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Overview of wind turbines
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A group of wind turbines is called a wind farm. On a wind farm, turbines
provide bulk power to the electrical grid. These turbines can be found on land
(onshore) or at sea (offshore).
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Unexpected equipment failure in a system can interrupt the production schedule
and lead to costly downtime that can impact your bottom line significantly.
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Computer Science

Onshore Offshore

= Blades & hub

= Drivetrain

= Pitch

= Gearbox

= Generator

u Control system
= Yaw

= Hydraulic
\\n"aullg = Sensors
Yaw motor Nacelle = Electrical

High-speed

/ BladesTower

H shaft

Critical subassemblies in terms of failure rate

v' Catastrophic failures causes significant downtime and high maintenance costs.
v" Dealing with big data: high computation costs and high pre-processing resources
v Applications of data-driven technologies still limited to real worlds.



|? OM E O Algorithms and Components Failures

Category A

1. Catastrophic blade failure
2. Catastrophic hub failure
3. Main bearing failure
4. Main shaft failure
5, Gearbox failure
6. Shaft-gearbox coupling failure
7. Generator failure
8. Tower failure
9. Foundation failure
10. Metrological system failure
11, Premature brake activation
12, Electrical system failure

Category B

1. Cracks in blades

2. Dirt/ice built up on blades

3. Hub spinng on shafl

4. Blade pitch fault

5. Shaft misulignment

6. Yaw fault

7. Cable twist

8. Error in wind speed/direction
measurement

Category C

|, Controller failure

2. Hydraulic system failure

3, Mechanical brake failure
4. Pitching system failure

Maintenance

Preventive
. Model-based
(time-based)
Detection

Condition (real-time)

Monitoring Data-driven

(condition-based)

Prediction

(future)

Corrective
. Knowledge-based
(failure based)



A ROMEO What is Predictive maintenance? A ESON\E

Predictive maintenance is a proactive maintenance strategy that uses condition monitoring tools to detect
various deterioration signs, anomalies, and equipment performance issues. Based on those measurements,
the organization can run pre-built predictive algorithms to estimate when a piece of equipment might fail so
that maintenance work can be performed just before that happens.

®  The goal of predictive maintenance is to optimize the usage of your maintenance resources. By knowing whena
certain part will fail, maintenance managers can schedule maintenance work only when it is actually needed,
simultaneously avoiding excessive maintenance and preventing unexpected equipment breakdown.

®  When implemented successfully, predictive maintenance lowers operational costs,minimizes downtime
issues, and improves overall asset health and performance.
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Predictive maintenance Vs Preventive Maintenance

Predictive Maintenance (PdM) - a maintenance strategy based on measuringequipment condition in order to predict whether
failure will occur during some future period, thus permitting the appropriate preventive actions to be implemented to avoid the
consequences of that failure.

Preventive Maintenance (PM) — a maintenance strategy designed to prevent anunwanted consequence of failure including
condition-directed, time-directed, interval-directed, and failure finding tasks.

Determine Implement Create triggers
conditional monitoring tools for standards
standards & processes failures

Perform Create work order

corresponding when trigger
maintenance condition met

Collect and
monitor data

Predictive Maintenance Workflow
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Applying predictive algorithms

A

Q

VESOME

The most important part of predictive maintenance (and arguably the hardest one) is building
predictive (a.k.a prognostic) algorithms.
+ The more variables you can use, the more accurate your models will be. This is why building
predictive models is an iterative process.
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Sensor data from machine on which algorithm is deployed
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Predictive Or Corrective ?

Q

AWESOME

Predictive Maintenance

Corrective Maintenance

Description

Advantages

Disadvantages

It is carried out at predetermined intervals. It
covers multiple types of maintenance done
before a failure has occurred.

It aims to reduce the probability of breakdown
or degradation of a piece of equipment.

Reduces incidents of operating fault and
eliminates unplanned shutdown time, having
less impact on the production.

Investment required for maintenance program
is greater than the cost of downtime and repair
in case of faults in most cases.

With corrective maintenance, issues are
‘just in time. It is carried out follown
detection of an anomaly.

It is aimed at catching and fixing problems
they happen.

It gives technicians the possibility to perfor
interventions without delay.

As issues are found just-in-time, it r
emergency repairs and increases employee
Maybe cost-effective until catastrophic faul
Unplanned corrective maintenance can get
as it can lead to costs that could not hav
anticipated.
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Limitation of Predictive maintenance

« Requires condition-monitoring equipment and software to implement and run.
« You need a specialized set of skills to understand and analyse the condition-monitoring data
» High upfront costs

» (Can take a while to set up and implement.
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Is Predictive maintenance worth doing?

