
Term Rewriting applied to Cryptographic
Protocol Analysis: the Maude-NPA tool

Santiago Escobar

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

sescobar@dsic.upv.es

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 1 / 68

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

2 Introduction to Rewriting Logic

3 How Maude-NPA works

4 Examples of execution

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 2 / 68

Formal Analysis of Protocols

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

2 Introduction to Rewriting Logic

3 How Maude-NPA works

4 Examples of execution

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 3 / 68

Formal Analysis of Protocols

Formal Analysis of Protocols

• Crypto protocol analysis in the standard model is well understood.

• Need to support algebraic properties of some protocols
• Diffie-Hellman exponentiation,
• exclusive-or,
• homomorphism (one-sided distributivity)

• These operations well understood in the bounded sessions case
• Decidability results for exclusive-or, exponentiation, homomorphisms,

etc.

• What is lacking:

(1) more general understanding, especially for unbounded sessions,
(2) tool support.

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 4 / 68

Formal Analysis of Protocols

Our approach

• Use rewriting logic as general theoretical framework
• protocols and intruder rules specified as transition rewrite rules
• crypto properties as oriented equational properties and axioms

• Use narrowing modulo equational theories in two ways
• as a symbolic reachability analysis method
• as an extensible equational unification method

• Combine with state reduction techniques (grammars, optimizations,
etc.)

• Implement in Maude programming environment
• Rewriting logic gives us theoretical framework and understanding
• Maude implementation gives us tool support

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 5 / 68

Formal Analysis of Protocols

Our Plans

1 Start by formalizing NPA techniques in rewriting logic (2005)

2 Extend model to different types of equational theories (2006)
• Explicit Encryption and Decryption, AC-unification, Diffie-Hellman

Exponentiation, Exclusive-or

3 Include state reduction techniques (2008, 2013)

4 Document and distribute the tool (v1.0 2007)

5 Sequential protocol composition: specification and analysis (2010)

6 Integrate dedicated unification algorithms (2011)
• Homomorphism, Exclusive-or

7 Document and distribute the tool (v2.0 2012)

8 Extensive protocol analysis (2012-now)
• Homomorphism, Exclusive-or, Abelian groups

9 Advanced properties:
• Indistinguishability (2013-now), Conditional protocols (2016)

10 Standard APIs: IBM CCA, PKCS#11, Yubikey (2014-now)

11 Document and distribute the tool (v3.0 2016)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 6 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 7 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

Building Blocks for Security Protocols
An example: Needham-Schroeder Public Key protocol

Building Blocks for Security Protocols

Cryptographic Procedures: encryption of messages.

{{M}KB}K−1
B

= M

(Pseudo-)Random Number Generators: to generate “nonces”, e.g.
for “challenge/response”.

Protocols: recipe for exchanging messages.
Steps like: A sends B her name together with the message M.
The pair {A, M} is encrypted with B’s public key .

A → B : {A, M}KB

Luca Viganò (University of Verona) OFMC Fosad 2009 10 / 116

An example: Needham-Schroeder Public Key protocol

An authentication protocol
The Needham-Schroeder Public Key protocol (NSPK):

1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

Goal: mutual authentication. Translation:

“This is Alice and I have chosen a nonce NA.”

“Here is your nonce NA. Since I could read it,
I must be Bob. I also have a challenge NB for you.”

“You sent me NB. Since only Alice can read this
and I sent it back, you must be Alice.”

NSPK proposed in 1970s and used for decades, until...
Protocols are typically small and convincing... and often wrong!
Luca Viganò (University of Verona) OFMC Fosad 2009 11 / 116

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 8 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

An authentication protocol

An example: Needham-Schroeder Public Key protocol

Building Blocks for Security Protocols

Cryptographic Procedures: encryption of messages.

{{M}KB}K−1
B

= M

(Pseudo-)Random Number Generators: to generate “nonces”, e.g.
for “challenge/response”.

Protocols: recipe for exchanging messages.
Steps like: A sends B her name together with the message M.
The pair {A, M} is encrypted with B’s public key .

A → B : {A, M}KB

Luca Viganò (University of Verona) OFMC Fosad 2009 10 / 116

An example: Needham-Schroeder Public Key protocol

An authentication protocol
The Needham-Schroeder Public Key protocol (NSPK):

1. A → B : {NA, A}KB

2. B → A : {NA, NB}KA

3. A → B : {NB}KB

Goal: mutual authentication. Translation:

“This is Alice and I have chosen a nonce NA.”

“Here is your nonce NA. Since I could read it,
I must be Bob. I also have a challenge NB for you.”

“You sent me NB. Since only Alice can read this
and I sent it back, you must be Alice.”

NSPK proposed in 1970s and used for decades, until...
Protocols are typically small and convincing... and often wrong!
Luca Viganò (University of Verona) OFMC Fosad 2009 11 / 116

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 9 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

How to at least tie against a Chess Grandmaster

An example: Needham-Schroeder Public Key protocol

How to at least tie against a Chess Grandmaster

Luca Viganò (University of Verona) OFMC Fosad 2009 12 / 116

An example: Needham-Schroeder Public Key protocol

Man-in-the-middle attack on the NSPK
X → Y : {N1, X}KY

Y → X : {N1, N2}KX

X → Y : {N2}KY

X → Y : {N1, X}KYX → Y : {N1, X}KY

Y → X : {N1, N2}KXY → X : {N1, N2}KX

X → Y : {N2}KYX → Y : {N2}KY

NSPK #1 NSPK #2

{ }NA,A KC { }NA,A KB

{ }NA,NB KA
{ }NA,NB AK

{ }NB CK { }NB KB

B believes he is speaking with A!

Luca Viganò (University of Verona) OFMC Fosad 2009 13 / 116

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 10 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

Man-in-the-middle attack on NSPK

An example: Needham-Schroeder Public Key protocol

How to at least tie against a Chess Grandmaster

Luca Viganò (University of Verona) OFMC Fosad 2009 12 / 116

An example: Needham-Schroeder Public Key protocol

Man-in-the-middle attack on the NSPK
X → Y : {N1, X}KY

Y → X : {N1, N2}KX

X → Y : {N2}KY

X → Y : {N1, X}KYX → Y : {N1, X}KY

Y → X : {N1, N2}KXY → X : {N1, N2}KX

X → Y : {N2}KYX → Y : {N2}KY

NSPK #1 NSPK #2

{ }NA,A KC { }NA,A KB

{ }NA,NB KA
{ }NA,NB AK

{ }NB CK { }NB KB

B believes he is speaking with A!

