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Academic Profile

• Worked as a Research Associate in the Department of Naval Architecture, Ocean and Marine Engineering. 

This post relates to the EU funded ROMEO (Reliable OM decision tools and strategies for high LCoE

reduction on offshore wind) project that includes the large number of Industrial partners such as Siemen 

Gamesa, Adwen, RAMBOLL.

RESEARCH ASSOCIATE, UoS (2019 – 2020)

Marie Curie Researcher , UoS (2016 – 2019)

• Worked on AWESOME project where I developed new novel techniques for extensive SCADA data analysis 

and condition monitoring based on machine learning algorithms to enhanced reliability, minimize downtime 

and reduce O&M costs. 

Assistant Professor (2011-2016)

• Worked Assistant Professor at the Jadavpur University (IEE) and Vellore Institute of Technology Vellore School of 

Electrical Engineering) . 

RESEARCH FELLOW, UoE (2020 – PRESENT)

• Closely working with Alan Turing Fellows (internally and externally) to develop interdisciplinary 

research ideas (e.g., Energy, Transport, policy and so on) in collaboration with domain experts around 

the university, and to underpin early-stage studies leading to future bids for research funding.

Visiting Researcher, UCLM, Spain (2018 – 2018)

• Worked as a visiting researcher at the Renewable Energy Research Institute, Universidad de Castilla-La Mancha 

(UCLM), Spain. During this visit, I worked with interdisciplinary teams (includes academics and industries) in a 

complex wind turbine condition monitoring problems that lead to improving the capabilities of algorithms to 

predict the failure quickly without any false positives.

Visiting Researcher, Wood plc (2016 – 2017)

• Worked closely related to wind resource assessment in which in-depth analysis of large SCADA dataset involves 

such as wind data gathering, data analyses, energy estimation using machine learning techniques.



Overview of wind turbines

A group of wind turbines is called a wind farm. On a wind farm, turbines 

provide bulk power to the electrical grid. These turbines can be found on land 

(onshore) or at sea (offshore).



Unexpected equipment failure in a system can interrupt the production schedule

and lead to costly downtime that can impact your bottom line significantly.

Motivation



Challenges: Catastrophic failures

Critical subassemblies in terms of failure rate

 Catastrophic failures causes significant downtime and high maintenance costs.

 Dealing with big data: high computation costs and high pre-processing resources

 Applications of data-driven technologies still limited to real worlds.  



Algorithms and Components Failures



What is Predictive maintenance?

Predictive maintenance is a proactive maintenance strategy that uses condition monitoring tools to detect 

various deterioration signs, anomalies, and equipment performance issues. Based on those measurements,

the organization can run pre-built predictive algorithms to estimate when a piece of equipment might fail so 

that maintenance work can be performed just before that happens.

 The goal of predictive maintenance is to optimize the usage of your maintenance resources. By knowing whena 

certain part will fail, maintenance managers can schedule maintenance work only when it is actually needed, 

simultaneously avoiding excessive maintenance and preventing unexpected equipment breakdown.

 When implemented successfully, predictive maintenance lowers operational costs,minimizes downtime 

issues, and improves overall asset health and performance.



Predictive Maintenance Workflow

Predictive maintenance Vs Preventive Maintenance

Predictive Maintenance (PdM) - a maintenance strategy based on measuringequipment condition in order to predict whether 

failure will occur during some future period, thus permitting the appropriate preventive actions to be implemented to avoid the 

consequences of that failure.

Preventive Maintenance (PM) – a maintenance strategy designed to prevent anunwanted consequence of failure including 

condition-directed, time-directed, interval-directed, and failure finding tasks.



Applying predictive algorithms

• The most important part of predictive maintenance (and arguably the hardest one) is building 

predictive (a.k.a prognostic) algorithms.

• The more variables you can use, the more accurate your models will be. This is why building 

predictive models is an iterative process.



