Seda Ogrenci-Memik
ECE & CS

“I'm a software engineer, so I can confirm
it works by magic.”
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Computer Engineering Research
@Northwestern

* Housed within the Electrical and Computer
Engineering Department, co-owned by the
Computer Science Department

— Faculty have dual appointments

— PhD programs in both departments have
Computer Engineering tracks

* Design Automation / CAD and VLSI,
Computer Architecture, Internet of Things,
Embedded and Cyberphysical Systems, Big
Data & Al
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Computer Engineering Research
@Northwestern

« Hardware assisted ML

* Neuromorphic computing

« Hardware security

* Photonic circuits in computer architectures
 Emphatic computing

» Batteryless computing

« Secure and verified software for automotive
application

* Adaptive architecture — compiler in the loop
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My Research Interests

* Electronic Design Automation (EDA)
» Circuits and Systems

* High Performance Computing (HPC)
Systems
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Research Activities

Microsoft Azure: It's getting hot in

o Design Automation here, so shut down all your cores
_ H igh-LeveI SyntheSiS US customers wake up to sleepy cloud service
By Richard Speed 4 Sep 2018 at 13:19 53() SHAREY

« Converting applications described
with programming languages to
hardware

 Circuits and Systems
— Thermal and Power
Management of ICs

« Temperature Sensors, 3D L i
Integratlon POWer and Updated Microsoft has warned that a "subset of customers in South

. . Central US" may experience Azure problems today after cooling issues
Pe rfO rmance M Od el N g usin g sent the servers scurrying for the shutdown button.
MaCh | ne Lea n | ng The warning was first raised by Microsoft at 09:29 UTC as pretty much

everything in the South Central US region went offline thanks to a
temperature spike that caused servers to automatically shut down to
avoid damage.
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Research Activities

Microsoft Azure: It's getting hot in

° H |g h Pe rfo rm a n Ce here, so shut down all your cores

US customers wake up to sleepy cloud service

Computing Systems a2 suney

— FPGA-based
accelerators for HPC
applications

— Thermal and Power ’a
M a n a g e m e nt i n I a rg e Updated Microsoft has warned that a "subset of customers in South

Central US" may experience Azure problems today after cooling issues

sent the servers scurrying for the shutdown button.

Sca I e SySte m S The warning was first raised by Microsoft at 09:29 UTC as pretty much

everything in the South Central US region went offline thanks to a
temperature spike that caused servers to automatically shut down to
avoid damage.

Northwestern 6



HVV Assisted ML

« Design Automation for real-time Al
Cyberinfrastructure for scientists who deploy HW
systems for ML

: Material Astro-
Physics . .
Science physics

Particle Accelerator Image Reconstruction Semantic
Tracking  Control Real-time control of compression
microscopy

Data filtering, compression, reconstruction,
feedback controllers
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Handling Big Data

» Source of the computational challenge

— Particle acceleration experiment in high-energy
physics
* Billions of “event” happen every ~25ns creating Pb/
sec data rates

* “Interesting” events (~3% of all) need to be
recognized and filtered for further processing

— Sky survey data collected from observatories
stream in at rates ~Gb/s (or more)

 Limited energy (generators in South Pole) to move
data to datacenters
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Handling Big Data

» Source of the computational challenge

— CPU-GPU systems perform streaming inference on
Images captured by an electron microscope within
~300ms latency

— Desired goal is to perform inference on images
captured at 10s of millions of frames per second
under 50ms latency

— ~50ms latency could allow real-time control of the
EM during material synthesis

 Think of making defects for a quantum material,
deposition of nano layers, etc.
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Projects — Complete/Underway

« READS — Accelerator Real-time Edge Al
for Distributed Systems

» Design of a reconfigurable autoencoder
algorithm for detector front-end ASICs
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Projects — Preliminary

* CryoAl - 22nm testchip
* Adaptive ML accelerators
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READS — Accelerator Real-time
Edge Al for Distributed Systems

« Goal: integrate ML into accelerator operations

« Challenges: Beam Loss

— High Energy Physics (HEP) experiment use proton
beams

— Particles get lost through interactions with the beam
vacuum pipe

— Intensity/pace of beam extraction affects radiation in
the environment

— Human operators tune parameters of hundreds to
thousands of devices inside the accelerator complex