Luca Viganò (University of Verona) OFMC Fosad 2009 13 / 116
Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 11 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

What went wrong?

• Problem in step 2:

B 7→ A : {NA, NB}KA

• Agent B should also give his name: NA, NB, BKA .

• The improved version is called NSL protocol by Gavin Lowe.

• Is the protocol now correct?

An example: Needham-Schroeder Public Key protocol

What went wrong?

Problem in step 2:
B → A : {NA, NB}KA

Agent B should also give his name: {NA, NB, B}KA .

The improved version is called NSL protocol.
Is the protocol now correct?

Luca Viganò (University of Verona) OFMC Fosad 2009 14 / 116

An example: Needham-Schroeder Public Key protocol

The NSL Protocol
X → Y : {N1, X}KY

Y → X : {N1, N2, Y}KX

X → Y : {N2}KY

X → Y : {N1, X}KYX → Y : {N1, X}KY

Y → X : {N1, N2, Y}KXY → X : {N1, N2, Y}KX

NSL #1 NSL #2

{ }NA,A KC { }NA,A KB

KANA,NB,B{ }KANA,NB,B{ }

A aborts the protocol execution!
(or ignores the message)

Luca Viganò (University of Verona) OFMC Fosad 2009 15 / 116

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 12 / 68

Formal Analysis of Protocols The Needham-Schroeder Public Key

Needham-Schroeder-Lowe Public Key Exchange Protocol

An example: Needham-Schroeder Public Key protocol

What went wrong?

Problem in step 2:
B → A : {NA, NB}KA

Agent B should also give his name: {NA, NB, B}KA .

The improved version is called NSL protocol.
Is the protocol now correct?

Luca Viganò (University of Verona) OFMC Fosad 2009 14 / 116

An example: Needham-Schroeder Public Key protocol

The NSL Protocol
X → Y : {N1, X}KY

Y → X : {N1, N2, Y}KX

X → Y : {N2}KY

X → Y : {N1, X}KYX → Y : {N1, X}KY

Y → X : {N1, N2, Y}KXY → X : {N1, N2, Y}KX

NSL #1 NSL #2

{ }NA,A KC { }NA,A KB

KANA,NB,B{ }KANA,NB,B{ }

A aborts the protocol execution!
(or ignores the message)

Luca Viganò (University of Verona) OFMC Fosad 2009 15 / 116Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 13 / 68

Formal Analysis of Protocols Motivating Protocols

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 14 / 68

Formal Analysis of Protocols Motivating Protocols

Example: Needham-Schroeder Public Key Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB)
A −→ B : pk(B, NB)

Attack sequence
1. (pk(i, a; n(a, r1)))+

2. (pk(i, n(b, r2)))−

3. (a; n(a, r1))+

4. (a; n(a, r1))−

5. (pk(b, a; n(a, r1)))+

6. (pk(b, a; n(a, r1)))−

7. (pk(a, n(a, r1); n(b, r2)))+

8. (pk(a, n(a, r1); n(b, r2)))−

9. (pk(i, n(b, r2)))+

10. (pk(i, n(b, r2)))−

11. (n(b, r2))+

12. (n(b, r2))−

13. (pk(b, n(b, r2)))+

14. (pk(b, n(b, r2)))−

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 15 / 68

Formal Analysis of Protocols Motivating Protocols

Example: Needham-Schroeder-Lowe Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB; B)
A −→ B : pk(B, NB)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 16 / 68

Formal Analysis of Protocols Motivating Protocols

Example: NSL-xor Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB ⊕ B)
A −→ B : pk(B, NB)

Attack sequence
1. (pk(i, a; n(a, r1)))+

2. (pk(i, n(b, r2)))−

3. (a; n(a, r1))+

4. (a; n(a, r1))−

5. (pk(b, a; n(a, r1)))+

6. generatedByIntruder(b⊕ i)

7. (pk(b, a; n(a, r1)))−

8. (pk(a, n(a, r1); n(b, r2); b))+

9. (pk(a, n(a, r1); n(b, r2); b))−

10. (pk(i, n(b, r2)⊕ b⊕ i))+

11. (pk(i, n(b, r2)⊕ b⊕ i))−

12. (n(b, r2)⊕ b⊕ i)+

13. (b⊕ i)−

14. (n(b, r2)⊕ b⊕ i)+

15. (n(b, r2)))+

16. (n(b, r2)))−

17. (pk(b, n(b, r2)))+

18. (pk(b, n(b, r2)))−

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 17 / 68

Formal Analysis of Protocols Motivating Protocols

Example: NSL-homomorphism Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB; B)
A −→ B : pk(B, NB)

Attack sequence
1. generatedByIntruder(pk(a, i))

2. generatedByIntruder(pk(b, a; NI))

3. (pk(b, a; NI))−

4. (pk(a, NI; n(b, r2); b))+

5. (pk(a, NI); pk(a, n(b, r2)); pk(a, b))−

6. (pk(a, n(b, r2)); pk(a, b))+

7. (pk(a, n(b, r2)); pk(a, b))−

8. (pk(a, n(b, r2)))+

9. (pk(a, i)−

10. (pk(a, n(b, r2)))−

11. (pk(i, a); pk(a, n(b, r2)))+

12. pk(a, i; n(b, r2))−

13. (pk(i, n(b, r1); n(a, r1); a))+

14. (pk(i, n(b, r2)); pk(i, n(a, r1)); pk(i, a))−

15. (pk(i, n(b, r2)))+

16. (pk(i, n(b, r2)))−

17. (n(b, r2))+

18. (n(b, r2))−

19. (pk(b, n(b, r2)))+

20. (pk(b, n(b, r2)))−

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 18 / 68

Formal Analysis of Protocols Some Examples of Algebraic Identities

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 19 / 68

Formal Analysis of Protocols Some Examples of Algebraic Identities

Explicit Encryption and Decryption

• Most formal models lack explicit decryption operator and assume
implicit decryption

• If a principal knows an encrypted message and the key, assume
principal can decrypt message under the following conditions

• Implicit assumption that principal never decrypts a message that
wasn’t encrypted with a key known by the principal

• Assumption that principals can check format of decrypted message

• What if these assumptions do not hold?