Predictive maintenance strategy should be proportional to failure consequences:
-Safety consequences: We must do whatever it takes to prevent these
-Operational consequences: Its probably worth some effort to prevent these

- Economic consequences: There’s no reason to try to prevent these; the optimum maintenance strategy
is “run to failure”
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Time-directed maintenance (TDM)

Attempts to avoid failures by retiring, replace or overhauling
components at specific age.

Condition-directed maintenance (CDM)

Attempts to avoid failures by monitoring component condition to detect
potential failures before they became catastrophic failures.



Condition monitoring A

A ROMEO ESOME
By definition, condition monitoring is a process of monitoring the performance of a
machine, in order to identify potential changes which are indicative of a developing

fault before machine reaches a stage where catastrophic damage occurs.

Advantages

Disadvantages

= CBM is performed while the asset
is working, which lessens the
chances of disruption to normal
operations

= Reduces the cost of asset failures
= Improves equipment reliability

= Minimizes unscheduled downtime
due to catastrophic failure

= Minimizes time spent on

maintenance

= Minimizes overtime costs by
scheduling the activities

= Minimizes requirement for
emergency spare ports

= Optimizes maintenance intervals
(more optimal than manufacturer
recommendations)

= Improves worker safety

= Reduces the chances of collateral
damage to the system

Condition monitoring test
equipment is expensive to install,
and databases cost money to
analyze

Cost to train staff-you need a
knowledgeable professional to
analyze the data and perform the
work

Fatigue or uniform wear failures
are not easily detected with CBM
measurements

Condition sensors may not survive
in the operating environment

May require asset modifications to
retrofit the system with sensors

Unpredictable maintenance
periods

Types of condition based
maintenance

Ot analysis Infrared Electrical Operational
performance

Ultrasonic Acoustic Vibration

analysis

There are various types of condition-based monitoring techniques. Here are o

few common examples:

Vibration analysis: Rotating equipment such as compressors, pumps and
motors all exhibit a certain degree of vibration. As they degrade, or fall out of
alignment, the amount of vibration increases. Vibration sensors can be used
to detect when this becomes excessive

Infrared: IR cameras can be used to detect high-temperature conditions in
energized equipment

Ultrasonic: Detection of deep subsurface defects such as boat hull corrosion
Acoustic: Used to detect gas, liquid or vacuum leaks

Oil analysis: Measures the number and size of particles in a sample to
determine asset wear

Electrical: Motor current readings using clomp on ammeters

Operational performance: Sensors throughout a systermn measure pressure,
temperature, flow etc



& ROMEO SCADA data-based condition monitoring AWE

DATA COLECTION

SCADA SYSTEM

DATA DRIVEN METHODS

FCA-PLS

NEURAL NETWORKS

—

DATA-BASED CEBM

Anomaly detection

Performing Monitoring

Q
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ROMEO (Reliable O&M decision tools and strategies for high LCoE reduction on Offshore wind), is seeking to
reduce offshore O&M costs through the development of advanced monitoring systems and strategies, aiming to
move from corrective and calendar based maintenance to a condition based maintenance, through analysing the real
behaviour of the main components of wind turbines (WTGs).
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v' To develop better O&M planning methodologies of wind farms for maximizing its revenue
v' To optimise the maintenance of wind turbines by prognosis of component failures and
v' To develop new and better cost-effective strategies for Wind Energy O&M.

M Loughborough > UCLIMI © NTNU

1 1 UNIVERSIDAD DE CASTILLA-LA MANCHA Norvvegian University of
Un1vers1ty Science and Technology
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Yaw Misalignment — A Case Study

Yaw failures are catastrophic in nature cause high economic loss due to low power generation. Recent statistical figures indicating downtime
caused by yaw failures comprised 13.3% of the total downtime, while the yaw system failure rate comprised 12.5%. The cost associated
with such failures is high due to resulting unplanned maintenance and causing annual energy production (AEP) loss up to 2%, resulting in
40,000 GBP/ yr, revenue loss for the wind farm project.



Absolute yaw error (degree)

10

eStamp d speed Powe pie osphe Roto peed Blade p
Av(Q e Av(Q P e e Av(Q e gle (Avg
0 g oF

12/ 03/2009 10:00:00 5.05 270.93 7.44 986.35 9.57 -0.99
12/ 03/2009 10:10:00 5.07 230.45 7.85 986.45 8.75 -0.99
12/ 03/2009 10:20:00 6.09 150.72 7.90 986.47 7.98 -0.99
12/ 03/2009 10:30:00 6.10 255.20 8.40 986.55 9.30 -0.99
12/ 03/2009 10:40:00 6.15 240.15 8.80 986.58 8.35 -0.99
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GP power curve
- . Confidence intervals
Confidence intervals

