

Motivación

- Colaboración entre UCM y empresa TCPSI.
- 2 proyectos:
 - AUTOROVER: estudio de autonomía basada en imágenes para rovers de exploración planetaria. Convocatoria publica 2259/2007 (BOCM 272 del 15/11/2007), referencia: 04-AEC0800-000035/2008.
 - Visión estereoscópica para Auto-rover: estudio de autonomía basada en imágenes.
 PRE/998/2008 (BOE 11/04/2008), Ministerio de presidencia, referencia: SAE-20081093.
- Investigación iniciada en TCPSI y continuada en UCM (Facultad de Informática).
- Capacidades de navegación autónoma para exploración espacial robótica.
- Motivación: necesidad de la ESA para su futura misión Exomars.

Antecedentes e identificación de problemas

- Exploración espacial robótica: crítico, reducir dependencia humana (costes)-> autonomía local.
- Necesidad de simulación y entorno de soporte. Pruebas. Desde fases iniciales.
- Apenas existen entornos que soporten estos desarrollos y además no están disponibles.
- Tampoco existen librerías ni trabajos previos (código) disponibles en las que basarse para el desarrollo de una estrategia de navegación autónoma (compleja).
- Algunos algoritmos stereo publicados no funcionan bien con imágenes reales

Contenido

- 1. Exploración espacial robótica. Autonomía.
- 2. Entorno de soporte al desarrollo.
- 3. Autonomía para rovers de exploración planetaria: arquitectura y navegación.
- 4. Percepción: filtros de imagen para reconstrucción 3D del entorno.
- 5. Conclusiones y trabajos futuros

1. Exploración espacial robótica. Autonomía

Operación del vehículo explorador (rover):

- Dominio muy crítico. Situaciones inesperadas. Imposibilidad de intervención humana.
- Restricciones en comunicaciones. Teleoperación no es una opción.
- Misiones cada vez más demandantes y complejas: mayores distancia a recorrer.

Autonomía:

- Autonomía a bordo de los vehículos exploradores. Toma de decisiones.
- Minimizar dependencia de operadores humanos.
- Incrementa el retorno científico de la misión. Reducir costes de operación.
- Navegación autónoma: de las tareas más críticas de una misión.
- Foco de este trabajo: navegación autónoma de vehículos robóticos para exploración planetaria.

Contenido

- 1. Exploración espacial robótica. Autonomía.
- 2. Entorno de soporte al desarrollo.
- 3. Autonomía para rovers de exploración planetaria: arquitectura y navegación.
- 4. Percepción: filtros de imagen para reconstrucción 3D del entorno.
- 5. Conclusiones y trabajos futuros

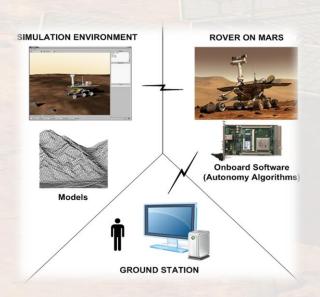
Introducción:

- Proceso complejo: percepción del entorno, planificación de trayectorias, navegación y control.
- Instalaciones e infraestructura para desarrollar y probar todo: vehículo, terreno, etc.
- NASA / ESA: réplica de superficie planetaria indoors y vehículo (no disponible en las primeras fases).

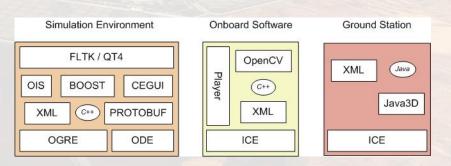
- Desplazamientos del equipo (desierto). Muy costoso.
- Alternativa asumible -> réplica de infraestructuras y condiciones operacionales en simulación.

Correal, R.; Pajares, G. (2010). Framework for Simulation and Rover' Visual-Based Autonomous Navigation in Natural Terrains. 7th Workshop RoboCity2030-II, October, 2010, Madrid, Spain.

Correal, R.; Pajares, G. (2011a). Modeling, simulation and onboard autonomy software for robotic exploration on planetary environments. International Conference on DAta Systems In Aerospace (DASIA), 17-20 Mayo, 2011, Malta.


Acceso a un entorno de soporte:

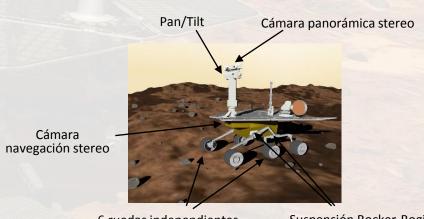
- 3 posibilidades: 1) Entorno existente, 2) Crear entorno desde cero, 3) Integración de paquetes.
 - 1) Entorno existente -> muy pocas. Propietarias de agencias espaciales. No disponibles (JPL).
 - 2) Crear entorno desde cero -> muy adaptado, pero gran complejidad, esfuerzo y coste (no es el objetivo).
 - 3) Integración de paquetes -> Interfaces, adaptaciones y extensiones. Balance esfuerzo/funcionalidad.