• In that case, need to model both encryption and decryption symbols
explicitly, plus their cancellation, e.g. d(K, e(K, Y)) = Y.

Example: Needham-Schroeder Public Key (NSPK)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 20 / 68

Formal Analysis of Protocols Some Examples of Algebraic Identities

Modular Exponentiation in Diffie-Hellman

• Basic DH example protocol (each nonzero residue mod P is a power
of g)

1 A→ B : gNA mod P
B computes (gNA)NB mod P

2 B→ A : gNB mod P
A and B compute (gNB)NA = (gNA)NB mod P and get a shared secret
key.

• Properties:

(gX)Y = gX∗Y = gY∗X = (gY)X

(X ∗ Y) ∗ Z = X ∗ (Y ∗ Z) X ∗ Y = Y ∗X

of modular exponentiation in order to faithfully represent this
protocol

Example: Diffie-Hellman Protocol

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 21 / 68

Formal Analysis of Protocols Some Examples of Algebraic Identities

Exclusive-Or

• Cheap and has provable security properties
• If we send X⊕ R, where R a random secret, observer learns no more

about X than before it saw message

• On the other hand, associativity-commutativity and cancellation
properties make it tricky to reason about

X⊕ Y = Y⊕X X⊕X = 0
(X⊕ Y)⊕ Z = X⊕ (Y⊕ Z) X⊕ 0 = X

Example: Needham-Schroeder-Lowe with XOR (NSL-xor)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 22 / 68

Formal Analysis of Protocols Some Examples of Algebraic Identities

Homomorphism

• The electronic codebook (ECB) encryption splits a message into
blocks and cyphers the blocks using the same key

• Identical plaintext blocks are encrypted into identical ciphertext
blocks (does not hide data patterns well). Sensitive to the property:

e(K, X; Y) = e(K, X); e(K, Y)

Example: NSL with homomorphic encryption

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 23 / 68

Introduction to Rewriting Logic

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

2 Introduction to Rewriting Logic

3 How Maude-NPA works

4 Examples of execution

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 24 / 68

Introduction to Rewriting Logic

Rewriting Logic in a Nutshell

Definition

A rewrite theory R is a triple R = (Σ, E, R), with:

• (Σ, R) a set of rewrite rules of the form t→ s
e.g. e(K, NA; X)→ e(K, X)

• (Σ, E) a set of equations of the form t = s
e.g. d(K, e(K, Y)) = Y

Intuitively, R specifies a concurrent system,
whose states are elements of the initial algebra TΣ/E specified by (Σ, E),
and whose concurrent transitions are specified by the rules R.

e(k, na; m) ∈ TΣ/E

d(k2, e(k2, e(k, na; m))) /∈ TΣ/E

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 25 / 68

Introduction to Rewriting Logic

Rewriting modulo

Definition

Given (Σ, E, R), t→R,E s if there is

• a position p ∈ Pos(t);
• a rule l→ r in R;

• a matching σ (modulo E)
such that t|p =E σ(l), and s = t[σ(r)]p.

Example:

• R = { e(K, NA; X)→ e(K, X) }
• E = { d(K, e(K, Y)) = Y }
• e(k, nA; m)→R,E e(k, m)

d(k, e(k, e(k2, nA; m))) =E e(k2, na; m)→R,E e(k2, m)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 26 / 68

Introduction to Rewriting Logic

Narrowing and Backwards Narrowing

Definition

Given (Σ, E, R), t σ,R,E s if there is

• a non-variable position p ∈ Pos(t);
• a rule l→ r ∈ R;

• a unifier σ (modulo E) such that σ(t|p) =E σ(l), and s = σ(t[r]p).

Example:

• R = { e(K, NA; X)→ e(K, X) }
• E = { d(K, e(K, Y)) = Y }
• e(k, X) {X 7→NA;X′},R,E e(k, X′)

d(k, X) {X 7→e(k,e(K,NA;X′))},R,E e(K, X′)

Backwards Narrowing: Narrowing with rewrite rules reversed

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 27 / 68

Introduction to Rewriting Logic

Narrowing Reachability Analysis

Narrowing can be used as a general deductive procedure for solving symbolic
reachability problems of the form

(∃~x) t1(~x)→ t′1(~x) ∧ . . . ∧ tn(~x)→ t′n(~x)

in a given rewrite theory.

• The terms ti and t′i denote sets of states (all the possible instances of
the term)

• Symbolyc reachability means for what subset of states denoted by ti
are the states denoted by t′i reachable?

• No finiteness assumptions about the state space.

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 28 / 68

Introduction to Rewriting Logic

Equational Unification

Definition

Given an order-sorted equational theory (Σ, Ax] E) and t ?
= t′, an

(Ax] E)-unifier is an order-sorted subst. σ s.t. σ(t) =Ax]E σ(t′).

Compared to syntactic unification:

• f (a, X) = f (Y, b) has solution X 7→ b, Y 7→ a
• f (a, X) =AC f (b, Y) has solution X 7→ b, Y 7→ a
• X + 0 =ACU X, where 0 is the identity, has solution id
• X + a + b =XOR a has solution X 7→ b, Y 7→ a

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 29 / 68

Introduction to Rewriting Logic

Equational Unification - Complete

When Ax = ∅ and E convergent TRS

Narrowing provides a complete (but semi-decidable) E-unification
procedure [Hullot80]. e.g. cancellation d(K, e(K, M))→ M.

When Ax 6= ∅ and E convergent and coherent TRS modulo
Ax
Narrowing provides a complete (but semi-decidable) E-unification
procedure [Jouannaud-Kirchner-Kirchner-83] e.g. exclusive-or
X ∗ 0→ X, X ∗X→ 0 | (X ∗ Y) ∗ Z = X ∗ (Y ∗ Z), X ∗ Y = Y ∗X

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 30 / 68

Introduction to Rewriting Logic

Equational Unification - Decidable

When Ax = ∅
Basic narrowing strategy [Hullot80] is complete for normalized
substitutions.
Cases where basic narrowing terminates have been studied
[Alpuente-Escobar-Iborra-TCS09].

