
1

The Soul of Computer Science

Salvador Lucas

DSIC, Universitat Politècnica de València (UPV)

Talk at the Universidad Complutense de Madrid

Salvador Lucas (UPV) UCM 2016 October 26, 2016 1 / 63



2

The Soul of Computer Science 80 years of Computer Science!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 2 / 63



3

The Soul of Computer Science The soul of Computer Science is Logic

Waves of Logic in the history of Computer Science (incomplete list):

0 Hilbert posses “the main problem of mathematical logic” (20’s)

1 Church and Turing’s logical devices as effective methods (1936)

2 Shannon’s encoding of Boolean functions as circuits (1938)

3 von Neumann’s logical design of an electronic computer (1946)

4 Floyd/Hoare’s logical approach to program verification (1967-69)

5 Kowalski’s predicate logic as programming language (1974)

6 Hoare’s challenge of a verifying compiler (2003)

7 Berners-Lee’s semantic web challenge (2006)

Soul

Distinguishing mark of living things (...) responsible for planning and
practical thinking (Stanford Encyclopedia of Philosophy)

We can say: Logic is the soul of Computer Science!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 3 / 63



4

The Soul of Computer Science Hilbert and the Decision Problem

David Hilbert
(1862-1943)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 4 / 63



5

The Soul of Computer Science Hilbert and the Decision Problem

In his “Mathematical Problems” address during the 2nd International
Congress of Mathematicians (Paris, 1900), he proposed the following:

10th Hilbert’s problem

Given a diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether
the equation is solvable in rational integers.

A diophantine equation is just a polynomial equation P(x1, . . . , xn) = 0
where only integer solutions are accepted.

In logical form, we ask whether the following sentence is true:

(∃x1 ∈ N, . . . ,∃xn ∈ N) P(x1, . . . , xn) = 0

There is no solution!

In 1970, Yuri Matiyasevich proved it unsolvable, i.e., there is no such
‘process’. How could Matiyasevich reach such a conclusion?

Salvador Lucas (UPV) UCM 2016 October 26, 2016 5 / 63



5

The Soul of Computer Science Hilbert and the Decision Problem

In his “Mathematical Problems” address during the 2nd International
Congress of Mathematicians (Paris, 1900), he proposed the following:

10th Hilbert’s problem

Given a diophantine equation with any number of unknown quantities and
with rational integral numerical coefficients: To devise a process according
to which it can be determined by a finite number of operations whether
the equation is solvable in rational integers.

A diophantine equation is just a polynomial equation P(x1, . . . , xn) = 0
where only integer solutions are accepted.

In logical form, we ask whether the following sentence is true:

(∃x1 ∈ N, . . . ,∃xn ∈ N) P(x1, . . . , xn) = 0

There is no solution!

In 1970, Yuri Matiyasevich proved it unsolvable, i.e., there is no such
‘process’. How could Matiyasevich reach such a conclusion?

Salvador Lucas (UPV) UCM 2016 October 26, 2016 5 / 63



6

The Soul of Computer Science Hilbert and the Decision Problem

In his 1917 address “Axiomatic thought” before the Swiss Mathematical
Society, Hilbert starts a new quest on the foundations of mathematics.

Hilbert is concerned with:

1 the problem of the solvability in principle of every mathematical
question,

2 the problem of the subsequent checkability of the results of a
mathematical investigation,

3 the question of a criterion of simplicity for mathematical proofs,

4 the question of the relationaships between content and formalism in
mathematics and logic,

5 and finally the problem of the decidability of a mathematical question
in a finite number of operations.

Hilbert’s formalist approach to mathematics

It is well-known that Hilbert’s approach to these questions took logic as
the main framework to approach these issues

Salvador Lucas (UPV) UCM 2016 October 26, 2016 6 / 63



7

The Soul of Computer Science Hilbert and the Decision Problem

In his 1928 book Principles of Theoretical Logic (with W. Ackermann), he
writes:

one can apply the first-order calculus in particular to the
axiomatic treatment of theories...

His plan is using logic as a universal calculus in mathematics, so that:

one can expect that a systematic, so-to-say computational
treatment of logical formulas is possible, which would somewhat
correspond to the theory of equations in algebra.

The Decision Problem

The decision problem is solved if one knows a process which, given a logical
expression, permits the determination of its validity resp. satisfiability.

For Hilbert, the decision problem is

the main problem of mathematical logic ...the discovery of a
general decision procedure is still a difficult unsolved problem

Salvador Lucas (UPV) UCM 2016 October 26, 2016 7 / 63



7

The Soul of Computer Science Hilbert and the Decision Problem

In his 1928 book Principles of Theoretical Logic (with W. Ackermann), he
writes:

one can apply the first-order calculus in particular to the
axiomatic treatment of theories...

His plan is using logic as a universal calculus in mathematics, so that:

one can expect that a systematic, so-to-say computational
treatment of logical formulas is possible, which would somewhat
correspond to the theory of equations in algebra.

The Decision Problem

The decision problem is solved if one knows a process which, given a logical
expression, permits the determination of its validity resp. satisfiability.