— If beam loss (“leak?) is at extreme levels, system
needs to shut-down — loss of access to facility
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READS — Accelerator Real-time
Edge Al for Distributed Systems

 Muon Complex

« Two rings are on top of
each other: Main

njector Ring and the

Recycler Ring

| 2c* Protons are accelerated

ewery “Z within the Booster

* Injected into the
Recycler Ring and Main
Injector Ring
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Project Overview

* Main Injector and Recycler share an enclosure

* Both machines can and do often have high intensity beam in them
simultaneous

e Both machines can generate significant beam loss

* “Lost” portion of the beam escapes as dangerous radiation and if that is
too much, it forces the facility to shot down.

* The machine origin of a beam loss is often hard to distinguish

Main Injector tunnel
Recycler (top) Main Injector (bottom)
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Project Overview

* Using time, location and state of the machine, machine experts
can sometimes attribute loss to a particular machine
—This suggests a Machine Learning (ML) model may be
trainable to automatically attribute loss and replicate or
improve upon the expert's ability

» Often losses from one machine end up tripping the machine
permit of the other resulting in unnecessary beam downtime

The projects aims to deploy a machine learning model on a FPGA
that when fed streamed beam loss readings from around the Main
Injector complex, will infer in real-time the machine loss origin
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ML Model Architecture: Overview

Objective: Assign BLM-wise probabilities for the loss originating in MI/RR

Input Label Machine State
Events (1111 [1,4]
MDAT [II10 (1, 9]

[0.0, 0.0] — Neither machine running
or

[0.0, 1.0] — RRrunning Known Origin

BLMo or
[1, 259 [1.0, 0.0] —— MIlrunning
% [NaN, NaN] —— MIandRR running Unknown Origin
BLMasg
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READS — Accelerator Real-time
Edge Al for Distributed Systems

» System Design Goal: PID Controller gains
need to be optimized in real-time ~ms

 The ML Processor receives inputs from
Sensors
— beam position monitor (BPM)
— beam loss monitor (BLM)
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READS — Accelerator Real-time
Edge Al for Distributed Systems

« System Architecture:

State, Reward:
based on ideal spill intensity at time t

Environment
Spill monitor
Beam loss
Beam transverse positio

> Monitoring and
Data Archive

T

Northwestern

Compute Reward
for Action, then Train

Offline Workflow

v

Train digital twin

PID Loop parameters




READS — Accelerator Real-time
Edge Al for Distributed Systems

« System Architecture:

— Edge device continuously optimizes the online
control agent

— Data streamed to a cloud system for large
scale training

Northwestern 19



READS — Accelerator Real-time
Edge Al for Distributed Systems

« Algorithm-
Architecture Co- ‘ Prooremming Peracioms
design
— A common
toolchain to

program FPGA
devices as well
as create
interfaces
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READS — Accelerator Real-time
Edge Al for Distributed Systems

* Algorithm-Architecture Co-design

— Create modular neural network components
* Regroup, recombine

— Establish physics/science-aware methodology
« Hardware-aware quantization and pruning techniques
 Homogeneous versus heterogeneous quantization
« Quantization-aware training

« Control resource re-use trade-offs of high level
synthesis tools

« Differentiate between the relative hardware cost of
storage, DSP, interconnect

Northwestern
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READS — Accelerator Real-time
Edge Al for Distributed Systems

Keras
TensorFlow

PyTorch

compressed
model —

kflow
PYTORCH

€ ONNX

Northwestern

hils 4 ml

HLS
conversion

Co-processing kernel

tune conflgurohon
se/p pel

Custom firmware
design




READS Project

Target - Arria10 HPS + FPGA (on-chip ram)

HPS

h2f_axiimaster h2f_irgl h2f_axilmaster h2f_axi{master

hisdml_ct . his_output
" hls_input (on- [
chip ram)

ram)
N 7

4
@tart, done \

signal etc

IP generated for the ML-module by hls4ml tool flow

\ )
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Hardware Optimization for the ML-IP

— The current model implemented as IP consists of
* Dense Layer — ReLU — Dense Layer - Sigmoid