When Ax 6= ∅
Folding variant-narrowing [Escobar-Meseguer-Sasse-JLAP12] is the most
promising strategy for equational unification. Fully implemented in
Maude.

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 31 / 68

Introduction to Rewriting Logic

E,Ax-variants

E,Ax-variant

Given a term t and an equational theory Ax] E, (t′, θ) is an
E,Ax-variant of t if θ(t)↓E,Ax =Ax t′ [Comon-Delaune-RTA05]

Finite and complete set of E,Ax-variants

∀σ s.t. σ(t)↓E,Ax = t′, ∃(t′′, θ) ∈ VE,Ax(t) s.t.

1 t′′ is in →E,Ax-normal form

2 t′ and t′′ (σ↓E,Ax and θ) are just renamings modulo Ax.

Finite Variant Property

Theory has FVP if there is a finite number of most general E,Ax-variants
for every term.

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 32 / 68

Introduction to Rewriting Logic

E,Ax-variants - Example

X⊕ 0 → X
X⊕X → 0

X⊕X⊕ Y → Y
(cancellation rules: E)

X⊕ (Y⊕ Z) = (X⊕ Y)⊕ Z
X⊕ Y = Y⊕X

(axioms: Ax)

• For X⊕X only E,Ax-variant is: (0, id)
• For X⊕ Y there are 7 most general E,Ax-variants

1. (X⊕ Y, id)

3. (Z, {X 7→ 0, Y 7→ Z})
5. (Z, {X 7→ Z, Y 7→ 0})

2. (0, {X 7→ U, Y 7→ U})
4. (Z, {X 7→ Z⊕U, Y 7→ U})
6. (Z, {X 7→ U, Y 7→ Z⊕U})

7. (Z1 ⊕ Z2, {X 7→ U⊕ Z1, Y 7→ U⊕ Z2})

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 33 / 68

Introduction to Rewriting Logic

Narrowing & Unification in Maude-NPA

• Cryptographic protocols are modeled as a rewrite theory
P = (Σ, ∆] B, R)

• Narrowing at two levels in Maude-NPA

1 a theory (Σ, ∆] B, R): (∆] B-narrowing with rules R)
2 for ∆] B-unification (B-narrowing with rules ∆)

• ∆] B-unification for each backwards step using R
1 Built-in Maude ACU unification algorithms
2 Dedicated unification algorithms (xor, homomorphism)
3 Hybrid approach: built-in algorithms for B, and a generic algorithm

(variant narrowing) for ∆.

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 34 / 68

How Maude-NPA works

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

2 Introduction to Rewriting Logic

3 How Maude-NPA works

4 Examples of execution

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 35 / 68

How Maude-NPA works

Maude-NPA

• A tool to find or prove the absence of attacks

• Analyzes infinite state systems:
• Active Dolev-Yao intruder
• No abstraction or approximation of nonces
• Unbounded number of sessions

• Performs symbolic backwards search from an insecure state to find
attacks or to prove unreachability of cryptographic protocols

• Sensitive to past and future

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 36 / 68

How Maude-NPA works

Basic Structure of Maude-NPA
• Honest principal and intruder actions are modeled as a strand space

(Thayer, Herzog, and Guttman)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 37 / 68

How Maude-NPA works

Basic Structure of Maude-NPA

• A strand is a sequence of positive and negative terms
• Negative term stand for received message
• Positive terms stand for sent messages
• Example:

(honest) [pke(B, NA; A)+, pke(A, NA; NB)
−, pke(B, NB)

+]
(intruder [X−, pke(A, X)+] and [X−, Y−, (X; Y)+]

• Modified strand notation: a marker denoting the current state
• Example: [pke(B, NA; A)+ | pke(A, NA; NB)

−, pke(B, NB)
+]

• Strand annotated with fresh terms generated by principal executing
strands (to obtain an infinite number of nonces)
:: r :: [pke(B, n(A, r); A)+ | pke(A, n(A, r); NB)

−, pke(B, NB)
+]

• Intruder knowledge explicitly represented
• m ∈ I : terms already learnt by the intruder
• m /∈ I : terms the intruder does not know, but that will be learnt

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 38 / 68

How Maude-NPA works

Basic Structure of Maude-NPA

• A state is a set of strands plus the intruder knowledge

. . . [nil, m±1 , . . . , m±i | m±i+1, . . . , m±k , nil] &

{t1 /∈ I , . . . , tj /∈ I}, {s1 ∈ I , . . . , sm ∈ I}
• Initial strand [nil | m±1 , . . . , m±n , nil]

• Final strand [nil, m±1 , . . . , m±n , | nil]
• Initial Intruder knowledge {t1 /∈ I , . . . , tn /∈ I}
• Final Intruder knowledge {t1 ∈ I , . . . , tn ∈ I}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 39 / 68

How Maude-NPA works

Protocol Rules and Their Execution

. . . [nil, m±1 , . . . , m±i | m±i+1, . . . , m±k , nil] &
{t1 /∈ I , . . . , tj /∈ I}, {s1 ∈ I , . . . , sm ∈ I}

• Negative message m−i in the past part of the strand is
• E-unified with a term already known by the intruder sp ∈ I
• or introduced into the intruder knowledge as mi ∈ I

• Positive message m+
i in the past part of the strand is

• E-unified with term known by the intruder sp ∈ I , and then sp ∈ I is
transformed into sp /∈ I

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 40 / 68

How Maude-NPA works

Protocol Rules and Their Execution

To execute a protocol P associate to it a rewrite theory on sets of
strands as follows. Let I informally denote the set of terms known by the
intruder, and K the facts known or unknown by the intruder

1 [L | M−, L′] & {M ∈ I , K} → [L, M− | L′] & {M ∈ I , K}
Moves input messages into the past

2 [L | M+, L′] & {K} → [L, M+ | L′] & {K}
Moves output message that are not read into the past

3 [L | M+, L′] & {M 6∈ I , K} → [L, M+ | L′] & {M ∈ I , K}
Joins output message with term in intruder knowledge.