For Hilbert, the decision problem is

the main problem of mathematical logic ...the discovery of a
general decision procedure is still a difficult unsolved problem

Salvador Lucas (UPV) UCM 2016 October 26, 2016 7 / 63



8

The Soul of Computer Science Church’s Thesis

Alonzo Church
(1903-1995)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 8 / 63



9

The Soul of Computer Science Church’s Thesis

In his 1936 paper, An Unsolvable Problem of Elementary Number Theory,
Alonzo Church proposes

a definition of effective calculability which is thought to
correspond satisfactorily to the somewhat vague intuitive notion
in terms of which problems of this class are often stated,

Church’s proposal of an effective method was the following formalism,
intended to capture the essentials of using functions in mathematics:

Definition (Lambda calculus)

Syntax:
M ::= x︸︷︷︸

variable

| λx .M︸ ︷︷ ︸
abstraction

| M N︸︷︷︸
application

β-reduction:
(λx .M)N︸ ︷︷ ︸

redex

→β M[x 7→ N]

Salvador Lucas (UPV) UCM 2016 October 26, 2016 9 / 63



9

The Soul of Computer Science Church’s Thesis

In his 1936 paper, An Unsolvable Problem of Elementary Number Theory,
Alonzo Church proposes

a definition of effective calculability which is thought to
correspond satisfactorily to the somewhat vague intuitive notion
in terms of which problems of this class are often stated,

Church’s proposal of an effective method was the following formalism,
intended to capture the essentials of using functions in mathematics:

Definition (Lambda calculus)

Syntax:
M ::= x︸︷︷︸

variable

| λx .M︸ ︷︷ ︸
abstraction

| M N︸︷︷︸
application

β-reduction:
(λx .M)N︸ ︷︷ ︸

redex

→β M[x 7→ N]

Salvador Lucas (UPV) UCM 2016 October 26, 2016 9 / 63



10

The Soul of Computer Science Church’s Thesis

Church showed that arithmetics can be encoded into this calculus.

Then, he claimed the following:

Church’s Thesis (1936)

Every effectively calculable function of positive integers can be λ-defined,
i.e., defined by means of an expression of the λ-calculus and computed
using β-reduction.

Then, the decision problem is considered, in particular, for the elementary
number theory. As announced in the introduction, this effort lead

to show, by means of an example, that not every problem of this
class is solvable.

The Decision Problem cannot be solved!

Church showed that, indeed, there are logical expressions whose validity
cannot be established by using his effective method.

Under the assumption of his thesis, no ‘process’ is able to do the work.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 10 / 63



10

The Soul of Computer Science Church’s Thesis

Church showed that arithmetics can be encoded into this calculus.

Then, he claimed the following:

Church’s Thesis (1936)

Every effectively calculable function of positive integers can be λ-defined,
i.e., defined by means of an expression of the λ-calculus and computed
using β-reduction.

Then, the decision problem is considered, in particular, for the elementary
number theory. As announced in the introduction, this effort lead

to show, by means of an example, that not every problem of this
class is solvable.

The Decision Problem cannot be solved!

Church showed that, indeed, there are logical expressions whose validity
cannot be established by using his effective method.

Under the assumption of his thesis, no ‘process’ is able to do the work.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 10 / 63



11

The Soul of Computer Science Turing machines

Alan M. Turing
(1912-1954)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 11 / 63



12

The Soul of Computer Science Turing machines

Turing machines

In his 1936 paper, On Computable Numbers, With an Application to the
Entscheidungsproblem, Turing proposes another computing device. He
called them a-machines:

Cells in the tape may be blank or contain a symbol (e.g., ‘0’ or ‘1’). The
head examines only one cell at a time (the scanned cell). The machine is
able to adopt a number of different states. According to this,

1 The head prints a symbol on the scanned cell and moves one cell to
the left or to the right.

2 The state changes.

Turing showed how arithmetic computations can be dealt with his machine.
Salvador Lucas (UPV) UCM 2016 October 26, 2016 12 / 63



13

The Soul of Computer Science Turing machines

In Section 11 of his 1936 paper, he also addresses the Decision Problem:

“to show that there can be no general process for determining
whether a formula is provable”

and then he rephrases this in terms of his own achievements:

“i.e., that there can be no machine which, suplied with any of
these formulae, will eventually say whether it is provable.”

When comparing these sentences, it is clear that Turing identifies Hilbert’s
“general processes” with his own machine.

He also proved that computable functions are λ-definable and vice versa.
This leads to the following:

Church-Turing Thesis (1936, )

Every effectively calculable function of positive integers is computable, i.e.,
there is a Turing Machine that can be used to obtain its output for a given
input.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 13 / 63



13

The Soul of Computer Science Turing machines

In Section 11 of his 1936 paper, he also addresses the Decision Problem:

“to show that there can be no general process for determining
whether a formula is provable”

and then he rephrases this in terms of his own achievements:

“i.e., that there can be no machine which, suplied with any of
these formulae, will eventually say whether it is provable.”

When comparing these sentences, it is clear that Turing identifies Hilbert’s
“general processes” with his own machine.

