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Computer Engineering Research 
@Northwestern  

•  Housed within the Electrical and Computer 
Engineering Department, co-owned by the 
Computer Science Department 
– Faculty have dual appointments 
– PhD programs in both departments have 

Computer Engineering tracks 
•  Design Automation / CAD and VLSI, 

Computer Architecture, Internet of Things, 
Embedded and Cyberphysical Systems, Big 
Data & AI 
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Computer Engineering Research 
@Northwestern  

•  Hardware assisted ML 
•  Neuromorphic computing 
•  Hardware security 
•  Photonic circuits in computer architectures 
•  Emphatic computing 
•  Batteryless computing 
•  Secure and verified software for automotive 

application 
•  Adaptive architecture – compiler in the loop 
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My Research Interests 
•  Electronic Design Automation (EDA) 
•  Circuits and Systems 
•  High Performance Computing (HPC) 

Systems 
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Research Activities 
•  Design Automation 

–  High-Level Synthesis 
•  Converting applications described 

with programming languages to 
hardware 

•  Circuits and Systems 
–  Thermal and Power 

Management of ICs 
•  Temperature Sensors, 3D 

Integration, Power and 
Performance Modeling using 
Machine Learning 
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Research Activities 
•  High Performance 

Computing Systems 
– FPGA-based 

accelerators for HPC 
applications 

– Thermal and Power 
Management in large 
scale systems 
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HW Assisted ML 
•  Design Automation for real-time AI 

Cyberinfrastructure for scientists who deploy HW 
systems for ML 
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Physics	 Material	
Science	

Astro-
physics	

Particle	
Tracking	

Image	Reconstruction	
Real-time	control	of	
microscopy	

Accelerator	
Control	

Semantic	
compression	

Data	filtering,	compression,	reconstruction,	
feedback	controllers	



Handling Big Data 
•  Source of the computational challenge 

– Particle acceleration experiment in high-energy 
physics 
•  Billions of “event” happen every ~25ns creating Pb/

sec data rates 
•  “Interesting” events (~3% of all) need to be 

recognized and filtered for further processing 
–   Sky survey data collected from observatories 

stream in at rates ~Gb/s (or more) 
•  Limited energy (generators in South Pole) to move 

data to datacenters 
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Handling Big Data 
•  Source of the computational challenge 

– CPU-GPU systems perform streaming inference on 
images captured by an electron microscope within 
~300ms latency 

– Desired goal is to perform inference on images 
captured at 10s of millions of frames per second 
under 50ms latency 

– ~50ms latency could allow real-time control of the 
EM during material synthesis 

•  Think of making defects for a quantum material, 
deposition of nano layers, etc. 
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Projects – Complete/Underway 

•  READS – Accelerator Real-time Edge AI 
for Distributed Systems 

•   Design of a reconfigurable autoencoder 
algorithm for detector front-end ASICs 
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Projects – Preliminary 

•  CryoAI - 22nm testchip 
•  Adaptive ML accelerators 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  Goal: integrate ML into accelerator operations 
•  Challenges: Beam Loss 

–  High Energy Physics (HEP) experiment use proton 
beams 

–  Particles get lost through interactions with the beam 
vacuum pipe 

–  Intensity/pace of beam extraction affects radiation in 
the environment  

–  Human operators tune parameters of hundreds to 
thousands of devices inside the accelerator complex 

–  If beam loss (“leak”) is at extreme levels, system 
needs to shut-down – loss of access to facility 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 
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•  Muon Complex 
•  Two rings are on top of 

each other: Main 
Injector Ring and the 
Recycler Ring 

•  Protons are accelerated 
within the Booster 

•  Injected into the 
Recycler Ring and Main 
Injector Ring 



Kyle	Hazelwood,	Mattson	Thieme	|	READS:	Beam	Loss	De-blending	for	Main	Injector	and	Recycler	

Project Overview 
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•  Main	Injector	and	Recycler	share	an	enclosure	
•  Both	machines	can	and	do	often	have	high	intensity	beam	in	them	
simultaneous	

•  Both	machines	can	generate	significant	beam	loss	
•  “Lost”	portion	of	the	beam	escapes	as	dangerous	radiation	and	if	that	is	
too	much,	it	forces	the	facility	to	shot	down.	