— 239 inputs and 518 outputs

* 16 bits ac_fixed values
— Representation still under investigation

— HLS (his4ml) tool was optimized to explore resource
sharing for computation such as dense layer

— HLS tool was not equipped with features to optimize other
layers such as Sigmoid

 When we are dealing with a model with 100s of outputs situation
changes

— Logic Synthesis stage (Quartus)

* Large scale models introduce clock timing violations
that were not observed in smaller models
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Project #2: Reconfigurable autoencoder for
detector front-end ASICs

« Edge computing for particle collider experiments

« Data collected from a large number of photon
detectors are compressed to representative
information of the “shape”

— Charge measurements from the detectors are
compressed to a radiation pattern

— 6 million detector channels sending data at 40MHz

— The data from the original space is compressed to
lower dimensionality by the edge ASIC, transmitted,
then decoded on the receiving end
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Reconfigurable autoencoder for detector
front-end ASICs

* System constraints

— Low power
« Will be part of a larger system with power budget

— Radiation tolerant

— Reprogrammable weights through accessible
registers to enable updates and customization
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Reconfigurable autoencoder for detector
front-end ASICs

e Autoencoder: Input Hidden Output
Layer Neurons Layer
neural network
with single
convolutional
layer followed

NS 7
ST N4
RO

\/\/ Y\/7\/

by a dense R HIR
layer B "o\‘\‘

GNEN
O CNE

XeR )?:Z wWx; + bi
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Reconfigurable autoencoder for detector
front-end ASICs

I'
:> Encoder %;% Decoder s (_{

Original Compressed Reconstruction

Glossary of Deep Learning: Autoencoder, by Jaron Collins
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Reconfigurable autoencoder for detector

 Dataflow

front-end ASICs

— 22-bit signals from 48 detector cells

48 inputs
(22b fixed point)

Detector Layer
y R

3 regions 3 regions

Northwestern

i,C

13728b weights
( Encoder reconfigurable weights

~

_________________

2 N,
I \

Flatten Dense
S

16

conv2D

Converter

22b to 8b
Normalized
inputs
Total Energy . 8:n_filters

________________

[E—

(48b)
to
(144b)

Al ASIC in radiation environment

(9b)

N

FPGA
(off-
detector)

Decoder
(reverse
Encoder
function)
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Reconfigurable autoencoder for detector
front-end ASICs

* Network properties

— CNN layer: eight 3x3x3 kernel matrices resulting in 128
outputs

— Relu activation after CNN and after final dense layer
— b-bits weights
— Dense layer produces 16 10-bit outputs

— Chip can be reconfigured to produce as low as total of
64 bits in output
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Reconfigurable autoencoder for detector

Northwestern

Model Training
TF/Keras/QKeras =@
Model
hls 4 ml System Level Design
[ Static Analysis ]
7 for Design Rules

A\ 4
I C-
C++ Design | simulation l

[High-LeveI Synthesis] [ C-RTL cosimulation ] [
HLS-Aware
Coverage

Register Transfer Level[ Code Coverage ]
(Block, Toggle, fsm)

Code Coverage ]

A

. RTL
HIELES L simulation

simulation
Post signoff
Place and simulation
Route Post signoff simulation
with parasitics
Design IP block
Layout vs. Design Rule Check / Electrical

Schematic Rule Check/ Design for
Manufacture




Reconfigurable autoencoder for detector

DESIGN (D) AND VERIFICATION (V) METRICS

STEP TIME ITERATIONS SI1ZE
MOflel ger.leratlon (D) 0.98s 50.100 1089 Ct LoC
C simulation (V) 0.14s
High-level thesis (D 00:30:17

igh-level synthesis (D) 23 39716 Verilog LoC
RTL simulation (V) 00:00:46
Logic synthesis (D) 06:04:19 900.810 Gates
Gate-level simulation (V) 00:25:19
Place and route (D) 71:03:53 | 6
Post-layout simulation (V) | 00:51:41 1,026,387 Gates
Post-layout parasitic sim- 1.
ulation (V) 01:51:30
Layout (D) a0 1 12,768,389 Transistor
LVS & DRC (V) 01:00:00

Vi
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Reconfigurable autoencoder for detector
front-end ASICs

* Chip specs
— 6b weight and bias parameters
 Total: 2,286 = 13,724 bits

— Parameters loaded via 12C interface

— Decoder component implemented off-detector on
FPGA

— Chip latency — 25ns

— 7nd per inference

— 280mW

— Can withstand 200MRad ionizing radiation
— 2.5mm?

