
Seda Ogrenci-Memik
ECE & CS

Northwestern

1

Computer Engineering Research
@Northwestern

•  Housed within the Electrical and Computer
Engineering Department, co-owned by the
Computer Science Department
– Faculty have dual appointments
– PhD programs in both departments have

Computer Engineering tracks
•  Design Automation / CAD and VLSI,

Computer Architecture, Internet of Things,
Embedded and Cyberphysical Systems, Big
Data & AI

2

Computer Engineering Research
@Northwestern

•  Hardware assisted ML
•  Neuromorphic computing
•  Hardware security
•  Photonic circuits in computer architectures
•  Emphatic computing
•  Batteryless computing
•  Secure and verified software for automotive

application
•  Adaptive architecture – compiler in the loop

3

My Research Interests
•  Electronic Design Automation (EDA)
•  Circuits and Systems
•  High Performance Computing (HPC)

Systems

4

Research Activities
•  Design Automation

–  High-Level Synthesis
•  Converting applications described

with programming languages to
hardware

•  Circuits and Systems
–  Thermal and Power

Management of ICs
•  Temperature Sensors, 3D

Integration, Power and
Performance Modeling using
Machine Learning

5

Research Activities
•  High Performance

Computing Systems
– FPGA-based

accelerators for HPC
applications

– Thermal and Power
Management in large
scale systems

6

HW Assisted ML
•  Design Automation for real-time AI

Cyberinfrastructure for scientists who deploy HW
systems for ML

7

Physics	 Material	
Science	

Astro-
physics	

Particle	
Tracking	

Image	Reconstruction	
Real-time	control	of	
microscopy	

Accelerator	
Control	

Semantic	
compression	

Data	filtering,	compression,	reconstruction,	
feedback	controllers	

Handling Big Data
•  Source of the computational challenge

– Particle acceleration experiment in high-energy
physics
•  Billions of “event” happen every ~25ns creating Pb/

sec data rates
•  “Interesting” events (~3% of all) need to be

recognized and filtered for further processing
–  Sky survey data collected from observatories

stream in at rates ~Gb/s (or more)
•  Limited energy (generators in South Pole) to move

data to datacenters

8

Handling Big Data
•  Source of the computational challenge

– CPU-GPU systems perform streaming inference on
images captured by an electron microscope within
~300ms latency

– Desired goal is to perform inference on images
captured at 10s of millions of frames per second
under 50ms latency

– ~50ms latency could allow real-time control of the
EM during material synthesis

•  Think of making defects for a quantum material,
deposition of nano layers, etc.

9

Projects – Complete/Underway

•  READS – Accelerator Real-time Edge AI
for Distributed Systems

•  Design of a reconfigurable autoencoder
algorithm for detector front-end ASICs

10

Projects – Preliminary

•  CryoAI - 22nm testchip
•  Adaptive ML accelerators

11

READS – Accelerator Real-time
Edge AI for Distributed Systems

•  Goal: integrate ML into accelerator operations
•  Challenges: Beam Loss

–  High Energy Physics (HEP) experiment use proton
beams

–  Particles get lost through interactions with the beam
vacuum pipe

–  Intensity/pace of beam extraction affects radiation in
the environment

–  Human operators tune parameters of hundreds to
thousands of devices inside the accelerator complex

–  If beam loss (“leak”) is at extreme levels, system
needs to shut-down – loss of access to facility

12

READS – Accelerator Real-time
Edge AI for Distributed Systems

13

•  Muon Complex
•  Two rings are on top of

each other: Main
Injector Ring and the
Recycler Ring

•  Protons are accelerated
within the Booster

•  Injected into the
Recycler Ring and Main
Injector Ring

Kyle	Hazelwood,	Mattson	Thieme	|	READS:	Beam	Loss	De-blending	for	Main	Injector	and	Recycler	

Project Overview

11/9/21	 14

•  Main	Injector	and	Recycler	share	an	enclosure	
•  Both	machines	can	and	do	often	have	high	intensity	beam	in	them	
simultaneous	

•  Both	machines	can	generate	significant	beam	loss	
•  “Lost”	portion	of	the	beam	escapes	as	dangerous	radiation	and	if	that	is	
too	much,	it	forces	the	facility	to	shot	down.	