For backwards execution, just reverse

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 41 / 68

How Maude-NPA works

Introducing New Strands

• If we want an unbounded number of strands, need some way of
introducing new strands in the backwards search

• Specialize rule 3 using each strand of the protocol P :

{ [l1 | u+, l2] & {u 6∈ I , K} → {u ∈ I , K}
s.t. [l1, u+, l2] ∈ P}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 42 / 68

How Maude-NPA works

Backwards Reachability Analysis

• Backwards narrowing protocol execution defines a backwards
reachability relation

• Specify a state describing the attack state, including a set of final
strands plus terms u ∈ I and u 6∈ I

• Execute the protocol backwards to an initial state, if possible

• In initial step, prove lemmas that identify certain states unreachable
(if necessary)

• For each intermediate state found, several optimizations available
(check if it can be proved unreachable and discard)

• Also global optimizations (super lazy intruder, state subsumption)

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 43 / 68

Examples of execution

Outline

1 Formal Analysis of Protocols
The Needham-Schroeder Public Key
Motivating Protocols
Some Examples of Algebraic Identities

2 Introduction to Rewriting Logic

3 How Maude-NPA works

4 Examples of execution

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 44 / 68

Examples of execution

Example: Needham-Schroeder Public Key Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB)
A −→ B : pk(B, NB)

Protocol (strand spaces) Intruder capabilities
:: r1 :: [nil | (pk(B, A; n(A, r1)))+,

(pk(A, n(A, r1); NB))
−,

pk(B, NB)
+]

:: r2 :: [nil | (pk(B, A; NA))
−,

(pk(A, NA; n(B, r2)))+,
(pk(B, n(B, r2)))−]

[nil | (M1; M2)
−, M+

1]
[nil | (M1; M2)

−, M+
2]

[nil | M−1 , M−2 , (M1; M2)
+]

[nil | M−, (sk(i, M))+]
[nil | M−, (pk(Ke, M))+]

Equational Theory - Algebraic properties
B = { (X ; Y) ; Z = X ; (Y ; Z)}
∆ = { pk(Ke, sk(Ke, X)) = X,

sk(Ke, pk(Ke, X)) = X}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 45 / 68

Examples of execution

Needham-Schroeder Public Key: Attack State Pattern

:: r2 ::

[nil, (pk(B, A; NA))
−, (pk(A, NA; n(B, r2)))+, (pk(B, n(B, r2)))− | nil]

& SS & {n(B, r2) ∈ I , IK}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 46 / 68

Examples of execution

Needham-Schroeder Public Key: Search State Space

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 47 / 68

Examples of execution

Needham-Schroeder Public Key: Initial State

[nil | (pk(i, n(b, r2)))−, (n(b, r2))+, nil] &
[nil | (pk(i, a; n(a, r1)))−, (a; n(a, r1))+, nil] &
[nil | (n(b, r2))−, (pk(b, n(b, r2)))+, nil] &
[nil | (a; n(a, r1))−, (pk(b, a; n(a, r1)))+, nil] &
:: r1 ::
[nil | (pk(i, a; n(a, r1)))+, (pk(a, n(a, r1); n(b, r2)))−, (pk(i, n(b, r2)))+, nil] &
:: r2 ::
[nil | (pk(b, a; n(a, r1)))−, (pk(a, n(a, r1); n(b, r2)))+, (pk(b, n(b, r2)))−, nil]

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 48 / 68

Examples of execution

Needham-Schroeder Public Key: Attack sequence

1. (pk(i, a; n(a, r1)))+

2. (pk(i, n(b, r2)))−

3. (a; n(a, r1))+

4. (a; n(a, r1))−

5. (pk(b, a; n(a, r1)))+

6. (pk(b, a; n(a, r1)))−

7. (pk(a, n(a, r1); n(b, r2)))+

8. (pk(a, n(a, r1); n(b, r2)))−

9. (pk(i, n(b, r2)))+

10. (pk(i, n(b, r2)))−

11. (n(b, r2))+

12. (n(b, r2))−

13. (pk(b, n(b, r2)))+

14. (pk(b, n(b, r2)))−

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 49 / 68

Examples of execution

Example: Needham-Schroeder-Lowe Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB; B)
A −→ B : pk(B, NB)

Protocol (strand spaces) Intruder capabilities
:: r1 :: [nil | (pk(B, A; n(A, r1)))+,

(pk(A, n(A, r1); NB; B))−,
pk(B, NB)

+]
:: r2 :: [nil | (pk(B, A; NA))

−,
(pk(A, NA; n(B, r2); B))+,
(pk(B, n(B, r2)))−]

[nil | (M1; M2)
−, M+

1]
[nil | (M1; M2)

−, M+
2]

[nil | M−1 , M−2 , (M1; M2)
+]

[nil | M−, (sk(i, M))+]
[nil | M−, (pk(Ke, M))+]

Equational Theory - Algebraic properties
B = { (X ; Y) ; Z = X ; (Y ; Z)}
∆ = { pk(Ke, sk(Ke, X)) = X,

sk(Ke, pk(Ke, X)) = X}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 50 / 68

Examples of execution

Needham-Schroeder-Lowe: Attack State Pattern

:: r2 ::

[nil, (pk(B, A; NA))
−, (pk(A, NA; n(B, r2); B))+, (pk(B, n(B, r2)))− | nil]

& SS & {n(B, r2) ∈ I , IK}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 51 / 68

Examples of execution

Needham-Schroeder-Lowe: Search State Space

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 52 / 68

Examples of execution

Example: NSL-xor Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB ⊕ B)
A −→ B : pk(B, NB)

Protocol (strand spaces) Intruder capabilities
:: r1 :: [nil | (pk(B, A; n(A, r1)))+,

(pk(A, n(A, r1); NB ⊕ B))−,
pk(B, NB)

+]
:: r2 :: [nil | (pk(B, A; NA))

−,
(pk(A, NA; n(B, r2)⊕ B))+,
(pk(B, n(B, r2)))−]

[nil | (M1; M2)
−, M+

1]
[nil | (M1; M2)

−, M+
2]

[nil | M−1 , M−2 , (M1; M2)
+]