•  The	machine	origin	of	a	beam	loss	is	often	hard	to	distinguish	

Main	Injector	tunnel	
Recycler	(top)	Main	Injector	(bottom)	
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• Using	time,	location	and	state	of	the	machine,	machine	experts	
can	sometimes	attribute	loss	to	a	particular	machine	

– This	suggests	a	Machine	Learning	(ML)	model	may	be	
trainable	to	automatically	attribute	loss	and	replicate	or	
improve	upon	the	expert's	ability	

• Often	losses	from	one	machine	end	up	tripping	the	machine	
permit	of	the	other	resulting	in	unnecessary	beam	downtime	

	
The	projects	aims	to	deploy	a	machine	learning	model	on	a	FPGA	
that	when	fed	streamed	beam	loss	readings	from	around	the	Main	
Injector	complex,	will	infer	in	real-time	the	machine	loss	origin	



Kyle	Hazelwood,	Mattson	Thieme	|	READS:	Beam	Loss	De-blending	for	Main	Injector	and	Recycler	

ML Model Architecture: Overview 
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Objective:	Assign	BLM-wise	probabilities	for	the	loss	originating	in	MI/RR	



READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  System Design Goal: PID Controller gains 
need to be optimized in real-time ~ms 

•  The ML Processor receives inputs from 
sensors 
– beam position monitor (BPM) 
– beam loss monitor (BLM) 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  System Architecture: 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  System Architecture: 
– Edge device continuously optimizes the online 

control agent 
– Data streamed to a cloud system for large 

scale training 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  Algorithm-
Architecture Co-
design 
–  A common 

toolchain to 
program FPGA 
devices as well 
as create 
interfaces 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  Algorithm-Architecture Co-design 
– Create modular neural network components 

•  Regroup, recombine 
– Establish physics/science-aware methodology  

•  Hardware-aware quantization and pruning techniques 
•  Homogeneous versus heterogeneous quantization 
•  Quantization-aware training 
•  Control resource re-use trade-offs of high level 

synthesis tools 
•  Differentiate between the relative hardware cost of 

storage, DSP, interconnect  
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 
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Target - Arria10 HPS + FPGA (on-chip ram) 

IP	generated	for	the	ML-module	by	hls4ml	tool	flow	

hls_input	(on-
chip	ram)	

hls_output	
(on-chip	
ram)	

irq	
(PIO)	

hls4ml_ct
rl	

(VHDL)	

mm_mast
er	

mm_mast
er	

HPS	

h2f_axi_master	 h2f_axi_master	 h2f_axi_master	h2f_irq1	

start,	done	
signal	etc	

+  Testbench	
of	hls4ml	

READS Project 



Hardware Optimization for the ML-IP 

–  The current model implemented as IP consists of 
•  Dense Layer – ReLU – Dense Layer - Sigmoid  

–  259 inputs and 518 outputs 
•  16 bits ac_fixed values 

–  Representation still under investigation 
–  HLS (hls4ml) tool was optimized to explore resource 

sharing for computation such as dense layer 
–  HLS tool was not equipped with features to optimize other 

layers such as Sigmoid 
•  When we are dealing with a model with 100s of outputs situation 

changes 
–  Logic Synthesis stage (Quartus)  

•  Large scale models introduce clock timing violations 
that were not observed in smaller models  
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Project #2: Reconfigurable autoencoder for 
detector front-end ASICs 

•  Edge computing for particle collider experiments 
•  Data collected from a large number of photon 

detectors are compressed to representative 
information of the “shape” 
–  Charge measurements from the detectors are 

compressed to a radiation pattern 
–  6 million detector channels sending data at 40MHz 
–  The data from the original space is compressed to 

lower dimensionality by the edge ASIC, transmitted, 
then decoded on the receiving end 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  System constraints 
– Low power 

•  Will be part of a larger system with power budget 

– Radiation tolerant 
– Reprogrammable weights through accessible 

registers to enable updates and customization 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  Autoencoder: 
neural network 
with single 
convolutional 
layer followed 
by a dense 
layer 
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Reconfigurable autoencoder for detector 
front-end ASICs 
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Glossary	of	Deep	Learning:	Autoencoder,	by	Jaron	Collins		



Reconfigurable autoencoder for detector 
front-end ASICs 

•  Dataflow 
–  22-bit signals from 48 detector cells 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  Network properties 
–  CNN layer: eight 3x3x3 kernel matrices resulting in 128 

outputs 
–  ReLu activation after CNN and after final dense layer 
–  6-bits weights 
–  Dense layer produces 16 10-bit outputs 
–  Chip can be reconfigured to produce as low as total of 

