
Complete Controllable Distributed
Testing

R. M. Hierons
Brunel University London, UK

rob.hierons@brunel.ac.uk
http://people.brunel.ac.uk/~csstrmh

UCM April 2018

mailto:rob.hierons@brunel.ac.uk

Finite State Machines and MBT

UCM April 2018

Finite State Machines
• The behaviour of M in state si is defined by the (regular)

set of input/output sequences (traces) from si

UCM April 2018

s1

s2 s3

s4

s5

a/0

a/0

a/0 a/1

a/1

b/0

b/0

b/1

b/1

b/1

Implementation relations
• Assuming all models are completely-specified,

these are:
– Equivalence for deterministic FSMs.
– Language inclusion for nondeterministic FSMs.

• There are efficient algorithms for deciding these
properties, so:
– If we know that the SUT behaves like FSM N and we

have specification FSM M then we can determine
whether N conforms to M.

• We will focus on: deterministic FSMs.

UCM April 2018

Fault Domains

• A set of models that represent potential
behaviours of the system.

• Standard fault domains for testing from an
FSM M with n states:
– The SUT behaves like an unknown FSM N with at

most n states.
– The SUT behaves like an unknown FSM N with at

most m states (some m>n).

UCM April 2018

Complete test suites
• A test suite T is m-complete when testing against

M if:
– For every FSM N with no more than m states, if N

does not conform to M then there is a test sequence
in T that demonstrates this.

• Implicit: fixed input and output alphabets.

• If the SUT satisfies these conditions then such a
test suite determines correctness:
– If the SUT passes the test suite then either it is correct

or has more than m states.

UCM April 2018

Existence of m-complete test suites

• We can produce an m-complete test suite:
– For each FSM N with no more than m states we:

• Determine whether N conforms to specification M.
• If N does not conform to M then we add a test

sequence that demonstrates this.

• These steps are computable (and there are
finitely many FSMs to consider).

UCM April 2018

Smaller test suites

• There are more efficient algorithms.
• Many build test sequences from ‘parts’ that:

– Reach a state s.
– Distinguish two states s and s’ (or distinguish

every pair of states).

• For deterministic FSMs these ‘parts’ can be
produced in low-order polynomial time.

UCM April 2018

Summary: using a single tester

• For (deterministic) FSM specification M:
– We can efficiently decide whether an observation

is allowed by M (the Oracle Problem).
– We can efficiently produce tests to reach states or

distinguish states.
– We can efficiently decide whether an FSM N

conforms to M.
– We can generate an m-complete test suite for M.

UCM April 2018

Distributed Testing

UCM April 2018

Independent Testers

UCM April 2018

SUT

Tester 2
Tester 1

Tester 3

Consequences

• Each tester observes only the sequence of
interactions (local trace) at its port

• The tester at port 1 observes x1y1x1y1 and the tester
at port 2 observes y2 only.

UCM April 2018

Tester 1 SUT Tester 2
x1

x1

y1
y2

y1

What the testers observe

• Given global trace z, the tester at p observes a
local trace pp(z).

UCM April 2018

Tester 1 Tester 2
x1

x1

y1
y2

y1

Controllability problems

• This test has a controllability problem:
introduces nondeterminism into testing.

UCM April 2018

Tester 1 SUT Tester 2

Observability problems

• The following look the same

• Testers/users cannot ‘map’ output to input

UCM April 2018

Tester 1 Spec Tester 2 Tester 1 SUT Tester 2

x1 x1

x1x1

y1

y1

y1

y1

y2

y2

A simple output fault

• Input x1 detects the fault.

UCM April 2018

tester SUT tester tester Spec tester

x1 x1

y1
y1

y2

Test effectiveness is not monotonic

• However: x1x1 does not detect the fault.

UCM April 2018

tester SUT tester tester Spec tester

x1 x1

x1x1

y1

y1

y1

y1

y2

y2

Using an external network

• Sometimes we can overcome controllability
and observability problems.