[nil | NS−1 , NS−2 , (NS1 ⊕NS2)
+]

[nil | null+]
[nil | M−, (sk(i, M))+]
[nil | M−, (pk(Ke, M))+]

Equational Theory - Algebraic properties
B = { (X ⊕ Y) ⊕ Z = X ⊕ (Y ⊕ Z),

X ⊕ Y = Y ⊕ X}
∆ = { pk(Ke, sk(Ke, X)) = X, sk(Ke, pk(Ke, X)) = X, NS⊕NS = null,

NS1⊕NS1⊕NS2 = NS2, NS⊕ null = NS}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 53 / 68

Examples of execution

NSL-xor: Attack State Pattern

:: r2 ::

[nil, (pk(B, A; NSA))
−, (pk(A, NSA; n(B, r2)⊕ B))+,

(pk(B, n(B, r2)))− | nil]

& SS & {n(B, r2) ∈ I , IK}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 54 / 68

Examples of execution

NSL-xor: Search State Space

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 55 / 68

Examples of execution

NSL-xor: Initial State

[nil | (pk(i, a; n(a, r1)))−, (a; n(a, r1))+, nil] &
[nil | (pk(i, b⊕ i⊕ n(b, r1)))−, (b⊕ i⊕ n(b, r1))+, nil] &
[nil | (a; n(a, r1))−, (pk(b, a; n(a, r1))+, nil] &
[nil | (n(b, r2))−, (pk(b, n(b, r2)))+, nil] &
[nil | (b⊕ i)−, (b⊕ i⊕ n(b, r2))−, (n(b, r2))+, nil] &
:: r1 ::
[nil | (pk(i, a; n(a, r1)))+, (pk(a, n(a, r1); n(b, r2)⊕ b))−, (pk(i, b⊕ i⊕
n(b, r1)))+, nil] &
:: r2 ::
[nil | (pk(b, a; n(a, r1)))−, (pk(a, n(a, r1); n(b, r2)⊕
b))+, (pk(b, n(b, r2)))−, nil]

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 56 / 68

Examples of execution

NSL-xor: Attack sequence

1. (pk(i, a; n(a, r1)))+

2. (pk(i, n(b, r2)))−

3. (a; n(a, r1))+

4. (a; n(a, r1))−

5. (pk(b, a; n(a, r1)))+

6. generatedByIntruder(b⊕ i)

7. (pk(b, a; n(a, r1)))−

8. (pk(a, n(a, r1); n(b, r2); b))+

9. (pk(a, n(a, r1); n(b, r2); b))−

10. (pk(i, n(b, r2)⊕ b⊕ i))+

11. (pk(i, n(b, r2)⊕ b⊕ i))−

12. (n(b, r2)⊕ b⊕ i)+

13. (b⊕ i)−

14. (n(b, r2)⊕ b⊕ i)+

15. (n(b, r2)))+

16. (n(b, r2)))−
17. (pk(b, n(b, r2)))+

18. (pk(b, n(b, r2)))−

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 57 / 68

Examples of execution

Example: NSL-homomorphism Protocol

Protocol (text-book)
A −→ B : pk(B, A; NA)
B −→ A : pk(A, NA; NB; B)
A −→ B : pk(B, NB)

Protocol (strand spaces) Intruder capabilities
:: r1 :: [nil | (pk(B, A; n(A, r1)))+,

(pk(A, n(A, r1); NB; B))−,
pk(B, NB)

+]
:: r2 :: [nil | (pk(B, A; NA))

−,
(pk(A, NA; n(B, r2); B))+,
(pk(B, n(B, r2)))−]

[nil | (M1; M2)
−, M+

1]
[nil | (M1; M2)

−, M+
2]

[nil | M−1 , M−2 , (M1; M2)
+]

[nil | M−, (pk(Ke, M))+]
[nil | (pk(i, M))+, M+]

Equational Theory - Algebraic properties
B = { (X ; Y) ; Z = X ; (Y ; Z)}
∆ = { pk(Ke, X; Y) = pk(Ke, X); pk(Ke, Y)}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 58 / 68

Examples of execution

NSL-homomorphism: Attack State Pattern

:: r2 ::

[nil, (pk(B, A; NA))
−, (pk(A, NA; n(B, r2); B))+, (pk(B, n(B, r2)))− | nil]

& SS & {n(B, r2) ∈ I , IK}

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 59 / 68

Examples of execution

NSL-homomorphism: Search State Space

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 60 / 68

Examples of execution

NSL-homomorphic: Initial State

[nil | (pk(a, i)−, (pk(a, n(b, r2)))−, (pk(i, a); pk(a, n(b, r2)))+, nil]
[nil | (pk(i, n(b, r2)))−, (n(b, r2))+, nil]
[nil | (n(b, r2))−, (pk(b, n(b, r2)))+, nil]
[nil | (pk(a, NI); pk(a, n(b, r2)); pk(a, b))−, (pk(a, n(b, r2)); pk(a, b))+, nil]
[nil | (pk(a, n(b, r2)); pk(a, b))−, (pk(a, n(b, r2)))+, nil]
[nil | (pk(i, n(b, r2)); pk(i, n(a, r1)); pk(i, a))−, (pk(i, n(b, r2)))+, nil]
:: r1 ::
[nil | (pk(a, i; n(b, r2))−, (pk(i, n(b, r2); n(a, r1); a))+, nil]
:: r2 ::
[nil | (pk(b, a; NI))−, (pk(a, NI; n(b, r2); b))+, (pk(b, n(b, r2)))−, nil]

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 61 / 68

Examples of execution

NSL-homomorphism: Attack sequence

1. generatedByIntruder(pk(a, i))

2. generatedByIntruder(pk(b, a; NI))