5 10 15 20 25

Wind speed (m/sec)

30

Unhealthy data due to yaw misalignments will be assessed in terms of a probabilistic approach where each new data
point is compared with the constructed GP reference power curve and if these data points lie outside of the confidence
intervals of GP reference power curve then this indicates anomalous behavior and possible fault



Using the GP algorithm, an alarm would have been raised at 22:30 on 14/04/2009, just 1.5 hrs after the S
|? O M E O start of the yaw fault at 21:00 on 14/04/20009. \ it

60

—j wm—— Absolute yaw error
+ GP algorithm
* Binning algorithm
* Online power curve algorithm

20 -

Absolute yaw error (degree)
)

Commercialised
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100 150 200 250
Time series (10 min per point)

Model Alarm detected Time taken to identify the fault
Online power curve model 3:00 on 15/4/2009 6 hours
Probabilistic assessment using binning 00:50 on 15/4/2009 ~ 4 hours
Probabilistic assessment using GP 22:30 on 14/4/2009 1.5 hours

R. K. Pandit and D. Infield, "SCADA-based wind turbine anomaly detection using Gaussian process models for wind turbine condition monitoring
purposes,” in IET Renewable Power Generation, vol. 12, no. 11, pp. 1249-1255, 20 8 2018, doi: 10.1049/iet-rpg.2018.0156.
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Big data features engineering
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* Rotor speed incorporated into GP
Pitch angle incorporated into GP

P model

*  Rotor speed & Pitch angle both incorporated into GP

700
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50

Wind Speed (m/sec)

Ravi Kumar Pandit, David Infield and Athanasios Kolios. Gaussian Process Power Curve Models
Incorporating Wind Turbine Operational Variables. Energy Reports, vol 6, 2020,pp.1658-1669,

ISSN 2352-4847. doi:10.1016/j.egyr.2020.06.018.
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Atmospheric

pressure

(Avg.) mbar

Rotor speed
(Avg.) m/sec

15 20 25 30
Wind speed (m/sec)
A sgurr

Blade pitch

angle (Avg.) °C

986.35 9.57 -0.99
12/ 03/2009 10:10:00 5.07 230.45 7.85 986.45 8.75 -0.99
12/ 03/2009 10:20:00 6.09 150.72 7.90 986.47 7.98 -0.99
12/ 03/2009 10:30:00 6.10 255.20 8.40 986.55 9.30 -0.99
12/ 03/2009 10:40:00 6.15 240.15 8.80 986.58 8.35 -0.99
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Normal GP model alarm raised at 22:30 (1.5 hrs

/ after the 1st sign of anomaly)

Time series (10 min per point)

R. Pandit, D. Infield and T. Dodwell, "Operational Variables for Improving Industrial Wind Turbine Yaw Misalignment
Early Fault Detection Capabilities Using Data-Driven Techniques,” in IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1-8, 2021, Art no. 2508108, doi: 10.1109/TIM.2021.3073698.

AWESOME

Number Of alarms raised



Uncertainty Improvement Q
RO M E O Importance of Air density for uncertainty 3
guantification A E SON\
WTs SCADA datasets time Total Average Standard Mean absolute p=1. 225 [288 15] [L]
. . . 1013.3
period number of monthly density difference
data points temperature (kg/m?) (kg/m?) -
(°C) Ve = Wm [ 1.225
A 1/02/2010 -28/02/2010 4032 5.9775 1295 0.102 The air density correction shall be applied when the site
density differs from the standard value (1.225 kg/m3) by
more than 0.05 kg/m3
B 1/08/2010 -31/08/2010 4400 29.7791 1225 0.061

To limit the size of the data set, analysis will be restricted to the

Site  Standard density Mean absolute density difference  Total number of data points used wind speed range of 8 to 14 m/s since the number of data points are
sufficient within this range and also the number of data points
A 1225 0.099 1114 resulting for sites A and B are almost the same.
B 1.225 0.062 1116

S N'IT'NU

Norwegian universiy ot W/ IR S &l 5.
Science and Technology L

Strathclyde
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Uncertainty assessment in terms of confidence iktervals for different
air density approaches with limited data set for si

Confidence interval

‘Without pre-correction & without density in GP
‘Without pre-correction but density in GP o
Pre-correction but without density in GP
Pre-correction but density in GP

Confidence interval
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Uncertainty assessme!

T T T T T
% .
00000000 snesesecnssenenesesennee?