He also proved that computable functions are λ-definable and vice versa.
This leads to the following:

Church-Turing Thesis (1936, )

Every effectively calculable function of positive integers is computable, i.e.,
there is a Turing Machine that can be used to obtain its output for a given
input.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 13 / 63



14

The Soul of Computer Science Turing machines

Turing also describes a Universal Machine which can be used to simulate
any other (Turing) machine which is then viewed as a program.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 14 / 63



15

The Soul of Computer Science Shannon wires Boolean logic

Claude Shannon
(1916-2001)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 15 / 63



16

The Soul of Computer Science Shannon wires Boolean logic

In his 1938 Master Thesis A Symbolic Analysis of Relay and Switching
Circuits, Claude Shannon showed that symbolic logic from George Boole’s
Laws of Thought provides an appropriate mathematical model for the
“logic design” of digital circuits and computer components.

Logic operations and logic gates

A B A ∧ B

0 0 0

0 1 0

1 0 0

1 1 1

A B A ∨ B

0 0 0

0 1 1

1 0 1

1 1 1

A ¬A
0 1

1 0

Functions taking boolean inputs and returning boolean values (Boolean
functions) can be written as a canonical combination of ∧, ∨, and ¬.

Shannon showed how to obtain a circuit to compute such a function

Salvador Lucas (UPV) UCM 2016 October 26, 2016 16 / 63



17

The Soul of Computer Science Shannon wires Boolean logic

The addition of two bits a and b can be described by means of two truth
tables: one for the addition and one for any carry (to be propagated):

a b add

0 0 0

0 1 1

1 0 1

1 1 0

a b carry

0 0 0

0 1 0

1 0 0

1 1 1

add(a, b) = ((¬a) ∧ b) ∨ (a ∧ (¬b))
carry(a, b) = a ∧ b

a

b

carryadd

Salvador Lucas (UPV) UCM 2016 October 26, 2016 17 / 63



18

The Soul of Computer Science Shannon wires Boolean logic

Logic gates can be realized using different technologies. Shannon
considered relays, we now use transistors:

© 1950 SCIENTIFIC AMERICAN, INC
© 1950 SCIENTIFIC AMERICAN, INC

not gate with relays

C

E

10kΩ

VR(−12V )

15kΩ
Vi

2.2kΩ

VCC = 12V

Vo

not gate with transistors

Salvador Lucas (UPV) UCM 2016 October 26, 2016 18 / 63



19

The Soul of Computer Science Shannon wires Boolean logic

Transistors can also be realized as electronic or molecular devices:

B

C

E

A transistor

Photonic
(Powell, Nature, June 2013)

Microelectronic

Molecular
(Reed and Tour, Scientific American, June 2000)

The essentials are in the logical design. The specific technology is
secondary!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 19 / 63



20

The Soul of Computer Science von Neumann and the logical design of an electronic computer

John von Neumann
(1903-1957)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 20 / 63



21

The Soul of Computer Science von Neumann and the logical design of an electronic computer

Following his 1945 paper, First Draft of a Report on the EDVAC, in a joint
paper with Arthur W. Burks and Herman H. Goldstine, John von
Neumann proposes a logical design of an electronic computing instrument.

• Program and data stored
in the main memory

• There are arithmetic,
memory transfer, control,
and I/O instructions.

• The control unit retrieves
and decodes instructions

• The arithmetic and logic
unit executes them

Nothing substantially new is added to (Universal) Turing’s Machine!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 21 / 63



22

The Soul of Computer Science von Neumann and the logical design of an electronic computer

According to Church-Turing’s Thesis, other computer architectures (e.g.,
Harvard’s, Parallel, etc.) do not substantially improve Turing Machines!

UNIVAC I (1950s) XXIth Century Supercomputer

and never will! (!?)

For instance, quoting David Deutsch, prospective computational
‘architectures’ like quantum computers

“could, in principle, be built and would have many remarkable
properties not reproducing by any Turing machine. These do not
include the computation of non-recursive functions...”

Salvador Lucas (UPV) UCM 2016 October 26, 2016 22 / 63



22

The Soul of Computer Science von Neumann and the logical design of an electronic computer

According to Church-Turing’s Thesis, other computer architectures (e.g.,
Harvard’s, Parallel, etc.) do not substantially improve Turing Machines!

UNIVAC I (1950s) XXIth Century Supercomputer

and never will! (!?)

For instance, quoting David Deutsch, prospective computational
‘architectures’ like quantum computers

“could, in principle, be built and would have many remarkable
properties not reproducing by any Turing machine. These do not
include the computation of non-recursive functions...”

Salvador Lucas (UPV) UCM 2016 October 26, 2016 22 / 63



23

The Soul of Computer Science von Neumann and the logical design of an electronic computer

Goldstine and von Neumann also addressed the problem of planning and
coding of problems for an electronic computing instrument. They wrote:

“Coding a problem for the machine would merely be what its
name indicates: Translating a meaningful text (the instructions
that govern solving the problem under considerations) from one
language (the language of mathematics, in which the planner will
have conceived the problem, or rather the numerical procedure
by which he has decided to solve the problem) into another
language (that our code).”