3. (pk(b, a; NI))−

4. (pk(a, NI; n(b, r2); b))+

5. (pk(a, NI); pk(a, n(b, r2)); pk(a, b))−

6. (pk(a, n(b, r2)); pk(a, b))+

7. (pk(a, n(b, r2)); pk(a, b))−

8. (pk(a, n(b, r2)))+

9. (pk(a, i)−

10. (pk(a, n(b, r2)))−

11. (pk(i, a); pk(a, n(b, r2)))+

12. pk(a, i; n(b, r2))−

13. (pk(i, n(b, r1); n(a, r1); a))+

14. (pk(i, n(b, r2)); pk(i, n(a, r1)); pk(i, a))−

15. (pk(i, n(b, r2)))+

16. (pk(i, n(b, r2)))−

17. (n(b, r2))+

18. (n(b, r2))−

19. (pk(b, n(b, r2)))+

20. (pk(b, n(b, r2)))−

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 62 / 68

Examples of execution

Example: Diffie-Hellman Protocol

Protocol (text-book)
A −→ B : (A; B; exp(g, NA))
B −→ A : (A; B; exp(g, NB))
A −→ B : e(exp(exp(g, NB), NA), sec(A, B))
Protocol (strand spaces) Intruder capabilities

:: r1, r2 :: [nil | (A; B; exp(g, n(A, r1)))+,
(A; B; XB)−,
e(exp(XB, n(A, r1)), sec(A, r2))+]

:: r3 :: [nil | (A; B; XA)−,
(A; B; exp(g, n(B, r3)))+,
(e(exp(XA, n(B, r3)), S))−]

[nil | (M1; M2)
−, M+

1]
[nil | (M1; M2)

−, M+
2]

[nil | M−1 , M−2 , (M1; M2)
+]

[nil | K−, M−, e(K, M)+]
[nil | K−, M−, d(K, M)+]
[nil | N1−, N2−, (N1 ∗N2)+]
[nil | E−, N−, exp(E, N)+]

Equational Theory Algebraic properties
B = { (X ∗ Y) ∗ Z = X ∗ (Y ∗ Z), (X ∗ Y) = Y ∗X }
∆ = { dec(K, enc(K, X)) = X, exp(exp(W, Y), Z) = exp(W, Y ∗ Z) }

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 63 / 68

Examples of execution

Diffie-Helllman: Attack State Pattern

R−1
P , where v −→ u is in R−1

P iff u −→ v is in RP . Reachability analysis can be
performed symbolically, not on concrete states but on symbolic state patterns
[t(x1, . . . , xn)]EP by means of narrowing modulo EP (see Section 2). We call
attack patterns those states patterns (i.e., terms with logical variables) used to
start the narrowing-based backwards reachability analysis. An initial state is a
state where all strands have their vertical bar at the beginning and there is no
positive fact of the form u∈I for a message term u in the intruder’s knowledge.
If no initial state is found during the backwards reachability analysis from an
attack pattern, the protocol has been proved secure for that attack pattern with
respect to the assumed intruder capabilities and the algebraic properties. If an
initial state is found, then we conclude that the attack pattern is possible and a
concrete attack can be inferred from the exchange sequence stored in the initial
state. Note that an initial state may be generic, in the sense of having logical
variables for those elements that are not relevant for the attack.

Example 2. (Example 1 continued) The attack pattern that we are looking for
is one in which Bob completes the protocol and the intruder is able to learn the
secret. The attack state pattern to be given as input to Maude-NPA is:

:: r� :: [(A; B; Y)−, (B; A; exp(g, n(B, r�)))+, (e(exp(Y, n(B, r�)), sec(a, r��)))− | nil]

& SS & (sec(a, r��)∈I, IK)
(†)

Using the above attack pattern Maude-NPA is able to find an initial state of the
protocol, showing that the attack state is possible. Note that this initial state is
generalized to two sessions in parallel: one session where Alice (i.e., principal
named a) is talking to another principal B� —in this session the intruder gets a
nonce n(a, r) originated from a— and another session where Bob (i.e., principal
named b) is trying to talk to Alice. If we instantiate B� to be b, then one
session is enough, although the tool returns the most general attack. The strands
associated to the initial state found by the backwards search are as follows:

[nil | exp(g, n(a, r)))−, Z−, exp(g, Z ∗ n(a, r))+] &

[nil | exp(g, Z ∗ n(a, r))−, e(exp(g, Z ∗ n(a, r)), sec(a, r��))−, sec(a, r��)+] &

[nil | exp(g, n(b, r�)))−, W−, exp(g, W ∗ n(b, r�))+] &

[nil | exp(g, W ∗ n(b, r�))−, sec(a, r��)−, e(exp(g, W ∗ n(b, r�)), sec(a, r��))+] &

[nil | (a; b; exp(g, n(b, r�)))−, (b; exp(g, n(b, r�)))+] &

[nil | (b; exp(g, n(b, r�)))−, exp(g, n(b, r�))+] &

[nil | (a; B�; exp(g, n(a, r)))−, (B�; exp(g, n(a, r)))+] &

[nil | (B�; exp(g, n(a, r)))−, exp(g, n(a, r))+] &

:: r� ::
[nil | (a; b; exp(g, W))−, (a; b; exp(g, n(b, r�)))+, e(exp(g, W ∗ n(b, r�)), sec(a, r��))−] &

:: r��, r ::
[nil | (a; B�; exp(g, n(a, r)))+, (a; B�; exp(g, Z))−, e(exp(g, Z ∗ n(a, r)), sec(a, r��))+]

10

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 64 / 68

Examples of execution

Diffie-Helllman: Attack Space

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 65 / 68

Examples of execution

Diffie-Helllman: Initial State

R−1
P , where v −→ u is in R−1

P iff u −→ v is in RP . Reachability analysis can be
performed symbolically, not on concrete states but on symbolic state patterns
[t(x1, . . . , xn)]EP by means of narrowing modulo EP (see Section 2). We call
attack patterns those states patterns (i.e., terms with logical variables) used to
start the narrowing-based backwards reachability analysis. An initial state is a
state where all strands have their vertical bar at the beginning and there is no
positive fact of the form u∈I for a message term u in the intruder’s knowledge.
If no initial state is found during the backwards reachability analysis from an
attack pattern, the protocol has been proved secure for that attack pattern with
respect to the assumed intruder capabilities and the algebraic properties. If an
initial state is found, then we conclude that the attack pattern is possible and a
concrete attack can be inferred from the exchange sequence stored in the initial
state. Note that an initial state may be generic, in the sense of having logical
variables for those elements that are not relevant for the attack.