64 bits in output  
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Reconfigurable autoencoder for detector 
front-end ASICs 
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Reconfigurable autoencoder for detector 
front-end ASICs 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  Chip specs 
–  6b weight and bias parameters 

•  Total: 2,286 = 13,724 bits 
–  Parameters loaded via I2C interface 
–  Decoder component implemented off-detector on 

FPGA  
–  Chip latency – 25ns 
–  7nJ per inference 
–  280mW 
–  Can withstand 200MRad ionizing radiation 
–  2.5mm2  
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Reconfigurable autoencoder for detector 
front-end ASICs 
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•  Protection against Single Event Upsets 



Reconfigurable autoencoder for detector 
front-end ASICs 
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•  Protection against Single Event Upsets 

Partial	TMR:	suppresses	error	without	
correction	

Full	TMR:	both	suppresses	and	corrects	
error	



Reconfigurable autoencoder for detector 
front-end ASICs 
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•  Partial TMR can also be implemented in 
a few different hybrid modes 
– Applied to only registers 
–  Include clock lines 
– Apply to a sub-block 



Reconfigurable autoencoder for detector 
front-end ASICs 
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•  Exploring trade-offs in TMR 
–  Area versus TMR coverage 
–  Leakage Power versus TMR coverage 
–  Fanout (routability) versus TMR coverage 
–  Timing (impact on slack) 



Projects – Preliminary 

•  Adaptive ML accelerators 
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Adaptive ML accelerators 

•  Why adaptation? 
– Varying energy constraints 
–  Input variability 
– Translation to new platform/device 
– Transfer Learning 
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Adaptive ML accelerators 

•  Some directions 
–  Emulate loss through drop out/connect 

•  Techniques in ML literature equate these phenomena to 
forcing weights to zero 

•  Loss in (because of) hardware may look very different 

–  Continuous diagnostics 
•  Evaluation of network certainty 
•  Concept of surprise 

–  Detection of temporal dominance of classes 
•  Reconfigure optimized version for dominant class  
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Adaptive ML accelerators 

•  Some directions 
–  Critical path based hardware-aware resource 

management 
•  Class-based CP: using contributions of a neuron to a 

specific class 
–  Mean Absolute Activation, first order Taylor Approximations  

•  Generalized CP: relative participation of output channels at 
the routing of the output from a layer  

–  Distribute resources (e.g., total number of bits 
allocated for weights) according to a criticality metric 
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Adaptive ML accelerators 

•  Some directions 
–  Characterize circuits (e.g., SRAM) to create models 

•  Associate voltage drop/power outage with cell decay 
•  Create characteristic bit masks for weights 

– Neural network architecture search 
•  Lessons learned from design space exploration in 

high-level synthesis 
•  Search for a new cell from basic building blocks 

–  Input: a set of convolutions and pooling of varying size 
–  Think of it as your module library  

42 



Adaptive ML accelerators 

•  Some directions 
–  Partition system into two part 

•  Part1: Fixed ML architecture 
•  Part2: ML architecture with capability to train within the edge 

device 

– Training consumes resources and energy on 
the limited edge device 
•  Need to explore the trade-off carefully 
•  Co-design ML architecture and training hardware 

43 



Future Directions 
•  Fluid implementations 

– Quickly re-targetable from software to hardware 
•  Scientific domains offer a vast space of 

computational challenges 
– They need interpretable systems  
–  Laws of nature apparent in the system’s output 

•  Multiple paths need to converge 
– Photonic circuits – not much automated 
– FPGA 
– Neuromorphic – not much automated 
– Quantum  

44 



Collaborators 
•  Northwestern University 

–  Han Liu (CS), Kristian Hahn (Physics) 
–  Manuel Blanco Valentin, Rui Shi, Deniz Ulusel, 

Bincong Ye, Yingyi Luo (now at Google), Sid Joshi 
(now at Intel) 

•  Fermi National Laboratories 
–  Nhan Tran, Farah Fahim, Christian Herwig, Kiyomi 

Seiya, et al. 
•  Columbia University 

–  Giuseppe di Guglielmo 
•  Lehigh University 

–  Josh Agar 
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THANK YOU! 
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