However, they soon dismissed this ‘simple approach’, as they were

“convinced, both on general grounds and from our actual
experience with the coding of specific numerical problems, that
the main difficulty lies just at this point.”

The main raised point was specifiying the control of the execution.

Goldstine and von Neumann introduce flow diagrams to plan the course of
the process and then extract from this the coded sequence.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 23 / 63



23

The Soul of Computer Science von Neumann and the logical design of an electronic computer

Goldstine and von Neumann also addressed the problem of planning and
coding of problems for an electronic computing instrument. They wrote:

“Coding a problem for the machine would merely be what its
name indicates: Translating a meaningful text (the instructions
that govern solving the problem under considerations) from one
language (the language of mathematics, in which the planner will
have conceived the problem, or rather the numerical procedure
by which he has decided to solve the problem) into another
language (that our code).”

However, they soon dismissed this ‘simple approach’, as they were

“convinced, both on general grounds and from our actual
experience with the coding of specific numerical problems, that
the main difficulty lies just at this point.”

The main raised point was specifiying the control of the execution.

Goldstine and von Neumann introduce flow diagrams to plan the course of
the process and then extract from this the coded sequence.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 23 / 63



24

The Soul of Computer Science von Neumann and the logical design of an electronic computer

According to this, we proceed as follows:

Add the numbers from
1 to N for some posi-
tive N.

Start

m:=1

s:=0

•

m > N?

s:=s+m

m:=m+1 Stop

no

yes

integer m s;

s := 0;

m := 1;

while m <= N do

begin

s := s + m;

m := m + 1;

end

Specification Control Analysis Program

Thus, the following problem arises:

Is the program a solution to the specified problem?

This is a central problem in software development. Quoting Dijkstra:

...it is not our business to make programs; it is our business to design
classes of computations that will display a desired behavior.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 24 / 63



24

The Soul of Computer Science von Neumann and the logical design of an electronic computer

According to this, we proceed as follows:

Add the numbers from
1 to N for some posi-
tive N.

Start

m:=1

s:=0

•

m > N?

s:=s+m

m:=m+1 Stop

no

yes

integer m s;

s := 0;

m := 1;

while m <= N do

begin

s := s + m;

m := m + 1;

end

Specification Control Analysis Program

Thus, the following problem arises:

Is the program a solution to the specified problem?

This is a central problem in software development. Quoting Dijkstra:

...it is not our business to make programs; it is our business to design
classes of computations that will display a desired behavior.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 24 / 63



25

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

Robert W. Floyd
(1936-2001)

1978

Salvador Lucas (UPV) UCM 2016 October 26, 2016 25 / 63



26

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

The development of integrated circuits in the late fifties led to the third
generation of computers and to an increase of speed, memory, and storage
allowing for bigger programs and concurrency.

Margaret Hamilton’s Apollo XI code (1969)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 26 / 63



27

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

According to Moore’s law (the number of components in integrated
circuits doubles every year), this pile grew up quickly!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 27 / 63



28

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

In his 1966 paper Proof of algoritms by general snapshots, Peter Naur
considered the impact of these technological achievements in programming
and noticed that

“the available programmer competence often is unable to cope
with their complexities.”

He made the main steps of program construction explicit as follows:

1 We first have the description of the desired results in terms of static
properties.

2 We then proceed to construct an algorithm for calculating that result,
using examples and intuition to guide us.

3 Having constructed the algorithm, we want to prove that it does
indeed produce a result having the desired properties.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 28 / 63



29

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

In his 1967 landmark paper Assigning Meanings to Programs, Robert
Floyd pioneered the systematic use of logical expressions to annotate flow
diagrams so that properties of programs could be logically expressed and
formally proved.

In particular, he addressed properties of the form:

“If the initial values of the program variables satisfy the relation
R1, the final values on completion will satisfy relation R2.”

Floyd’s paper was very influential as it showed that “the specification of
proof techniques provides an adequate formal definition of a programming
language” (quoted from Hoare).

Floyd’s paper is also celebrated by introducing the first systematic
treatment of program termination proofs using well-ordered sets.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 29 / 63



30

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

Tony Hoare
born 1934

1980

Salvador Lucas (UPV) UCM 2016 October 26, 2016 30 / 63



31

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

Hoare’s 1969 landmark paper, An Axiomatic Basis for Computer
Programming, provides a formal calculus to prove program properties.

The calculus concerns the so-called Hoare’s triples which (today) are
written as follows:

{P} S {Q}

where P is a logical assertion called the precondition, S is the source
program, and Q is a logical assertion called the postcondition.

The interpretation of Hoare’s triples is the following:

“If the assertion P is true before initation of a program S , then
the assertion Q will be true on its completion.”

This provides a way to specify software requirements which the user wants
to see fulfilled by the program. The programmer should be able to
guarantee the correctness of the obtained program with respect to such
requirements.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 31 / 63



32

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

{N > 0}

integer m s;

s := 0;

m := 1;

while m <= N do

begin

s := s + m;

m := m + 1;

end

{s = N(N+1)
2 }

Read as follows: if the input value N is positive, then, after completing the
execution of the program, the output value s contains (according to Gauss’
formula) the addition of the numbers from 1 to N, both included.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 32 / 63



33

The Soul of Computer Science Floyd/Hoare’s logical approach to program verification

Hoare’s calculus provides a way to deal with Hoare’s triples so that one
can actually prove that one such property actually holds.