 
Predictive Maintenance Corrective Maintenance 

Description It is carried out at predetermined intervals. It 

covers multiple types of maintenance done 

before a failure has occurred. 

It aims to reduce the probability of breakdown 

or degradation of a piece of equipment. 

With corrective maintenance, issues are caught 

‘just in time. It is carried out following the 

detection of an anomaly. 

It is aimed at catching and fixing problems before 

they happen.  

Advantages Reduces incidents of operating fault and 

eliminates unplanned shutdown time, having 

less impact on the production. 

It gives technicians the possibility to perform their 

interventions without delay. 

As issues are found just-in-time, it reduces 

emergency repairs and increases employee safety. 

Maybe cost-effective until catastrophic faults. 

Disadvantages Investment required for maintenance program 

is greater than the cost of downtime and repair 

in case of faults in most cases. 

Unplanned corrective maintenance can get costly 

as it can lead to costs that could not have been 

anticipated. 

 

Predictive Or Corrective ?



Limitation of Predictive maintenance 

• Requires condition-monitoring equipment and software to implement and run.

• You need a specialized set of skills to understand and analyse the condition-monitoring data

• High upfront costs 

• Can take a while to set up and implement.



Predictive maintenance strategy should be proportional to failure consequences:

-Safety consequences: We must do whatever it takes to prevent these

-Operational consequences: Its probably worth some effort to prevent these

- Economic consequences: There’s no reason to try to prevent these; the optimum maintenance strategy 

is “run to failure”

Is Predictive maintenance worth doing?



Time-directed maintenance (TDM)

Alternatives to Predictive maintenance

Attempts to avoid failures by monitoring component condition to detect 

potential failures before they became catastrophic failures.

Condition-directed maintenance (CDM)

Attempts to avoid failures by retiring, replace or overhauling 

components at specific age.



Condition monitoring

By definition, condition monitoring is a process of monitoring the performance of a 

machine, in order to identify potential changes which are indicative of a developing 

fault before machine reaches a stage where catastrophic damage occurs.



SCADA data-based condition monitoring



ROMEO (Reliable O&M decision tools and strategies for high LCoE reduction on Offshore wind), is seeking to 

reduce offshore O&M costs through the development of advanced monitoring systems and strategies, aiming to 

move from corrective and calendar based maintenance to a condition based maintenance, through analysing the real 

behaviour of the main components of wind turbines (WTGs).



 To develop better O&M planning methodologies of wind farms for maximizing its revenue

 To optimise the maintenance of wind turbines by prognosis of component failures and

 To develop new and better cost-effective strategies for Wind Energy O&M.



Yaw failures are catastrophic in nature cause high economic loss due to low power generation. Recent statistical figures indicating downtime 

caused by yaw failures comprised 13.3% of the total downtime, while the yaw system failure rate comprised 12.5%. The cost associated 

with such failures is high due to resulting unplanned maintenance and causing annual energy production (AEP) loss up to 2%, resulting in 

40,000 GBP/ yr, revenue loss for the wind farm project. 

Yaw Misalignment – A Case Study

Condition monitoring 



TimeStamp Wind speed

(Avg.) m/sec

Power

(Avg.) kW

Ambient 

temp

(Avg.) ℃

Atmospheric 

pressure

(Avg.)  mbar

Rotor speed

(Avg.) m/sec

Blade pitch 

angle (Avg.) ℃

12/ 03/2009  10:00:00 5.05 270.93 7.44 986.35 9.57 -0.99

12/ 03/2009  10:10:00 5.07 230.45 7.85 986.45 8.75 -0.99

12/ 03/2009 10:20:00 6.09 150.72 7.90 986.47 7.98 -0.99

12/ 03/2009  10:30:00 6.10 255.20 8.40 986.55 9.30 -0.99

12/ 03/2009  10:40:00 6.15 240.15 8.80 986.58 8.35 -0.99

Absolute yaw error in time series yaw misalignment via wind direction and nacelle direction in time series