Example 2. (Example 1 continued) The attack pattern that we are looking for
is one in which Bob completes the protocol and the intruder is able to learn the
secret. The attack state pattern to be given as input to Maude-NPA is:

:: r� :: [(A; B; Y)−, (B; A; exp(g, n(B, r�)))+, (e(exp(Y, n(B, r�)), sec(a, r��)))− | nil]

& SS & (sec(a, r��)∈I, IK)
(†)

Using the above attack pattern Maude-NPA is able to find an initial state of the
protocol, showing that the attack state is possible. Note that this initial state is
generalized to two sessions in parallel: one session where Alice (i.e., principal
named a) is talking to another principal B� —in this session the intruder gets a
nonce n(a, r) originated from a— and another session where Bob (i.e., principal
named b) is trying to talk to Alice. If we instantiate B� to be b, then one
session is enough, although the tool returns the most general attack. The strands
associated to the initial state found by the backwards search are as follows:

[nil | exp(g, n(a, r)))−, Z−, exp(g, Z ∗ n(a, r))+] &

[nil | exp(g, Z ∗ n(a, r))−, e(exp(g, Z ∗ n(a, r)), sec(a, r��))−, sec(a, r��)+] &

[nil | exp(g, n(b, r�)))−, W−, exp(g, W ∗ n(b, r�))+] &

[nil | exp(g, W ∗ n(b, r�))−, sec(a, r��)−, e(exp(g, W ∗ n(b, r�)), sec(a, r��))+] &

[nil | (a; b; exp(g, n(b, r�)))−, (b; exp(g, n(b, r�)))+] &

[nil | (b; exp(g, n(b, r�)))−, exp(g, n(b, r�))+] &

[nil | (a; B�; exp(g, n(a, r)))−, (B�; exp(g, n(a, r)))+] &

[nil | (B�; exp(g, n(a, r)))−, exp(g, n(a, r))+] &

:: r� ::
[nil | (a; b; exp(g, W))−, (a; b; exp(g, n(b, r�)))+, e(exp(g, W ∗ n(b, r�)), sec(a, r��))−] &

:: r��, r ::
[nil | (a; B�; exp(g, n(a, r)))+, (a; B�; exp(g, Z))−, e(exp(g, Z ∗ n(a, r)), sec(a, r��))+]

10

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 66 / 68

Examples of execution

Diffie-Helllman: Attack sequence

Note that the last two strands, generating fresh variables r, r�, r��, are protocol
strands and the others are intruder strands.

The concrete message exchange sequence obtained by the reachability analysis
is the following:

1.(a; b; exp(g, W))−

2.(a; b; exp(g, n(b, r�)))+

3.(a; b; exp(g, n(b, r�)))−

4.(b; exp(g, n(b, r�)))+

5.(b; exp(g, n(b, r�)))−

6.(exp(g, n(b, r�)))+

7.(exp(g, n(b, r�)))−

8.W−

9.exp(g, W ∗ n(b, r�))+

10.(a; B�; exp(g, n(a, r)))+

11.(a; B�; exp(g, n(a, r)))−

12.(B�; exp(g, n(a, r)))+

13.(B�; exp(g, n(a, r)))−

14.(exp(g, n(a, r)))+

15.(exp(g, n(a, r)))−

16.Z−

17.exp(g, Z ∗ n(a, r))+

18.(a; B�; exp(g, Z))−

19.e(exp(g, Z ∗ n(a, r)), sec(a, r��))+

20.e(exp(g, Z ∗ n(a, r)), sec(a, r��))−

21.exp(g, Z ∗ n(a, r))−

22.sec(a, r��)+

23.exp(g, W ∗ n(b, r�))−

24.sec(a, r��)−

25.e(exp(g, W ∗ n(b, r�), sec(a, r��))+

26.e(exp(g, W ∗ n(b, r�)).sec(a, r��))−

Step 1) describes Bob (i.e., principal named b) receiving an initiating message
from the intruder impersonating Alice. Step 2) describes Bob sending the re-
sponse, and Step 3) describes the intruder receiving it. Steps 4) through 9)
describe the intruder computing the key exp(g,W ∗n(b, r�)) she will use to com-
municate with Bob. Step 10) describes Alice initiating the protocol with a prin-
cipal B�. Step 11) describes the intruder receiving it, and steps 11) through
17) describe the intruder constructing the key exp(g, Z ∗ n(a, r)) she will use to
communicate with Alice. Steps 18) and 19) describe Alice receiving the response
from the intruder impersonating B� and Alice sending the encrypted message.
Steps 20) through 22) describe the intruder decrypting the message to get the
secret. In steps 23) through 25) the intruder re-encrypts the secret with the key
she shares with Bob and sends it, and in Step 26) Bob receives the message.

Note that there are some intruder strands missing in the initial state because
certain terms are assumed to be trivially generable by the intruder, and so not
searched for; namely, intruder strands generating variable Z, variable W , term
(a; b; exp(g,W)), and term (a;B�; exp(g, Z)). Variables Z and W can be filled
in with any nonce, for instance nonces generated by the intruder, such as W =
n(i, r���) and Z = n(i, r����) in the following way:

:: r��� :: [nil | (n(i, r���))+] & :: r���� :: [nil | (n(i, r����))+]

Also, note that nonces W and Z are used by the intruder to generate messages
(a; b; exp(g,W)) and (a;B�; exp(g, Z)) in the following way:

[nil | (a)+] & [nil | (b)+] & [nil | (B�)+] &

[nil | (g)+] & [nil | (g)−, W−, exp(g, W)+] & [nil | (g)−, Z−, exp(g, Z)+] &

[nil | (a)−, (b)−, (a; b)+] & [nil | (a; b)−, (exp(g, W))−, (a; b; exp(g, W))+] &

[nil | (a)−, (B�)−, (a; B�)+] & [nil | (a; B�)−, (exp(g, Z))−, (a; B�; exp(g, Z))+]

11

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 67 / 68

Examples of execution

Many thanks

Santiago Escobar (UPV) Universidad Complutense de Madrid - March 14th 68 / 68

	Formal Analysis of Protocols
	The Needham-Schroeder Public Key
	Motivating Protocols
	Some Examples of Algebraic Identities

	Introduction to Rewriting Logic
	How Maude-NPA works
	Examples of execution