•  The	machine	origin	of	a	beam	loss	is	often	hard	to	distinguish	

Main	Injector	tunnel	
Recycler	(top)	Main	Injector	(bottom)	

Kyle	Hazelwood,	Mattson	Thieme	|	READS:	Beam	Loss	De-blending	for	Main	Injector	and	Recycler	

Project Overview

11/9/21	 15

• Using	time,	location	and	state	of	the	machine,	machine	experts	
can	sometimes	attribute	loss	to	a	particular	machine	

– This	suggests	a	Machine	Learning	(ML)	model	may	be	
trainable	to	automatically	attribute	loss	and	replicate	or	
improve	upon	the	expert's	ability	

• Often	losses	from	one	machine	end	up	tripping	the	machine	
permit	of	the	other	resulting	in	unnecessary	beam	downtime	

	
The	projects	aims	to	deploy	a	machine	learning	model	on	a	FPGA	
that	when	fed	streamed	beam	loss	readings	from	around	the	Main	
Injector	complex,	will	infer	in	real-time	the	machine	loss	origin	

Kyle	Hazelwood,	Mattson	Thieme	|	READS:	Beam	Loss	De-blending	for	Main	Injector	and	Recycler	

ML Model Architecture: Overview

11/9/21	 16

Objective:	Assign	BLM-wise	probabilities	for	the	loss	originating	in	MI/RR	

READS – Accelerator Real-time
Edge AI for Distributed Systems

•  System Design Goal: PID Controller gains
need to be optimized in real-time ~ms

•  The ML Processor receives inputs from
sensors
– beam position monitor (BPM)
– beam loss monitor (BLM)

17

READS – Accelerator Real-time
Edge AI for Distributed Systems

•  System Architecture:

18

READS – Accelerator Real-time
Edge AI for Distributed Systems

•  System Architecture:
– Edge device continuously optimizes the online

control agent
– Data streamed to a cloud system for large

scale training

19

READS – Accelerator Real-time
Edge AI for Distributed Systems

•  Algorithm-
Architecture Co-
design
–  A common

toolchain to
program FPGA
devices as well
as create
interfaces

20

READS – Accelerator Real-time
Edge AI for Distributed Systems

•  Algorithm-Architecture Co-design
– Create modular neural network components

•  Regroup, recombine
– Establish physics/science-aware methodology

•  Hardware-aware quantization and pruning techniques
•  Homogeneous versus heterogeneous quantization
•  Quantization-aware training
•  Control resource re-use trade-offs of high level

synthesis tools
•  Differentiate between the relative hardware cost of

storage, DSP, interconnect

21

READS – Accelerator Real-time
Edge AI for Distributed Systems

22

Target - Arria10 HPS + FPGA (on-chip ram)

IP	generated	for	the	ML-module	by	hls4ml	tool	flow	

hls_input	(on-
chip	ram)	

hls_output	
(on-chip	
ram)	

irq	
(PIO)	

hls4ml_ct
rl	

(VHDL)	

mm_mast
er	

mm_mast
er	

HPS	

h2f_axi_master	 h2f_axi_master	 h2f_axi_master	h2f_irq1	

start,	done	
signal	etc	

+  Testbench	
of	hls4ml	

READS Project

Hardware Optimization for the ML-IP

–  The current model implemented as IP consists of
•  Dense Layer – ReLU – Dense Layer - Sigmoid

–  259 inputs and 518 outputs
•  16 bits ac_fixed values

–  Representation still under investigation
–  HLS (hls4ml) tool was optimized to explore resource

sharing for computation such as dense layer
–  HLS tool was not equipped with features to optimize other

layers such as Sigmoid
•  When we are dealing with a model with 100s of outputs situation

changes
–  Logic Synthesis stage (Quartus)

•  Large scale models introduce clock timing violations
that were not observed in smaller models

24

Project #2: Reconfigurable autoencoder for
detector front-end ASICs

•  Edge computing for particle collider experiments
•  Data collected from a large number of photon

detectors are compressed to representative
information of the “shape”
–  Charge measurements from the detectors are

compressed to a radiation pattern
–  6 million detector channels sending data at 40MHz
–  The data from the original space is compressed to

lower dimensionality by the edge ASIC, transmitted,
then decoded on the receiving end

25

Reconfigurable autoencoder for detector
front-end ASICs

•  System constraints
– Low power

•  Will be part of a larger system with power budget

– Radiation tolerant
– Reprogrammable weights through accessible

registers to enable updates and customization

26

Reconfigurable autoencoder for detector
front-end ASICs

•  Autoencoder:
neural network
with single
convolutional
layer followed
by a dense
layer