¢ Without pre-correction & without density in GP

¢ Without pre-correction but density in GP
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WIND PO

in terms of confidence intervals for

different air density dpproaches with limited data set for site B

Commercialised

Pandit, RK, Infield, D, Carroll, J. Incorporating air density into a Gaussian process wind turbine power curve model for
improving fitting accuracy. Wind Energy. 2019; 22: 302-315.
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hD'S IN WIND POWER Oam

dAROMEC ]

GP models WT- A WT-B

MAE MSE MAPE RMSE R? MAE MSE MAP RMS R?
E E

No pre-
correction and  18.012 568.075 9.439 23.834 0.878 5.196 43.094 2.469 6.564 0.982
air density not
included in the
GP model

the GP mo
Pre-correction

applied but 18.501  598.094 9.680 24456 0.872 4.736 35.463 2.251 .955 0.985
without air

density in the

GP model

With pre-

correction and  16.868 510.016 8.990 22583 0.891 4.648 33.344 2215 5774 0.986
air density

included with

the GP

Statistical measures of GP fitted models under different air density approaches



RO M EO Data-Driven maintenance module
O&M module for offshore A ESON\E

The financial appraisal of offshore wind farms is a demanding task which requires a number of factors to be considered in order to ensure that relevant KPIs are
estimated in a meaningful way. Key elements of Capital expenditures (CAPEX), Operating expenditures (OPEX), Financial expenditures (FINEX) and the
amount of energy production should be modelled through appropriate methods, based on sound assumptions. In addition, consideration of the service life
emissions of renewable energy projects are meaningful so as to evaluate their actual contribution to sustainable development.

q
Unplanned maintenance data bachmann. 3 :eDF
Failure rate data l
i L Fail d
(turbine, BOP) » Reliability module ature moce >
—Total Energy produced
5 RAMBOLL
Power output > .
T Total downtime
2 & availability Adwen
WF data ——————————»  Power module 3
Power data (power curve,; ® — Energy produced by
wind speed, hub height) g each turbine
£
®
SIEMENS Gamesa
» Weather forecast module > RENEWABLE ENERGY
Historical weather data Weather forecast data

(wave height, wind speed)

Planned maintenance data

Athanasios Kolios, Julia Walgern, Sofia Koukoura, Ravi Pandit and Juan Chiachio-Ruano. openO&M: Robust O&M open access tool for improving
operation and maintenance of offshore wind turbines. Proceedings of the 29th European Safety and Reliability Conference (ESREL), January 2020.
ISBN: 978-981-11-2724-3. doi:10.3850/978-981-11-2724-3_1134-cd.
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12 Wind turbines unplanned maintenance costs (£)| | 3500

© BOP unplanned maintenance costs (£) Mission organisation Crew rest ! ! ] ] } ! ¥
Planned maintenance costs (£)
10 3000
o o o o o
Crew unavailability 22500
Repair time 92000
Vessel unavailability >
21500
e
w 1000
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500
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Service life (years) 0 10 20 30 40 S50 60 70 80
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. o =5t availability location 97.5F i . i 1 )
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20 Z oo} T 1 contribution of downtime categories to the highest and
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2o < . . . . .
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=3 - 5 ] e | oy » . . .
© o ° — Sensitivity analysis of key design inputs)
945 -
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Downtime category

Mark Richmond, Ravi Pandit, Sofia Koukoura and Athanasios Kolios. Effect of weather forecast modelling uncertainty to the availability
assessment of offshore wind farms. Submitted to Renewable Energy on October 2020. (Journal)

Ravi Pandit, Athanasios Kolios and David Infield. Data-driven weather forecasting models performance comparison for improving offshore
wind turbine availability and maintenance. IET Renewable Power Generation , August, 2020. doi: 10.1049/iet-rpg.2019.0941.
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Challenges

Big data computational difficulty
Data-driven classic problems
Data availability

Data security

Q

AVVESOME
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Data Science/ML for Offshore Wind

Computer Science

« Carbon footprint |

Data analytics » Achieve EU net zero target sooner.

« Costs |
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Future map for offshore wind

Objectives

v’ Logistics cost and transport cost

v' Decision making process

v Automated health monitoring process
v’ Energy efficient Algorithm: space, time.
v’ Big data computation

. Cloud
\“Blg Daté'.,'

Digitalization of Offshore Wind

Transport and
installation

Operation and
maintenance

Dismantiing
and disposal

Fig: Life cycle of a wind farms
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Research Areas

Computer science Engineering

Offshore Wind

e data analytics
Cost-effective

algorithms

Decommissioning &
Asset life extensions

Near to end of warranty

data-driven models such as Machine period, carbon foot prints.

learning and deep learning.

Forecasting & Big Data analysis

Prediction data clustering, digital twins,
) Cloud computation,
Forecasting short-term, Correlation among big
long-term: relevant datasets.
parameters. Real-time condition
monitoring

Less human intervention, Avoid
catastrophic damages .

Digitalisation

» Decision making * Minimising cost + Risk & Reliability * Big data computation
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