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Computer Engineering Research 
@Northwestern  

•  Housed within the Electrical and Computer 
Engineering Department, co-owned by the 
Computer Science Department 
– Faculty have dual appointments 
– PhD programs in both departments have 

Computer Engineering tracks 
•  Design Automation and VLSI, Computer 

Architecture, Internet of Things, 
Embedded Systems, Big Data & AI 
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Computer Engineering Research 
@Northwestern  

•  Hardware assisted ML 
•  Neuromorphic computing 
•  Hardware security 
•  Photonic circuits in computer architectures 
•  Emphatic computing 
•  Batteryless computing 
•  Secure and verified software for automotive 

application 
•  Adaptive architecture – compiler in the loop 
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Research Interests 
•  Electronic Design Automation (EDA) 
•  Circuits and Systems 
•  High Performance Computing (HPC) 

Systems 
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Research Activities 
•  Design Automation 

–  High-Level Synthesis 
•  Converting applications described with programming languages to hardware 

•  Circuits and Systems 
–  Thermal and Power Management of ICs 

•  Temperature Sensors, 3D Integration, Power and Performance 
Modeling using Machine Learning 

5 



Research Activities 
•  High Performance 

Computing Systems 
– FPGA-based 

accelerators for HPC 
applications 

– Thermal and Power 
Management in large 
scale systems 
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HW Assisted ML 
•  Design Automation for real-time AI  
•  Cyberinfrastructure for scientists who deploy HW 

systems for ML 
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Handling Big Data 
•  Source of the computational challenge 

– Particle acceleration experiment in high-energy 
physics 
•  Billions of “event” happen every ~25ns creating Pb/

sec data rates 
•  “Interesting” events (~3% of all) need to be 

recognized and filtered for further processing 
–   Sky survey data collected from observatories 

stream in at rates ~Gb/s (or more) 
•  Limited energy (generators in South Pole) to move 

data to datacenters 
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Handling Big Data 
•  Source of the computational challenge 

– CPU-GPU systems perform streaming inference on 
images captured by an electron microscope within 
~300ms latency 

– Desired goal is to perform inference on images 
captured at 10s of millions of frames per second 
under 50ms latency 

– ~50ms latency could allow real-time control of the 
EM during material synthesis 

•  Think of making defects for a quantum material, 
deposition of nano layers, etc. 
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Key areas of Overlap: System 
Constraints 
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Key areas of Overlap: System 
Constraints 
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Key areas of Overlap: System 
Constraints 
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Projects – Complete/Underway 

•  READS – Accelerator Real-time Edge AI 
for Distributed Systems 

•   Design of a reconfigurable autoencoder 
algorithm for detector front-end ASICs 
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Projects – Preliminary 

•  CryoAI - 22nm testchip 
•  Adaptive ML accelerators 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  Goal: integrate ML into accelerator operations 
•  Challenges: Beam Loss 

–  High Energy Physics (HEP) experiment use proton 
beams 

–  Particles get lost through interactions with the beam 
vacuum pipe 

–  Intensity/pace of beam extraction affects radiation in 
the environment  

–  Human operators tune parameters of hundreds to 
thousands of devices inside the accelerator complex 

–  If beam loss (“leak”) is at extreme levels, system 
needs to shut-down – loss of access to facility 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 
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•  Muon Complex 
•  Protons are accelerators within 

the Booster 
•  Injected into the Recycler Ring 

–  The proton beam is “prepared” 
•  Proton beam is released into the 

Delivery Ring 
–  Multiple experiments stationed 

around it 
•  Proton beam is  extracted to 

match the exact intensity 
required for an experiments - 
spill 



READS – Accelerator Real-time 
Edge AI for Distributed Systems 
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•  Two main mechanisms for beam control/correction 
–  Tune Quads – quadrupole magnets 
–  RFKO Kickers - heaters 



READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  System Design Goal: PID Controller gains 
need to be optimized in real-time ~ms 

•  The ML Processor receives inputs from 
sensors 
– beam position monitor (BPM) 
– beam loss monitor (BLM) 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  System Architecture: 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  System Architecture: 
– Edge device continuously optimizes the online 

control agent 
– Data streamed to a cloud system for large 

scale training 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  Algorithm-
Architecture Co-
design 
–  A common 

toolchain to 
program FPGA 
devices as well 
as create 
interfaces 
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 

•  Algorithm-Architecture Co-design 
– Create modular neural network components 

•  Regroup, recombine 
– Establish physics/science-aware methodology  

•  Hardware-aware quantization and pruning techniques 
•  Homogeneous versus heterogeneous quantization 
•  Quantization-aware training 
•  Control resource re-use trade-offs of high level 

synthesis tools 
•  Differentiate between the relative hardware cost of 

storage, DSP, interconnect  
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READS – Accelerator Real-time 
Edge AI for Distributed Systems 
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hls4ml 

•  Aids Algorithm-Architecture Co-design 
– Translation to neural network building blocks 

•   Basic layers (conv, fully connected) 
•  Activation functions 

– Ongoing investigations to build a 
comprehensive library 
•  Expansion towards graph neural networks, custom 

scientific kernels 
•  Custom neurons (long-short-term memory, multi-

head attention, etc. ) 
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hls4ml 

