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Finite State Machines
• The behaviour of M in state si is defined by the (regular) 

set of input/output sequences (traces) from si
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Implementation relations
• Assuming all models are completely-specified, 

these are:
– Equivalence for deterministic FSMs.
– Language inclusion for nondeterministic FSMs.

• There are efficient algorithms for deciding these 
properties, so:
– If we know that the SUT behaves like FSM N and we 

have specification FSM M then we can determine 
whether N conforms to M.

• We will focus on: deterministic FSMs.
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Fault Domains

• A set of models that represent potential 
behaviours of the system.

• Standard fault domains for testing from an 
FSM M with n states:
– The SUT behaves like an unknown FSM N with at 

most n states.
– The SUT behaves like an unknown FSM N with at 

most m states (some m>n).
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Complete test suites
• A test suite T is m-complete when testing against 

M if:
– For every FSM N with no more than m states, if N 

does not conform to M then there is a test sequence 
in T that demonstrates this.

• Implicit: fixed input and output alphabets.

• If the SUT satisfies these conditions then such a 
test suite determines correctness:
– If the SUT passes the test suite then either it is correct 

or has more than m states.
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Existence of m-complete test suites

• We can produce an m-complete test suite:
– For each FSM N with no more than m states we:

• Determine whether N conforms to specification M.
• If N does not conform to M then we add a test 

sequence that demonstrates this.

• These steps are computable (and there are 
finitely many FSMs to consider).
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Smaller test suites

• There are more efficient algorithms.
• Many build test sequences from ‘parts’ that:

– Reach a state s.
– Distinguish two states s and s’ (or distinguish 

every pair of states).

• For deterministic FSMs these ‘parts’ can be 
produced in low-order polynomial time.
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Summary: using a single tester

• For (deterministic) FSM specification M:
– We can efficiently decide whether an observation 

is allowed by M (the Oracle Problem).
– We can efficiently produce tests to reach states or 

distinguish states.
– We can efficiently decide whether an FSM N

conforms to M.
– We can generate an m-complete test suite for M.
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Distributed Testing
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Independent Testers
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Consequences

• Each tester observes only the sequence of 
interactions (local trace) at its port

• The tester at port 1 observes x1y1x1y1 and the tester 
at port 2 observes y2 only.
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What the testers observe

• Given global trace z, the tester at p observes a 
local trace pp(z).
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Controllability problems

• This test has a controllability problem: 
introduces nondeterminism into testing.
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Observability problems

• The following look the same

• Testers/users cannot ‘map’ output to input
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A simple output fault

• Input x1 detects the fault. 
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Test effectiveness is not monotonic

• However: x1x1 does not detect the fault. 
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Using an external network

• Sometimes we can overcome controllability 
and observability problems.

UCM April 2018

tester SUT tester tester SUT tester



Distributed Testing and 
Deterministic Finite State Machines
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An allowed behaviour

• Given specification M, a trace     is allowed if 
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The language defined by an FSM

• With distributed observations, this is:

• So, a behaviour is correct if

• N conforms to M if and only if
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The language need not be regular

• The following ‘cheats’ – does not have any 
inputs. 

• Clearly,           is not regular.
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The Oracle Problem in Distributed 
Testing 

• We observe projections

• We want to know whether the following holds:

• Essentially, a membership problem.

• It is decidable, since we could:
– Form all interleavings of the projections.
– For each such global trace, determine whether the global trace is allowed by 

the specification.
• This leads to a combinatorial explosion.
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Results
• For single port: Oracle Problem can be solved in low order 

polynomial time.

• For DFSMs in distributed testing:
• Can be solved in polynomial time for controllable test 

sequences; otherwise NP-complete.

• For NFSMs:
• NP-complete even for controllable testing.

• However, problems become polynomial if we place bounds 
on the number of ports.
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Distinguishing FSMs: result

• Similar to a multi-player game problem.

• It is undecidable whether N conforms to M 
(and so also whether N is faulty).

• Consequence: there is no general algorithm 
for generating finite m-complete test suites 
for distributed testing.
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Controllable testing
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This is not controllable
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Examples of controllability

• Two controllable scenarios
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What makes an input sequence 
controllable?

• In controllable testing:
– We can follow the input of x in state s by input x’ 

if:
• x and x’ are at the same port; or
• input x’ is at a port p that receives output in response 

to x.
– The first case relies on the atomicity of 

input/output pairs.
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Distinguishing states s and s’
• If we restrict to controllable testing we need:

– (input sequence) x causes no controllability problems from 
s and s’.

– x leads to different sequences of interactions, for s and s’, 
at some port.

• We say that x locally s-distinguishes s and s’.
• If no input sequence locally distinguishes s and s’

they are locally s-equivalent.
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Distinguishing two states
• Given port p and states s1 and s2 of a k-port FSM M

with n states:

– s1 and s2 are locally s-distinguishable by an input sequence 
starting at p if and only if they are locally s-distinguished by 
some such input sequence of length at most k(n-1).