UCM April 2018

tester SUT tester tester SUT tester

Distributed Testing and
Deterministic Finite State Machines

UCM April 2018

An allowed behaviour

• Given specification M, a trace is allowed if

UCM April 2018

9�0 2 L(M).�0 ⇠ �

�

The language defined by an FSM

• With distributed observations, this is:

• So, a behaviour is correct if

• N conforms to M if and only if

UCM April 2018

L(M) = {�0|⇤� ⇥ L(M).�0 � �}

L(N) � L(M)

� 2 L(M)

The language need not be regular

• The following ‘cheats’ – does not have any
inputs.

• Clearly, is not regular.

UCM April 2018

s1 s2

(y,-)

(-, y’)

L(M)

The Oracle Problem in Distributed
Testing

• We observe projections

• We want to know whether the following holds:

• Essentially, a membership problem.

• It is decidable, since we could:
– Form all interleavings of the projections.
– For each such global trace, determine whether the global trace is allowed by

the specification.
• This leads to a combinatorial explosion.

UCM April 2018

�1, . . . ,�m

�1 . . .�m � L(M)

9� 2 L(M).8p 2 P.⇡p(�) = �p

Results
• For single port: Oracle Problem can be solved in low order

polynomial time.

• For DFSMs in distributed testing:
• Can be solved in polynomial time for controllable test

sequences; otherwise NP-complete.

• For NFSMs:
• NP-complete even for controllable testing.

• However, problems become polynomial if we place bounds
on the number of ports.

UCM April 2018

Distinguishing FSMs: result

• Similar to a multi-player game problem.

• It is undecidable whether N conforms to M
(and so also whether N is faulty).

• Consequence: there is no general algorithm
for generating finite m-complete test suites
for distributed testing.

UCM April 2018

Controllable testing

UCM April 2018

This is not controllable

UCM April 2018

tester SUT tester

Examples of controllability

• Two controllable scenarios

UCM April 2018

tester Spec tester tester Spec tester

x x

x

x’

What makes an input sequence
controllable?

• In controllable testing:
– We can follow the input of x in state s by input x’

if:
• x and x’ are at the same port; or
• input x’ is at a port p that receives output in response

to x.
– The first case relies on the atomicity of

input/output pairs.

UCM April 2018

Distinguishing states s and s’
• If we restrict to controllable testing we need:

– (input sequence) x causes no controllability problems from
s and s’.

– x leads to different sequences of interactions, for s and s’,
at some port.

• We say that x locally s-distinguishes s and s’.
• If no input sequence locally distinguishes s and s’

they are locally s-equivalent.

UCM April 2018

Distinguishing two states
• Given port p and states s1 and s2 of a k-port FSM M

with n states:

– s1 and s2 are locally s-distinguishable by an input sequence
starting at p if and only if they are locally s-distinguished by
some such input sequence of length at most k(n-1).

• This bound is tight.
• The sequences can be found in low-order polynomial

time.

UCM April 2018

Complete testing

• We know that:
– There is no general algorithm for computing m-

complete test suites.
– There are benefits to using controllable test

sequences.

• We might:
– Try to achieve ‘as much as possible’ given that

testing is controllable.

UCM April 2018

c(m)-complete test suites

• Given FSM M we say that test suite T is c(m)-
complete if:
– All test sequences in T are controllable.
– For every FSM N with the same input/output

alphabets as M and at most m states:
• If N and M are locally s-distinguishable then some test

sequence in T achieves this.
• i.e. T distinguishes between M and an SUT

with at most m states if this is possible in
controllable distributed testing.

UCM April 2018

Generating c(m)-complete test
suites

UCM April 2018

Restricting attention to controllable
test sequences

• We would like to represent the set of
controllable test sequences.

• We will use a partial FSM Mmin to do this.