27

Reconfigurable autoencoder for detector
front-end ASICs

28

Glossary	of	Deep	Learning:	Autoencoder,	by	Jaron	Collins		

Reconfigurable autoencoder for detector
front-end ASICs

•  Dataflow
–  22-bit signals from 48 detector cells

29

Reconfigurable autoencoder for detector
front-end ASICs

•  Network properties
–  CNN layer: eight 3x3x3 kernel matrices resulting in 128

outputs
–  ReLu activation after CNN and after final dense layer
–  6-bits weights
–  Dense layer produces 16 10-bit outputs
–  Chip can be reconfigured to produce as low as total of

64 bits in output

30

Reconfigurable autoencoder for detector
front-end ASICs

31

Reconfigurable autoencoder for detector
front-end ASICs

32

Reconfigurable autoencoder for detector
front-end ASICs

•  Chip specs
–  6b weight and bias parameters

•  Total: 2,286 = 13,724 bits
–  Parameters loaded via I2C interface
–  Decoder component implemented off-detector on

FPGA
–  Chip latency – 25ns
–  7nJ per inference
–  280mW
–  Can withstand 200MRad ionizing radiation
–  2.5mm2

33

Reconfigurable autoencoder for detector
front-end ASICs

34

•  Protection against Single Event Upsets

Reconfigurable autoencoder for detector
front-end ASICs

35

•  Protection against Single Event Upsets

Partial	TMR:	suppresses	error	without	
correction	

Full	TMR:	both	suppresses	and	corrects	
error	

Reconfigurable autoencoder for detector
front-end ASICs

36

•  Partial TMR can also be implemented in
a few different hybrid modes
– Applied to only registers
–  Include clock lines
– Apply to a sub-block

Reconfigurable autoencoder for detector
front-end ASICs

37

•  Exploring trade-offs in TMR
–  Area versus TMR coverage
–  Leakage Power versus TMR coverage
–  Fanout (routability) versus TMR coverage
–  Timing (impact on slack)

Projects – Preliminary

•  Adaptive ML accelerators

38

Adaptive ML accelerators

•  Why adaptation?
– Varying energy constraints
–  Input variability
– Translation to new platform/device
– Transfer Learning

39

Adaptive ML accelerators

•  Some directions
–  Emulate loss through drop out/connect

•  Techniques in ML literature equate these phenomena to
forcing weights to zero

•  Loss in (because of) hardware may look very different

–  Continuous diagnostics
•  Evaluation of network certainty
•  Concept of surprise

–  Detection of temporal dominance of classes
•  Reconfigure optimized version for dominant class

40

Adaptive ML accelerators

•  Some directions
–  Critical path based hardware-aware resource

management
•  Class-based CP: using contributions of a neuron to a

specific class
–  Mean Absolute Activation, first order Taylor Approximations

•  Generalized CP: relative participation of output channels at
the routing of the output from a layer

–  Distribute resources (e.g., total number of bits
allocated for weights) according to a criticality metric

41

Adaptive ML accelerators

•  Some directions
–  Characterize circuits (e.g., SRAM) to create models

•  Associate voltage drop/power outage with cell decay
•  Create characteristic bit masks for weights

– Neural network architecture search
•  Lessons learned from design space exploration in

high-level synthesis
•  Search for a new cell from basic building blocks

–  Input: a set of convolutions and pooling of varying size
–  Think of it as your module library

42

Adaptive ML accelerators

•  Some directions
–  Partition system into two part

•  Part1: Fixed ML architecture
•  Part2: ML architecture with capability to train within the edge

device

– Training consumes resources and energy on
the limited edge device
•  Need to explore the trade-off carefully
•  Co-design ML architecture and training hardware

43

Future Directions
•  Fluid implementations

– Quickly re-targetable from software to hardware
•  Scientific domains offer a vast space of

computational challenges
– They need interpretable systems
–  Laws of nature apparent in the system’s output

•  Multiple paths need to converge
– Photonic circuits – not much automated
– FPGA
– Neuromorphic – not much automated
– Quantum

44

Collaborators
•  Northwestern University

–  Han Liu (CS), Kristian Hahn (Physics)
–  Manuel Blanco Valentin, Rui Shi, Deniz Ulusel,

Bincong Ye, Yingyi Luo (now at Google), Sid Joshi
(now at Intel)

•  Fermi National Laboratories
–  Nhan Tran, Farah Fahim, Christian Herwig, Kiyomi

Seiya, et al.
•  Columbia University

–  Giuseppe di Guglielmo
•  Lehigh University

–  Josh Agar

45

THANK YOU!

46