• This bound is tight.
• The sequences can be found in low-order polynomial 

time.
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Complete testing

• We know that:
– There is no general algorithm for computing m-

complete test suites.
– There are benefits to using controllable test 

sequences.

• We might:
– Try to achieve ‘as much as possible’ given that 

testing is controllable.
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c(m)-complete test suites

• Given FSM M we say that test suite T is c(m)-
complete if:
– All test sequences in T are controllable.
– For every FSM N with the same input/output 

alphabets as M and at most m states:
• If N and M are locally s-distinguishable then some test 

sequence in T achieves this.
• i.e. T distinguishes between M and an SUT 

with at most m states if this is possible in 
controllable distributed testing.
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Generating c(m)-complete test 
suites
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Restricting attention to controllable 
test sequences

• We would like to represent the set of 
controllable test sequences.

• We will use a partial FSM Mmin to do this.
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Results

• A path in M with label    is controllable if and 
only if Mmin has a path with label    .

• So: Mmin captures ‘controllable testing’ 
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Canonical FSMs

• Given FSM M, we can find:

– Minimal Mmin that is locally s-equivalent to M.

– Maximal (nondeterministic) Mmax. Created by 
adding ‘chaos state’ to complete Mmin.

• We can find them efficiently.
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Relevance of max and min machines

• Machine Mmin captures all of the traces that 
FSM N has to implement to conform to M
(under s-equivalence).

• Machine Mmax contains all of the traces that 
an SUT can have without being distinguishable 
from M in controllable testing:
– We can examine Mmax to determine whether it is 

acceptable to restrict attention to controllable test 
cases.
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Reaching states

• State s of M is reachable in controllable 
testing if and only if:
– There is some P such that sP is reachable in Mmin

• Decidable in polynomial time.
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Distinguishing states

• We have that        and      are distinguishable in 
controllable testing if and only if:
– There is a port                         and input sequence x 

starting at     such that x s-distinguishes      and      .

• Decidable in polynomial time.
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Refinement and Testing
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Generating a c(m)-complete test suite

• It is now straightforward:
– We generate an m-complete test suite from 

partial FSM Mmin.
• or

– We generate an m-complete test suite from 
nondeterministic FSM Mmax.

• There are standard algorithms that can be 
adapted (e.g. using state counting).
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Conclusions

• If a system has distributed interfaces/ports 
then we have different implementation 
relations.

• This can affect testing and also development.
• We have new notions of correctness and 

corresponding test generation algorithms.

• Restricting attention to controllable test 
sequences brings practical benefits.
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Questions?
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Solving the Oracle Problem

• We observe projections
• We can form a finite automata whose 

language is the set of corresponding global 
traces (the oracle problem is then FA 
intersection).

• A state is a vector whose ith component is the 
latest event from
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Example

• Two ports, local traces aa’, b.
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How this works (1)
• We define a partial order < on events in     : a < a’ if 

(from the observations) we know that a must have 
been before a’.

• In this case:
– Two events are related iff they are at the same port.

• Important property:
– For a to occur we must have all events before a (under <).
– Downwardly closed sets correspond to sets of events that 

can form a prefix of a trace equivalent to     .
• Note – label events to make them unique if required.
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How this works (2)

• We can also construct the FA as:
– States are downwardly closed sets of event.
– {} is the initial state
– The complete set of events is the final state.
– There is a transition from set E to set E’ with event 

e iff {e} = E’ \ E.
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• The number of states of the FA is the product 
of the lengths of the       (plus 1)

• So, exponential space is required.

• However, polynomial time if m is bounded 
above. 
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Testing is weaker
– We cannot locally s-distinguish s1 and s4 but 
x1x2 can distinguish them.
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Efficiency issue

• Many test generation methods use:
– Sets of pairwise distinguishable states.

• Size of test suite depends on how large these 
are.
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Graphs and cliques

• Given an undirected graph G=(V,E) we can 
generate an FSM M as follows:
– Each vertex vi in V is represented by a 

corresponding state si of M.
– We can distinguish states si and sj if and only if 

there is an edge between vi and vj.
• Consequence:

– Finding a maximal set of pairwise distinguishable 
states of M is equivalent to finding a maximal 
clique of G.
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Consequence

• The problem of finding largest sets of pairwise 
distinguishable states is NP-hard.

• There are potential efficiency issues.
• Note:

– This result also holds for single-port testing from a 
nondeterministic FSM or a partial FSM.
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Copies of states

• Let us suppose that:
– t is the transition (s’,s,x/y).
– P is the set of ports involved (p is in P if x is at p and/or 

y contains output at p).
• We will represent the situation ‘after t’ by state:

sP

• The state sP denotes the situation in which:
– The FSM is in state s and can receive input at any port 

in P in controllable testing.
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Transitions leaving a ‘new state’

• Let us suppose that:
– t is the transition (s,s’,x/y).

• We will include a copy of t from every state of the 
form sP such that:
• Input x is at a port in P.

– We also include an initial state (initial state of 
M, input at any port).

– The combination defines the FSM Mmin
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