{P} skip {P} {P[x 7→ E ]} x := E {P}

{P} S {P ′} {P ′} S ′ {Q}
{P} S ; S ′ {Q}

{P ∧ b} S {Q} {P ∧ ¬b} S ′ {Q}
{P} if b then S else S ′ {Q}

{I ∧ b} S {I}
{I} while b do S {I ∧ ¬b}

P ⇒ P ′ {P ′} S {Q}
{P} S {Q}

{P} S {Q ′} Q ′ ⇒ Q

{P} S {Q}

Salvador Lucas (UPV) UCM 2016 October 26, 2016 33 / 63



34

The Soul of Computer Science Kowalski’s predicate logic as programming language

Robert Kowalski
born 1941

Salvador Lucas (UPV) UCM 2016 October 26, 2016 34 / 63



35

The Soul of Computer Science Kowalski’s predicate logic as programming language

In the introduction of his 1974 paper Predicate Logic as Programming
Language, Kowalski writes:

“The purpose of programming languages is to enable the
communication from man to machine of problems and its general
means of solution”

In contrast to von Neumann, for whom the ‘means of solution’ involved
the complete description of the machine control, Kowalski observes that
the following fact:

Algorithm = Logic + Control

could be biased exactly in the opposite way as von Neumann did, so that

“users can restrict their interaction with the computing system to the
definition of the logic component, leaving the determination of the control
component to the computer.” (from his 1979 book)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 35 / 63



35

The Soul of Computer Science Kowalski’s predicate logic as programming language

In the introduction of his 1974 paper Predicate Logic as Programming
Language, Kowalski writes:

“The purpose of programming languages is to enable the
communication from man to machine of problems and its general
means of solution”

In contrast to von Neumann, for whom the ‘means of solution’ involved
the complete description of the machine control, Kowalski observes that
the following fact:

Algorithm = Logic + Control

could be biased exactly in the opposite way as von Neumann did, so that

“users can restrict their interaction with the computing system to the
definition of the logic component, leaving the determination of the control
component to the computer.” (from his 1979 book)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 35 / 63



36

The Soul of Computer Science Kowalski’s predicate logic as programming language

For instance, our running example would be solved by providing a logical
description of the problem as follows:

sum(s(0),s(0))

sum(s(N),S) <= sum(N,R), add(s(N),R,S)

add(0,N,N)

add(s(M),N,s(P)) <= add(M,N,P)

where

• terms 0, s(0), ... represent numerals 0, 1, ...

• we read sum(X,Y) as stating that the addition of all numbers from 1
to X is Y.

• we read add(X,Y,Z) as stating that the addition of X and Y is Z.

• we read s(X) as referring to the successor of X.

Each clause in the logic program above can be interpreted as a (universally
quantified) logical implication from the predicate calculus.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 36 / 63



37

The Soul of Computer Science Kowalski’s predicate logic as programming language

Kowalski gives a procedural interpretation to such clauses.

sum(s(0),s(0))

sum(s(N),S) <= sum(N,R), add(s(N),R,S)

add(0,N,N)

add(s(M),N,s(P)) <= add(M,N,P)

where

• A rule of the form B ⇐ A1, . . . ,An is interpreted as a procedure
declaration. The conclusion B is the procedure name. The
antecedent {A1, . . . ,An} is interpreted as the procedure body. It
consists of a set of procedure calls Ai .

• B ⇐ (a rule with an empty body) is interpreted as an assertion of
fact and simply written B.

• ⇐ A1, . . . ,An is interpreted as a goal statement which asserts the
goal of successfully executing all of the procedure calls Ai .

In this setting, a fact like sum(s(0),s(0)) means that the addition of all
numbers from 1 to s(0) yields s(0). A computation is a proof of this!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 37 / 63



37

The Soul of Computer Science Kowalski’s predicate logic as programming language

Kowalski gives a procedural interpretation to such clauses.

sum(s(0),s(0))

sum(s(N),S) <= sum(N,R), add(s(N),R,S)

add(0,N,N)

add(s(M),N,s(P)) <= add(M,N,P)

where

• A rule of the form B ⇐ A1, . . . ,An is interpreted as a procedure
declaration. The conclusion B is the procedure name. The
antecedent {A1, . . . ,An} is interpreted as the procedure body. It
consists of a set of procedure calls Ai .

• B ⇐ (a rule with an empty body) is interpreted as an assertion of
fact and simply written B.

• ⇐ A1, . . . ,An is interpreted as a goal statement which asserts the
goal of successfully executing all of the procedure calls Ai .