Unhealthy data due to yaw misalignments will be assessed in terms of a probabilistic approach where each new data 

point is compared with the constructed GP reference power curve and if these data points lie outside of the confidence 

intervals of GP reference power curve then this indicates anomalous behavior and possible fault



Model Alarm detected Time taken to identify the fault

Online  power curve model 3:00 on  15/4/2009 6 hours

Probabilistic assessment using binning 00:50 on 15/4/2009 ~ 4 hours

Probabilistic assessment using GP 22:30 on 14/4/2009 1.5 hours

Using the GP algorithm, an alarm would have been raised at 22:30 on 14/04/2009, just 1.5 hrs after the 

start of the yaw fault at 21:00 on 14/04/2009.

R. K. Pandit and D. Infield, "SCADA-based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring 

purposes," in IET Renewable Power Generation, vol. 12, no. 11, pp. 1249-1255, 20 8 2018, doi: 10.1049/iet-rpg.2018.0156.

Commercialised



Ravi Kumar Pandit, David Infield and Athanasios Kolios. Gaussian Process Power Curve Models 

Incorporating Wind Turbine Operational Variables. Energy Reports, vol 6, 2020,pp.1658-1669, 

ISSN 2352-4847. doi:10.1016/j.egyr.2020.06.018.

Big data features engineering

TimeStamp Wind speed

(Avg.) m/sec

Power

(Avg.) kW

Ambient 

temp

(Avg.) ℃

Atmospheric 

pressure

(Avg.)  mbar

Rotor speed

(Avg.) m/sec

Blade pitch 

angle (Avg.) ℃

12/ 03/2009  10:00:00 5.05 270.93 7.44 986.35 9.57 -0.99

12/ 03/2009  10:10:00 5.07 230.45 7.85 986.45 8.75 -0.99

12/ 03/2009 10:20:00 6.09 150.72 7.90 986.47 7.98 -0.99

12/ 03/2009  10:30:00 6.10 255.20 8.40 986.55 9.30 -0.99

12/ 03/2009  10:40:00 6.15 240.15 8.80 986.58 8.35 -0.99



R. Pandit, D. Infield and T. Dodwell, "Operational Variables for Improving Industrial Wind Turbine Yaw Misalignment 

Early Fault Detection Capabilities Using Data-Driven Techniques," in IEEE Transactions on Instrumentation and 

Measurement, vol. 70, pp. 1-8, 2021, Art no. 2508108, doi: 10.1109/TIM.2021.3073698.

Early Failure detections 



WTs SCADA datasets time 

period

Total 

number of 

data points

Average 

monthly 

temperature

(℃)

Standard 

density

( Τ𝑘𝑔 𝑚3)

Mean absolute 

difference

( Τ𝑘𝑔 𝑚3)

A 1/02/2010 -28/02/2010 4032 -5.2775 1.225 0.102

B 1/08/2010 -31/08/2010 4400 29.7791 1.225 0.061

The air density correction shall be applied when the site 

density differs from the standard value (1.225 Τ𝑘𝑔 𝑚3) by 

more than 0.05 Τ𝑘𝑔 𝑚3

Site Standard density Mean absolute density difference Total number of data points used 

A 1.225 0.099 1114

B 1.225 0.062 1116

To limit the size of the data set, analysis will be restricted to the 

wind speed range of 8 to 14 m/s since the number of data points are 

sufficient within this range and also the number of data points 

resulting for sites A and B are almost the same.