UCM April 2018

s0
x1/(�,y2)

//

x2/(�,y2)

✏✏

s1

x1/(y1,�)

��

x2/(y1,y2)

✏✏

s3

x2/(y1,y2)

HH

x1/(�,y2)
// s2

x2/(�,y2)

HH

x1/(y1,y2)

``

1

UCM April 2018

s{1,2}0

x1/(�,y2)
//

x2/(�,y2)

✏✏

s{1,2}1

x2/(y1,y2)

✏✏

x1/(y1,�)
//s{1}1

x1/(y1,�)

⇧⇧

s{2}3

x2/(y1,y2)

!!

s{1,2}2

x1/(y1,y2)

aa

x2/(�,y2)
//s{2}2

x2/(�,y2)

⇧⇧

s{1,2}3

x2/(y1,y2)

EE

x1/(�,y2)

OO

2

UCM April 2018

Results

• A path in M with label is controllable if and
only if Mmin has a path with label .

• So: Mmin captures ‘controllable testing’

UCM April 2018

�
�

Canonical FSMs

• Given FSM M, we can find:

– Minimal Mmin that is locally s-equivalent to M.

– Maximal (nondeterministic) Mmax. Created by
adding ‘chaos state’ to complete Mmin.

• We can find them efficiently.

UCM April 2018

Relevance of max and min machines

• Machine Mmin captures all of the traces that
FSM N has to implement to conform to M
(under s-equivalence).

• Machine Mmax contains all of the traces that
an SUT can have without being distinguishable
from M in controllable testing:
– We can examine Mmax to determine whether it is

acceptable to restrict attention to controllable test
cases.

UCM April 2018

Reaching states

• State s of M is reachable in controllable
testing if and only if:
– There is some P such that sP is reachable in Mmin

• Decidable in polynomial time.

UCM April 2018

Distinguishing states

• We have that and are distinguishable in
controllable testing if and only if:
– There is a port and input sequence x

starting at such that x s-distinguishes and .

• Decidable in polynomial time.

UCM April 2018

p 2 P \ P 0

sP
0

2sP1

s1 s2p

Refinement and Testing

UCM April 2018

FSM M

Implementation N

FSM Mmax

s-equivalence reduction

Generating a c(m)-complete test suite

• It is now straightforward:
– We generate an m-complete test suite from

partial FSM Mmin.
• or

– We generate an m-complete test suite from
nondeterministic FSM Mmax.

• There are standard algorithms that can be
adapted (e.g. using state counting).

UCM April 2018

Some papers (FSMs)
– B. Sarikara and G. Von Bochmann, Synthesis and Specification Issues in Protocol

Testing, IEEE Transactions on Communications, 32 4, pp. 389-395: 1984.
– R. Dssouli and G. von Bochmann. Error detection with multiple observers, Protocol

Specification, Testing and Verification V, pp. 483-494: 1985.
– R. Dssouli and G. von Bochmann,. Conformance testing with multiple observers,

Protocol Specification, Testing and Verification VI, pp. 217-229: 1986.

– R. M. Hierons and H. Ural. The effect of the distributed test architecture on the
power of testing, The Computer Journal, 51 4, pp. 497-510: 2008.

– R. M. Hierons: Canonical Finite State Machines for Distributed Systems, Theoretical
Computer Science, 411 2, pp. 566-580: 2010.

– R. M. Hierons: Verifying and Comparing Finite State Machines for Systems that
have Distributed Interfaces, IEEE Transactions on Computers, 62 8, pp. 1673-1683,
2013.

– R. M. Hierons: Oracles for Distributed Testing, IEEE Transactions on Software
Engineering, 38 3, pp. 629-641, 2012.

– R. M. Hierons: Generating Complete Controllable Test Suites for Distributed Testing,
IEEE Transactions on Software Engineering, 41 3, pp. 279-293 , 2015.

– R. M. Hierons and Uraz C. Turker: Distinguishing Sequences for Distributed Testing:
Adaptive Distinguishing Sequences, The Computer Journal (to appear).

