_1 \sqcup \overline{I}_2$ 

#### Amalgamation 101 (2)



#### Asymmetric Amalgam

An asymmetric amalgam  $A \in \mathcal{L}$  of two inputs S (source) and T (target) satisfies that  $A = S' \sqcup T$  for some generalisation of the source  $S' \sqsubseteq S$ .

#### COINVENT's Blending Schema



- 1.) Compute shared generalisation *G* from *S* and *T* with  $\phi_S(G) = S_c$ .
- 2.) Re-use  $\phi_S$  in generalisation of *S* into *S'*.
- 3.) Combine S' in asymmetric amalgam with T into proto-blend  $T' = S' \sqcup T$ .

4.) By application of  $\phi_T$ , complete T' into blended output theory  $T_B$ . ( $\subseteq$ : element-wise subset relationship between sets of axioms.  $\subseteq$ : subsumption between theories in direction of respective arrows.)

#### ...and the Implementation?

- Use HDTP for computation of generalisation(s) and substitution chains/higher-order anti-unifications.
- Currently: Restrict HDTP to using only renamings and fixations.

 $\Rightarrow$  Possibility to use "classical" semantic consequence  $\models$  as ordering relationship.

(Also preserved by later unifications and addition of axioms.)

- Use HDTP's heuristics for selecting least general generalisation *G* (among several options).
- Currently: Naive consistency/inconsistency check with final blend (both internally and against world knowledge).
   ⇒ Clash resolution by re-start with reduced set of input axioms.

#### ...and the Implementation?

- Use HDTP for computation of generalisation(s) and substitution chains/higher-order anti-unifications.
- Currently: Restrict HDTP to using only renamings and fixations.

 $\Rightarrow$  Possibility to use "classical" semantic consequence  $\models$  as ordering relationship.

(Also preserved by later unifications and addition of axioms.)

- Use HDTP's heuristics for selecting least general generalisation *G* (among several options).
- Currently: Naive consistency/inconsistency check with final blend (both internally and against world knowledge).
   ⇒ Clash resolution by re-start with reduced set of input axioms.

#### Example: Brillo, the Foldable Toothbrush



Stereotypical characterization for a pocketknife:

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)

### Stereotypical characterization for a toothbrush:

has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

### Computing a shared generalization:

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) Applied substitutions:

has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

**Applied substitutions:** 

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

Applied substitutions: pocketknife, toothbrush => E

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)

#### has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

Applied substitutions: pocketknife, toothbrush => E

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)

#### has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

Applied substitutions: pocketknife, toothbrush => E

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)

#### has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_part(E, P)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_part(E, P)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_part(E, P)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_part(E, P)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

## Shared generalization:

has\_part(E, P)

has\_functionality(E, F)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P cut, brush => F

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

# Computing the generalized source theory:

has\_part(E, handle)

has\_part(E, P)

has\_functionality(E, F)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P cut, brush => F

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

# Computing the generalized source theory:

has\_part(E, handle)

has\_part(E, P)

has\_functionality(E, F)

Applied substitutions: <u>pocketknife</u>, toothbrush <u>=> E</u> blade, brush\_head => P cut, brush => F

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold) has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_part(E, P)

has\_functionality(E, P)

has\_part(E, hinge)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P cut, brush => F

has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_functionality(toothbrush, brush)

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)

has\_part(E, P)

has\_functionality(E, P)

has\_part(E, hinge)

Applied substitutions: pocketknife, toothbrush => E blade, brush\_head => P cut, brush => F

has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_functionality(toothbrush, brush)

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)

has\_part(E, P)

has\_functionality(E, P)

has\_part(E, hinge)

Applied substitutions: pocketknife, toothbrush => E
blade, brush\_head => P
cut, brush => F

has\_part(toothbrush, handle)

has\_part(toothbrush, brush\_head)

has\_functionality(toothbrush, brush)

has\_part(pocketknife, handle)

has\_part(pocketknife, blade)

has\_part(pocketknife, hinge)

has\_functionality(pocketknife, cut)

has\_functionality(pocketknife, fold)






































# Conclusion

Tarek R. Besold Computational Models of Analogy and Concept Blending

If you are interested in non-classical reasoning, tractability, approximability and similar topics in A(G)I and/or cognitive science, you are happily invited to...

- ...talk to me after the presentation.
- ...get in touch by e-mail:

# TarekRichard.Besold@unibz.it.

...occasionally have a look at our publications.<sup>2</sup>

V. C. Müller (ed.), Fundamental Issues of Artificial Intelligence (Synthese Library, vol. 376). Springer, 2016.

Besold, T. R., and Plaza, E. *Generalize and Blend: Concept Blending Based on Generalization, Analogy, and Amalgams.* In H. Toivonen, S. Colton, M. Cook, and D. Ventura, Proceedings of the Sixth International Conference on Computational Creativity (ICCC) 2015. Brigham Young University Press, 2015.