In this setting, a fact like sum(s(0),s(0)) means that the addition of all
numbers from 1 to s(0) yields s(0). A computation is a proof of this!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 37 / 63



38

The Soul of Computer Science Kowalski’s predicate logic as programming language

Of course, we can also obtain the addition from the program!

sum(s(s(0)),X)

C2, {N 7→ s(0),X 7→ S}

sum(s(0),R), add(s(s(0)),R,S)

C1, {R 7→ s(0)}

add(s(s(0)),s(0),S)

C4, {M ′ 7→ s(0),N ′ 7→ s(0), S 7→ s(P ′)}

add(s(0),s(0),P’)

C4, {M ′′ 7→ 0,N ′′ 7→ s(0),P ′ 7→ s(P ′′)}

add(0,s(0),P’’)

C3, {N ′′′ 7→ s(0),P ′′ 7→ s(0)}

{P′′ 7→ s(0)}

{P′ 7→ s(s(0))}

{S 7→ s(s(s(0)))}

{X 7→ s(s(s(0)))}
C1: sum(s(0),s(0))

C2: sum(s(N),S) <= sum(N,R), add(s(N),R,S)

C3: add(0,N,N)

C4: add(s(M),N,s(P)) <= add(M,N,P)

The solution is obtained by propagating the blue bindings (concerning
variable X in the initial goal) bottom-up:

X is bound to s(s(s(0))) as expected!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 38 / 63



39

The Soul of Computer Science Kowalski’s predicate logic as programming language

Goldstine and von Neumann’s dream:

“Coding a problem for the machine would merely be (...)
translating (...) the language of mathematics, in which the
planner will have conceived the problem (...) into another
language (that our code).”

becomes feasible!

Following Kowalski’s approach, the system in charge of executing the logic
program will take care of any control issues.

Prolog is the paradigmatic example of a logic programming language.

Correctness for free!?

Since specification and program coincide, the program is automatically
correct without any further proof!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 39 / 63



40

The Soul of Computer Science Kowalski’s predicate logic as programming language

No free lunch!

Although writing and executing ‘control-unaware’ programs is possible, in
practice it is computationally expensive due to the highly nondeterministic
character of logic programming computations.

sum(s(s(0)),X)

C2, {N 7→ s(0),X 7→ S}

sum(s(0),R), add(s(s(0)),R,S)

C4, {M ′ 7→ s(0),N ′ 7→ R, S 7→ s(P ′)}

sum(s(0),R), add(s(0),R,P’)

C4, {M ′′ 7→ 0,N ′′ 7→ R,P ′ 7→ s(P ′′)}

sum(s(0),R), add(0,R,P’’)

C3, {N ′′′ 7→ R,P ′′ 7→ R}

sum(s(0),R)

C1, {R 7→ s(0)}

C1: sum(s(0),s(0))

C2: sum(s(N),S) <= sum(N,R), add(s(N),R,S)

C3: add(0,N,N)

C4: add(s(M),N,s(P)) <= add(M,N,P)

The same solution is obtained but the computation tree is different. And
there are other possibilities...

Salvador Lucas (UPV) UCM 2016 October 26, 2016 40 / 63



41

The Soul of Computer Science Other declarative approaches

Functional programming relies on Church’s lambda calculus.

Programs are intended to provide function definitions and can be seen as
lambda expressions.

The execution consists of reducing such expressions. Haskell and ML are
well-known functional languages.

Haskell’s version of the running example

data Nat = Z | S Nat

sum (S Z) = S Z

sum (S n) = (S n) + sum n

Z + n = n

(S m) + n = S (m + n)

The evaluation of sum (S (S Z)) is deterministic:
sum (S (S Z)) → (S (S Z)) + sum (S Z) → S ((S Z) + sum (S Z))

→ S (S (Z + sum (S Z))) → S (S (sum (S Z)))
→ S (S (S Z))

Salvador Lucas (UPV) UCM 2016 October 26, 2016 41 / 63



42

The Soul of Computer Science Other declarative approaches

Correctness for free!

Indeed, there is a Haskell predefined function sum that adds the
components of a list of numbers.

The evaluation of the expression

sum [1..n]

yields exactly what we want.

Here, specification and program coincide!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 42 / 63



43

The Soul of Computer Science Other declarative approaches

Meseguer’s approach to declarative languages as general logics

1 Declarative programs S are theories of a given logic L.

2 Computations with S are implemented as deductions in L.

3 Deductions proceed according to the Inference System I of L.

4 Executing a program S is proving a goal ϕ using I(S).

A logic L is often seen as a quadruple L = (Th(L),Form,Sub, I), where:

1 Th(L) is the class of theories of L,

2 Form is a mapping sending each theory S ∈ Th(L) to a set Form(S)
of formulas of S,

3 Sub is a mapping sending each S ∈ Th(L) to its set Sub(S) of
substitutions, with Sub(S) ⊆ [Form(S)→Form(S)], and

4 I is a mapping sending each S ∈ Th(L) to a subset I(S) of inference
rules B1...Bn

A for S.