Northwestern
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Reconfigurable autoencoder for detector
front-end ASICs

* Protection against Single Event Upsets

Effect of the circuit

Single Event
9 7 Effect of the SEE
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Reconfigurable autoencoder for detector
front-end ASICs

* Protection against Single Event Upsets

/7
Co—P

out

in L— majorit
comb 1P Q= vcjatery
logic
clk
T
Ll 5oL

Partial TMR: suppresses error without
correction

Northwestern

/ /[?
| ____ /Tt 7 outa
inA comb [t—] majority D Q
logic | voter
clka ﬁ
il
outsB
inB Lcomb 1| 7] majority D Q
logic [ |[L| voter
clkB ﬁ
il
— tc
inc L comb | ‘||| majority D Q ou
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clkc
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Full TMR: both suppresses and corrects
error
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Reconfigurable autoencoder for detector
front-end ASICs

« Partial TMR can also be implemented in
a few different hybrid modes

— Applied to only registers
— Include clock lines
— Apply to a sub-block

Northwestern
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Reconfigurable autoencoder for detector

front-end ASICs

« Exploring trade-offs in TMR

Area versus TMR coverage

Leakage Power versus TMR coverage
Fanout (routability) versus TMR coverage
Timing (impact on slack)
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TMR Scheme (step)

Fig. 6: Variation in Worst Negative Slack (WNS) for different triplication schemes applied to the
counter_state_machine_converter design.
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Projects — Preliminary

« Adaptive ML accelerators

Northwestern
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Adaptive ML accelerators

* Why adaptation?
— Varying energy constraints
— Input variability
— Translation to new platform/device
— Transfer Learning

Northwestern
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Adaptive ML accelerators

« Some directions

— Emulate loss through drop out/connect

* Techniques in ML literature equate these phenomena to
forcing weights to zero

» Loss in (because of) hardware may look very different

— Continuous diagnostics
« Evaluation of network certainty
» Concept of surprise

— Detection of temporal dominance of classes
» Reconfigure optimized version for dominant class

Northwestern
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Adaptive ML accelerators

« Some directions

— Critical path based hardware-aware resource
management

» Class-based CP: using contributions of a neuron to a
specific class

— Mean Absolute Activation, first order Taylor Approximations

» Generalized CP: relative participation of output channels at
the routing of the output from a layer

— Distribute resources (e.g., total number of bits
allocated for weights) according to a criticality metric

Northwestern

41



Adaptive ML accelerators

« Some directions

— Characterize circuits (e.g., SRAM) to create models

» Associate voltage drop/power outage with cell decay
» Create characteristic bit masks for weights

— Neural network architecture search

« Lessons learned from design space exploration in
high-level synthesis

« Search for a new cell from basic building blocks

— Input: a set of convolutions and pooling of varying size
— Think of it as your module library

Northwestern
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Adaptive ML accelerators

« Some directions

— Partition system into two part

e Part1: Fixed ML architecture

» Part2: ML architecture with capability to train within the edge
device

— Training consumes resources and energy on
the limited edge device
* Need to explore the trade-off carefully
« Co-design ML architecture and training hardware
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Future Directions

* Fluid implementations
— Quickly re-targetable from software to hardware

« Scientific domains offer a vast space of
computational challenges
— They need interpretable systems
— Laws of nature apparent in the system’s output

* Multiple paths need to converge
— Photonic circuits — not much automated

- FPGA
— Neuromorphic — not much automated

— Quantum

Northwestern
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Collaborators

Northwestern University
— Han Liu (CS), Kristian Hahn (Physics)

— Manuel Blanco Valentin, Rui Shi, Deniz Ulusel,
Bincong Ye, Yingyi Luo (now at Google), Sid Joshi
(now at Intel)

Fermi National Laboratories

— Nhan Tran, Farah Fahim, Christian Herwig, Kiyomi
Seiya, et al.

Columbia University

— Giuseppe di Guglielmo
Lehigh University

— Josh Agar

Northwestern
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Northwestern

THANK YOU!
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