<sup>&</sup>lt;sup>2</sup>For instance:

Besold, T. R., and Robere, R.. When Thinking Never Comes to a Halt: Using Formal Methods in Making Sure Your AI Gets the Job Done Good Enough. In



# Postludium

Tarek R. Besold Computational Models of Analogy and Concept Blending

## Frequent criticism:

- Demanding for cognitive systems and models to work within certain complexity limits overly restrictive.
- Maybe: Human mental activities actually performed as exponential-time procedures, but never noticed as exponent for some reason always very small.
- Reply:
  - Possibility currently cannot be excluded.
  - Instead: No claim that cognitive processes without exception within FPT, APX, FPA, or what-have-you...
  - ...but staying within boundaries makes cognitive systems and models plausible candidates for application in resource-bounded general-purpose cognitive agents.

## Frequent criticism:

- Demanding for cognitive systems and models to work within certain complexity limits overly restrictive.
- Maybe: Human mental activities actually performed as exponential-time procedures, but never noticed as exponent for some reason always very small.
- Reply:
  - Possibility currently cannot be excluded.
  - Instead: No claim that cognitive processes without exception within FPT, APX, FPA, or what-have-you...
  - ...but staying within boundaries makes cognitive systems and models plausible candidates for application in resource-bounded general-purpose cognitive agents.

#### As an aside:

Once upon a time, there was HDTP-old based on reducing certain higher-order to first-order anti-unifications by introduction of subterms built from "admissible sequences" over equational theories (i.e., conjunctions of FOL formulae with equality over a term algebra).

#### Complexity of HDTP-old

- HDTP-old is NP-complete.
- HDTP-old is W[2]-hard with respect to a minimal bound on the cardinality of the set of all subterms of the term against which admissibility is checked.

(For proofs: R. Robere and T. R. Besold. *Complex Analogies: Remarks on the Complexity of HDTP*. In Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

#### As an aside:

Once upon a time, there was HDTP-old based on reducing certain higher-order to first-order anti-unifications by introduction of subterms built from "admissible sequences" over equational theories (i.e., conjunctions of FOL formulae with equality over a term algebra).

#### Complexity of HDTP-old

- HDTP-old is NP-complete.
- HDTP-old is W[2]-hard with respect to a minimal bound on the cardinality of the set of all subterms of the term against which admissibility is checked.

(For proofs: R. Robere and T. R. Besold. *Complex Analogies: Remarks on the Complexity of HDTP*. In Proceedings of the 25th Australasian Joint Conference on Artificial Intelligence (AI 2012), LNCS 7691. Springer, 2012.)

#### Approximability Classes

In the following, let ...

- ...PTAS denote the class of all NP optimisation problems that admit a polynomial-time approximation scheme.
- ...APX be the class of NP optimisation problems allowing for constant-factor approximation algorithms.
- ...APX-poly be the class of NP optimisation problems allowing for polynomial-factor approximation algorithms.

Please note that PTAS  $\subseteq$  APX  $\subseteq$  APX-*poly* (with each inclusion being proper in case P  $\neq$  NP).

# Approximability Analysis of HDTP (1)

• FP Anti-Unification W[1]-hard to compute for parameter set *m*, *p* (*m* number of higher-arity variables, *p* number of permutations).

 $\Rightarrow$  No polynomial-time algorithm computing "sufficiently complex" generalisations (i.e., with lower bound on number of higher-arity variables), upper bounding number of permutations (W[1]-hardness for single permutation).

• What if one considers generalisations which merely approximate the "optimal" generalisation in some sense?

## Complexity of a Substitution

The complexity of a basic substitution  $\sigma$  is defined as

 $C(s) = \begin{cases} 0, & \text{if } \sigma \text{ is a renaming.} \\ 1, & \text{if } \sigma \text{ is a fixation or permutation.} \\ k+1, & \text{if } \sigma \text{ is a } k\text{-ary argument insertion.} \end{cases}$ The complexity of a restricted substitution  $\sigma = \sigma_1 \circ \cdots \circ \sigma_n$  (i.e., the composition of any sequence of unit substitutions) is the sum of the composed substitutions:  $C(\sigma) = \sum_{i=1}^n C(\sigma_i).$  Consider problem of finding generalisation which **maximises** complexity over all generalisations:

- Complex generalisation would contain "most information" present over all of the generalisations chosen (i.e., maximising the "information load").
- Using approximability results on MAXCLIQUE:

## Approximation Complexity of HDTP Analogy-Making

**FP anti-unification is not in** APX (i.e., does not allow for constant-factor approximation algorithms) and is hard for APX-poly.

(For proofs: T. R. Besold and R. Robere. *When Almost Is Not Even Close: Remarks on the Approximability of HDTP*. In Artificial General Intelligence - 6th International Conference (AGI 2013), LNCS. Springer, 2013.)