UCM April 2018

Thanks

• Many people have contributed through
discussions and collaboration, including:
– Ana Cavalcanti, Haitao Dan, Christophe Gaston,

Marie-Claude Gaudel, Pascale Le Gall, Mercedes
Merayo, Manuel Nunez, Uraz Turker, Hasan Ural,
Husnu Yenigun.

• The work was partially funded by the EU
under the TAROT network.

UCM April 2018

Conclusions

• If a system has distributed interfaces/ports
then we have different implementation
relations.

• This can affect testing and also development.
• We have new notions of correctness and

corresponding test generation algorithms.

• Restricting attention to controllable test
sequences brings practical benefits.

UCM April 2018

Questions?

UCM April 2018

UCM April 2018

Solving the Oracle Problem

• We observe projections
• We can form a finite automata whose

language is the set of corresponding global
traces (the oracle problem is then FA
intersection).

• A state is a vector whose ith component is the
latest event from

UCM April 2018

�1, . . . ,�m

�i

Example

• Two ports, local traces aa’, b.

UCM April 2018

a, ✏ a
//

b

✏✏

aa0, ✏

b

✏✏

✏, ✏

a

>>

b

a, b
a0

// aa0, b

✏, b

a

OO

How this works (1)
• We define a partial order < on events in : a < a’ if

(from the observations) we know that a must have
been before a’.

• In this case:
– Two events are related iff they are at the same port.

• Important property:
– For a to occur we must have all events before a (under <).
– Downwardly closed sets correspond to sets of events that

can form a prefix of a trace equivalent to .
• Note – label events to make them unique if required.

UCM April 2018

�

�

How this works (2)

• We can also construct the FA as:
– States are downwardly closed sets of event.
– {} is the initial state
– The complete set of events is the final state.
– There is a transition from set E to set E’ with event

e iff {e} = E’ \ E.

UCM April 2018

• The number of states of the FA is the product
of the lengths of the (plus 1)

• So, exponential space is required.

• However, polynomial time if m is bounded
above.

UCM April 2018

�i

Testing is weaker
– We cannot locally s-distinguish s1 and s4 but
x1x2 can distinguish them.

UCM April 2018

s1 s2

s4 s3

x1/(y1,-)

x1/(y1,-)

x1/(y1,-)

x1/(y1,-)

x2/(-, y2)

x2/(-, y2)

x2/(y1, y2) x2/(y1,-)

Efficiency issue

• Many test generation methods use:
– Sets of pairwise distinguishable states.

• Size of test suite depends on how large these
are.

UCM April 2018

Graphs and cliques

• Given an undirected graph G=(V,E) we can
generate an FSM M as follows:
– Each vertex vi in V is represented by a

corresponding state si of M.
– We can distinguish states si and sj if and only if

there is an edge between vi and vj.
• Consequence:

– Finding a maximal set of pairwise distinguishable
states of M is equivalent to finding a maximal
clique of G.

UCM April 2018

Consequence

• The problem of finding largest sets of pairwise
distinguishable states is NP-hard.

• There are potential efficiency issues.
• Note:

– This result also holds for single-port testing from a
nondeterministic FSM or a partial FSM.

UCM April 2018

Copies of states

• Let us suppose that:
– t is the transition (s’,s,x/y).
– P is the set of ports involved (p is in P if x is at p and/or

y contains output at p).
• We will represent the situation ‘after t’ by state:

sP

• The state sP denotes the situation in which:
– The FSM is in state s and can receive input at any port

in P in controllable testing.

UCM April 2018

Transitions leaving a ‘new state’

• Let us suppose that:
– t is the transition (s,s’,x/y).

• We will include a copy of t from every state of the
form sP such that:
• Input x is at a port in P.

– We also include an initial state (initial state of
M, input at any port).

– The combination defines the FSM Mmin

UCM April 2018