Prolog, Haskell, and ML can be seen as examples of this approach. Other
examples are CafeOBJ, OBJ, Maude, etc.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 43 / 63



44

The Soul of Computer Science Hoare’s challenge of a verifying compiler

Sir Tony Hoare
born 1934

1980

Salvador Lucas (UPV) UCM 2016 October 26, 2016 44 / 63



45

The Soul of Computer Science Hoare’s challenge of a verifying compiler

In 1996, a tiny error in a part of the flight control software of the Ariane V
rocket led to the following:

Salvador Lucas (UPV) UCM 2016 October 26, 2016 45 / 63



46

The Soul of Computer Science Hoare’s challenge of a verifying compiler

In 1996, a tiny error in a part of the flight control software of the Ariane V
rocket led to the following:

The component had been frequently tested on previous Ariane IV flights...
Salvador Lucas (UPV) UCM 2016 October 26, 2016 46 / 63



47

The Soul of Computer Science Hoare’s challenge of a verifying compiler

Yesterday!: http://www.nature.com/news/

computing-glitch-may-have-doomed-mars-lander-1.20861

The most likely culprit is a flaw in the crafts software or a
problem in merging the data coming from different sensors,
which may have led the craft to believe it was lower in altitude
than it really was, says Andrea Accomazzo, ESAs head of solar
and planetary missions.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 47 / 63

http://www.nature.com/news/computing-glitch-may-have-doomed-mars-lander-1.20861
http://www.nature.com/news/computing-glitch-may-have-doomed-mars-lander-1.20861


48

The Soul of Computer Science Hoare’s challenge of a verifying compiler

In his 2003 paper The Verifying Compiler: A Grand Challenge for
Computing Research, Tony Hoare proposed

“the construction of a verifying compiler that uses mathematical
and logical reasoning to check the correctness of the programs
that it compiles”.

The compiler is not expected to ‘work alone’ but

“in combination with other program development and testing
tools, to achieve any desired degree of confidence in the
structural soundness of the system and the total correctness of
its more critical components”.

Programmers would specify correctness criteria by means of

“types, assertions, and other redundant annotations associated
with the code of the program.”

Some progress has been made in this project. A number of tools as the
ones demanded by Hoare have been developed so far.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 48 / 63



49

The Soul of Computer Science Hoare’s challenge of a verifying compiler

Microsoft’s verification tool Dafny: http://rise4fun.com/Dafny/

• The user provides the
preconditions (requires)
and postconditions
(ensures).

• The user can be asked to
provide some assertions,
like loop invariants.

• Full automation is
possible but difficult (in
particular, not possible for
this program example).

Salvador Lucas (UPV) UCM 2016 October 26, 2016 49 / 63

http://rise4fun.com/Dafny/


50

The Soul of Computer Science Hoare’s challenge of a verifying compiler

Ultimate termination tool:
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/

A completely automatic proof is possible in this case!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 50 / 63

https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/


51

The Soul of Computer Science Hoare’s challenge of a verifying compiler

This magic is possible due to the use of

• Propositional satisfiability checking techniques (SAT)

• Decidable logics (FOL with unary predicates, Presburger’s arithmetic,
FOL of the Real Closed Fields, etc.)

• Techniques for checking propositional satisfiability modulo theories
(SMT) techniques

• Constraint solving

• Abstract interpretation

• Theorem proving tools (HOL, ACL2, Coq, ...)

• Model checking

• ...

Most of these techniques are not really new, but they have been recently
implemented, combined, and improved in different ways so that we can
now use them in practice!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 51 / 63



52

The Soul of Computer Science Berners-Lee’s semantic web challenge

Sir Tim Berners-Lee
born 1955

Salvador Lucas (UPV) UCM 2016 October 26, 2016 52 / 63



53

The Soul of Computer Science Berners-Lee’s semantic web challenge

Tim Berners-Lee launched the first web site by August 1991

In 2006 he reported the existence of about 10 billion pages on the now
called World Wide Web

Search engines can be used to uncover themes embodied in such
documents and retrieve them to prospective readers:

This is quite a lot, but is it all?

Salvador Lucas (UPV) UCM 2016 October 26, 2016 53 / 63



54

The Soul of Computer Science Berners-Lee’s semantic web challenge

In his talk during the first WWW conference (1994), he said the following:

The web is a set of nodes and links. To a user this has become
an exciting world, but there is very little machine-readable
information there... To a computer is devoid of meaning.

From Berners-Lee, Cailliau, and Lassila’s Scientific American paper (May 2001)

Salvador Lucas (UPV) UCM 2016 October 26, 2016 54 / 63



55

The Soul of Computer Science Berners-Lee’s semantic web challenge

Then, Berners-Lee proposes the following:

Adding semantics to the web involves two things: allowing
documents which have information in machine-readable forms,
and allowing links to be created with relationship values.

The main ingredients

The Resource Description Framework (RDF): a scheme for defining
information on the Web. Ontologies: Collections of RDF statements

Salvador Lucas (UPV) UCM 2016 October 26, 2016 55 / 63



56

The Soul of Computer Science Berners-Lee’s semantic web challenge

RDF is a description logic which can be seen as a restriction of first-order
logic that improves on the complexity and decidability problems of FOL.