•  Aids Algorithm-Architecture Co-design 
– Ongoing work to automate compatibility with 

several backend flows 
•  Xilinx Vivado, Intel Quartus HLS, Mentor Graphics 

Catapult 
•  Integration of model development (training, model 

compression) and hardware synthesis 
•  Automation of insertion for optimization directives 

and pragmas    
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hls4ml 
•  Democratize design tools 
•  Allow domain scientists to build edge 

computing systems with minimal specialized 
hardware design training 

•  Open source 
•  HLS raises level of abstraction 

– Faster simulation, faster evaluation of design 
alternatives 

– Allow domain expert trade-off parallelism, 
resource re-use, latency constraint, power budget 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  Edge computing for particle collider experiments 
•  Data collected from a large number of photon 

detectors are compressed to representative 
information of the “shape” 
–  Charge measurements from the detectors are 

compressed to a radiation pattern 
–  6 million detector channels sending data at 40MHz 
–  The data from the original space is compressed to 

lower dimensionality by the edge ASIC, transmitted, 
then decoded on the receiving end 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  System constraints 
– Low power 

•  Will be part of a larger system with power budget 

– Radiation tolerant 
– Reprogrammable weights through accessible 

registers to enable updates and customization 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  Autoencoder: 
neural network 
with single 
convolutional 
layer followed 
by a dense 
layer 
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Reconfigurable autoencoder for detector 
front-end ASICs 

30 

Glossary	of	Deep	Learning:	Autoencoder,	by	Jaron	Collins		



Reconfigurable autoencoder for detector 
front-end ASICs 

•  Dataflow 
–  22-bit signals from 48 detector cells 
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Reconfigurable autoencoder for detector 
front-end ASICs 

•  Network properties 
–  CNN layer: eight 3x3x3 kernel matrices resulting in 128 

outputs 
–  ReLu activation after CNN and after final dense layer 
–  6-bits weights 
–  Dense layer produces 16 10-bit outputs 
–  Chip can be reconfigured to produce as low as total of 

64 bits in output  
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Reconfigurable autoencoder for detector 
front-end ASICs 
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Reconfigurable autoencoder for detector 
front-end ASICs 
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Reconfigurable autoencoder for detector 
front-end ASICs 

35 

•  Protection against Single Event Upsets 



Reconfigurable autoencoder for detector 
front-end ASICs 
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•  Protection against Single Event Upsets 



Reconfigurable autoencoder for detector 
front-end ASICs 

•  Chip specs 
–  6b weight and bias parameters 

•  Total: 2,286 = 13,724 bits 
–  Parameters loaded via I2C interface 
–  Decoder component implemented off-detector on 

FPGA  
–  Chip latency – 25ns 
–  7nJ per inference 
–  280mW 
–  Can withstand 200MRad ionizing radiation 
–  2.5mm2  
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Projects – Preliminary 

•  CryoAI - 22nm testchip 
•  Adaptive ML accelerators 
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CryoAI - 22nm testchip 
•  A system-on-chip (SoC)  
•  Goal: test performance and leakage power trends of the 

technology at cryogenic temperatures 
•  An opportunity to showcase the hls4ml flow  

–  Contribute a neural network accelerator module as part of the 
SoC 

–  Perform anomaly detection 

•  Design considerations 
–   Programmability -- Cannot reload all of the parameters 
–  Optimal sequencing of quantization & pruning 
–  Assignment of sub-regions of the network to voltage domains 
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Adaptive ML accelerators 

•  Why adaptation? 
– Energy constraints 
–  Input variability 
– Translation to new platform/device 
– Transfer Learning 
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Adaptive ML accelerators 

•  Some directions 
–  Emulate loss through drop out/connect 

•  Techniques in ML literature equate these phenomena to 
forcing weights to zero 

•  Loss in (because of) hardware may look very different 

–  Continuous diagnostics 
•  Evaluation of network certainty 
•  Concept of surprise 

–  Detection of temporal dominance of classes 
•  Reconfigure optimized version for dominant class  
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Adaptive ML accelerators 

•  Some directions 
–  Critical path based hardware-aware resource 

management 
•  Class-based CP: using contributions of a neuron to a 

specific class 
–  Mean Absolute Activation, first order Taylor Approximations  

•  Generalized CP: relative participation of output channels at 
the routing of the output from a layer  

–  Distribute resources (e.g., total number of bits 
allocated for weights) according to a criticality metric 
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Adaptive ML accelerators 

•  Some directions 
–  Characterize circuits (e.g., SRAM) to create models 

•  Associate voltage drop/power outage with cell decay 
•  Create characteristic bit masks for weights 

– Neural network architecture search 
•  Lessons learned from design space exploration in 

high-level synthesis 
•  Search for a new cell from basic building blocks 

–  Input: a set of convolutions and pooling of varying size 
–  Think of it as your module library  
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Future Directions 
•  Fluid implementations 

– Quickly re-targetable from software to hardware 
•  Scientific domains offer a vast space of 

computational challenges 
– They need interpretable systems  
–  Laws of nature apparent in the system’s output 

•  Multiple paths need to converge 
– Photonic circuits – not much automated 
– FPGA 
– Neuromorphic – not much automated 
– Quantum - ?? 
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Collaborators 
•  Northwestern University 

–  Han Liu (CS), Kristian Hahn (Physics) 
–  Manuel Blanco Valentin, Rui Shi, Bincong Ye, Yingyi 

Luo (now at Google), Sid Joshi (now at Intel) 
•  Fermi National Laboratories 

–  Nhan Tran, Farah Fahim, Christian Herwig, Kiyomi 
Seiya, et al. 

•  Columbia University 
–  Giuseppe di Guglielmo 

•  Lehigh University 
–  Josh Agar 
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THANK YOU! 
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