Importance of Air density for uncertainty 

quantification 

ρ = 1.225
288.15

T

B

1013.3

VC = VM
ρ

1.225

1

3

Uncertainty Improvement



No pre-correction but with air 

density include within the GP model

Uncertainty assessment in terms of confidence intervals for different 

air density approaches with limited data set for site A

Uncertainty assessment in terms of confidence intervals for 

different air density approaches with limited data set for site B

Pandit, RK, Infield, D, Carroll, J. Incorporating air density into a Gaussian process wind turbine power curve model for 

improving fitting accuracy. Wind Energy. 2019; 22: 302–315. https://doi.org/10.1002/we.2285

Commercialised

https://doi.org/10.1002/we.2285


GP models WT- A WT-B

MAE MSE MAPE RMSE 𝑅2 MAE MSE MAP

E

RMS

E

𝑅2

No pre-

correction and 

air density not 

included in the 

GP model

18.012 568.075 9.439 23.834 0.878 5.196 43.094 2.469 6.564 0.982

No pre-

correction but 

with air density 

include within 

the GP model

16.813 506.967 8.958 22.515 0.891 4.626 33.012 2.204 5.745 0.986

Pre-correction 

applied but 

without air 

density in the 

GP model

18.501 598.094 9.680 24.456 0.872 4.736 35.463 2.251 .955 0 .985

With pre-

correction and 

air density 

included with 

the GP

16.868 510.016 8.990 22.583 0.891 4.648 33.344 2.215 5.774 0.986

Statistical measures of GP fitted models under different air density approaches



O&M module for offshore

The financial appraisal of offshore wind farms is a demanding task which requires a number of factors to be considered in order to ensure that relevant KPIs are

estimated in a meaningful way. Key elements of Capital expenditures (CAPEX), Operating expenditures (OPEX), Financial expenditures (FINEX) and the

amount of energy production should be modelled through appropriate methods, based on sound assumptions. In addition, consideration of the service life

emissions of renewable energy projects are meaningful so as to evaluate their actual contribution to sustainable development.

Data-Driven maintenance module

Athanasios Kolios, Julia Walgern, Sofia Koukoura, Ravi Pandit and Juan Chiachio-Ruano. openO&M: Robust O&M open access tool for improving 

operation and maintenance of offshore wind turbines. Proceedings of the 29th European Safety and Reliability Conference (ESREL), January 2020. 

ISBN: 978-981-11-2724-3. doi:10.3850/978-981-11-2724-3_1134-cd.



O&M related outputs (Energy generated by each wind

turbine in its whole life, Breakdown of windfarm downtimes,

O&M costs throughout the service life of the wind farm,

contribution of downtime categories to the highest and

lowest availability locations, Monthly power production

losses as a function of time for the location with coordinates,

Sensitivity analysis of key design inputs)

Mark Richmond, Ravi Pandit, Sofia Koukoura and Athanasios Kolios. Effect of weather forecast modelling uncertainty to the availability 

assessment of offshore wind farms. Submitted to Renewable Energy on October 2020. (Journal) 

Ravi Pandit, Athanasios Kolios and David Infield. Data-driven weather forecasting models performance comparison for improving offshore 

wind turbine availability and maintenance. IET Renewable Power Generation , August, 2020. doi: 10.1049/iet-rpg.2019.0941.

Development stage



Challenges

• Big data computational difficulty

• Data-driven classic problems

• Data availability

• Data security



Data analytics 𝑥 =
• Carbon footprint ↓

• Achieve EU net zero target sooner.

• Costs ↓

Data Science/ML for Offshore Wind 



Future map for offshore wind

 Logistics cost and transport cost

 Decision making process

 Automated health monitoring process

 Energy efficient Algorithm: space, time.

 Big data computation 

Digitalization of  Offshore Wind

Fig: Life cycle of a wind farms

Objectives



Cost-effective 
algorithms

data-driven models such as Machine 
learning and deep learning.

Forecasting & 
Prediction

Forecasting short-term, 
long-term: relevant 

parameters. Real-time condition 
monitoring

Less human intervention, Avoid 
catastrophic damages .

Big Data analysis

data clustering, digital twins, 
Cloud computation, 

Correlation among big 
datasets. 

Decommissioning & 

Asset life extensions

Near to end of warranty 
period, carbon foot prints.

Offshore Wind

EngineeringComputer science

data analytics

Research Areas 

• Decision making • Minimising cost • Risk & Reliability • Big data computation

Digitalisation





Any questions ?