RDF syntax FOL syntax

Name Concept Correspondent Name

Triple p(s,o) Atom

Graph Set of triples Conjunction of atoms Theory

• Nodes in triples and in the graph are:

1 Internationalized Resource Identifiers (IRIs) or literals, which denote
resources (documents, physical things, abstract concepts, numbers,...)

2 Blank nodes (think of them as existentially quantified variables)

• Arcs are labelled by a predicate, which is also an IRI and denotes a
property, i.e., a resource that can be thought of as a binary relation.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 56 / 63



57

The Soul of Computer Science Berners-Lee’s semantic web challenge

Towards the Semantic Web !

Salvador Lucas (UPV) UCM 2016 October 26, 2016 57 / 63



58

The Soul of Computer Science Berners-Lee’s semantic web challenge

Semantics of RDF is given as follows (compare with First-Order Logic):

RDF semantics FOL semantics

Name Symbol Correspondent Name
Resources IR A Domain
Properties IP – –
Extension IEXT ∈ IP → P(IR × IR) R ⊆ A× A Relation
IRI interp. IS ∈ IRI → (IR ∪ IP) I Interpretation
Literal int. IL ∈ Literals → IR I Interpretation
Blank int. A ∈ Blank → IR α Var. valuation

Define a mapping [I + A] to be I on IRIs and literals and A on blank
nodes. RDF graphs are given truth values as follows:

• If E is a ground triple 〈s, p, o〉, then I (E ) = true if I (p) ∈ IP and
(I (s), I (o)) ∈ IEXT (I (p)); otherwise, I (E ) = false.

• If E is a triple containing a blank node, then I (E ) = true if
[I +A](E ) = true for some A ∈ Blank → IR; otherwise, I (E ) = false..

• If E is a graph, then I (E ) = true if [I + A](E ) = true for some
A ∈ Blank → IR; otherwise, I (E ) = false..

Salvador Lucas (UPV) UCM 2016 October 26, 2016 58 / 63



59

The Soul of Computer Science Berners-Lee’s semantic web challenge

Semantics of RDF is given as follows (compare with First-Order Logic):

RDF semantics FOL semantics

Name Symbol Correspondent Name
Resources IR A Domain
Properties IP – –
Extension IEXT ∈ IP → P(IR × IR) R ⊆ A× A Relation
IRI interp. IS ∈ IRI → (IR ∪ IP) I Interpretation
Literal int. IL ∈ Literals → IR I Interpretation
Blank int. A ∈ Blank → IR α Var. valuation

An interpretation I satisfies E when I (E ) = true.

According to RDF 1.1 Semantics report:

https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

RDF graphs can be viewed as conjunctions of simple atomic sentences in
first-order logic, where blank nodes are free variables which are understood
to be existential.

Salvador Lucas (UPV) UCM 2016 October 26, 2016 59 / 63

https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/


60

The Soul of Computer Science Berners-Lee’s semantic web challenge

A graph G entails a graph E when every interpretation which satisfies G
also satisfies E .

Inference

Any process which constructs a graph E from some other graph S is valid
if S entails E in every case; otherwise invalid.

Correct and complete inference

Correct and complete inference processes exist for proving entailment of
RDF graphs. This provides suitable techniques to reason about the
semantic web.

The challenge

The semantic web as a web of knowledge rather than a web of documents

Salvador Lucas (UPV) UCM 2016 October 26, 2016 60 / 63



61

The Soul of Computer Science Conclusions

Logic has fertilized Computer Science from the beginning

Logic brought many mathematicians, engineers, physicists, biologists...
to Computer Science

Logic has inspired computer scientists in so many different ways

We can say: Logic is (in) the soul of Computer Science!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 61 / 63



61

The Soul of Computer Science Conclusions

Logic has fertilized Computer Science from the beginning

Logic brought many mathematicians, engineers, physicists, biologists...
to Computer Science

Logic has inspired computer scientists in so many different ways

We can say: Logic is (in) the soul of Computer Science!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 61 / 63



62

The Soul of Computer Science Future work

Encourage yourself and your students to get deep(er) into logic!

Encourage the Dean of your School to take logic seriously!

Prevent logic from disappearing of the academic curriculum!

Keep Computer Science alive and healthy !

Salvador Lucas (UPV) UCM 2016 October 26, 2016 62 / 63



62

The Soul of Computer Science Future work

Encourage yourself and your students to get deep(er) into logic!

Encourage the Dean of your School to take logic seriously!

Prevent logic from disappearing of the academic curriculum!

Keep Computer Science alive and healthy !

Salvador Lucas (UPV) UCM 2016 October 26, 2016 62 / 63



63

The Soul of Computer Science Future work

Thanks!

Salvador Lucas (UPV) UCM 2016 October 26, 2016 63 / 63


	The Soul of Computer Science
	80 years of Computer Science!
	The soul of Computer Science is Logic
	Hilbert and the Decision Problem
	Church's Thesis
	Turing machines
	Shannon wires Boolean logic
	von Neumann and the logical design of an electronic computer
	Floyd/Hoare's logical approach to program verification
	Kowalski's predicate logic as programming language
	Other declarative approaches
	Hoare's challenge of a verifying compiler
	Berners-Lee's semantic web challenge
	Conclusions
	Future work