Diseño del entorno de soporte:

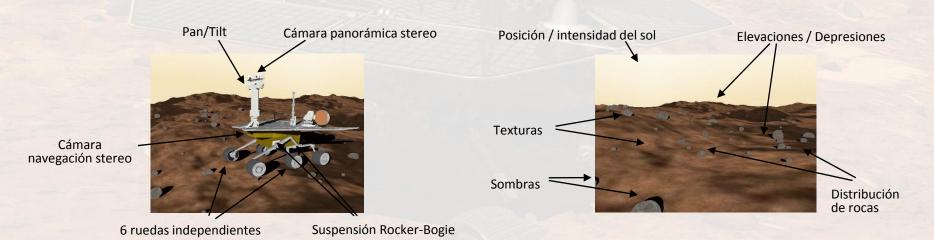
• 3 subsistemas: 1) Entorno de simulación, 2) Centro de control, 3) Sistema de navegación

Integración de paquetes y componentes



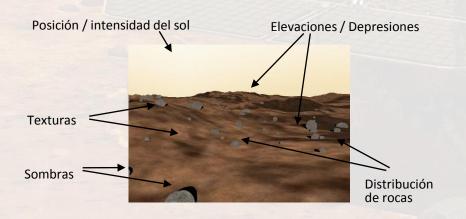
- Gazebo usado como motor base de simulación.
- Creación de modelos: 1) vehículo (sensores y actuadores), 2) terreno y 3) condiciones operacionales.

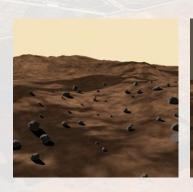
- Gazebo usado como motor base de simulación.
- Creación de modelos: 1) vehículo (sensores y actuadores), 2) terreno y 3) condiciones operacionales.

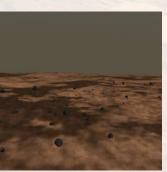


6 ruedas independientes

Suspensión Rocker-Bogie



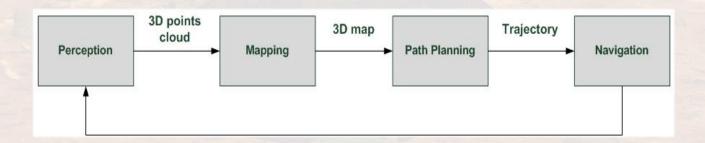

- · Gazebo usado como motor base de simulación.
- Creación de modelos: 1) vehículo (sensores y actuadores), 2) terreno y 3) condiciones operacionales.



- Gazebo usado como motor base de simulación.
- Creación de modelos: 1) vehículo (sensores y actuadores), 2) terreno y 3) condiciones operacionales.

Centro de control:

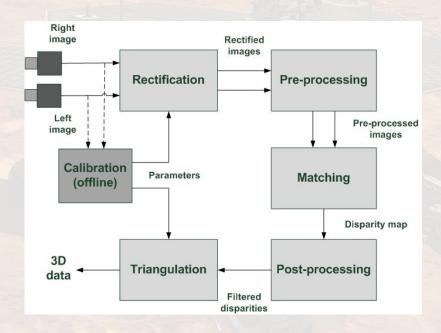
- Visualización, monitorización y depuración.
- Recibe datos de telemetría. Permite comandar al vehículo.
- 2 modos: 1) operación, 2) depuración.
- Almacena datos para análisis posterior.


Contenido

- 1. Exploración espacial robótica. Autonomía.
- 2. Entorno de soporte al desarrollo.
- 3. Autonomía para rovers de exploración planetaria: arquitectura y navegación.
- 4. Percepción: filtros de imagen para reconstrucción 3D del entorno.
- 5. Conclusiones y trabajos futuros

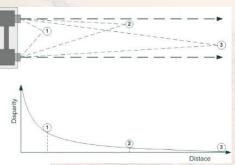
Estrategia de navegación:

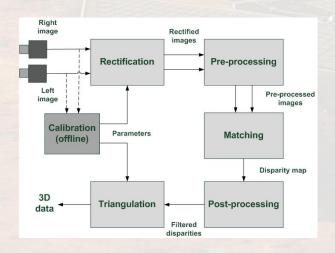
- Autonomía local. Toma de decisiones. Minimizar dependencia humana. Comunicaciones.
- Diseño basado en NASA/JPL (MER), pero desarrollado desde cero (no hay trabajos previos disponibles).
- Ciclos de navegación.

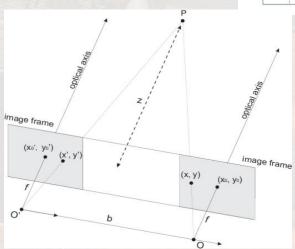


Correal, R.; Pajares, G. (2011b). Onboard Autonomous Navigation Architecture for a Planetary Surface Exploration Rover and Functional Validation Using Open-Source Tools. ESA International Conference on Advanced Space Technologies in Robotics and Automation (ASTRA 2008), ESA/ESTEC, Noordwijk, The Netherlands, pp 1-8. Correal, R.; Pajares, G.; Ruz, J.J. (2014b). Autonomy for Ground-level Robotic Space Exploration: Framework, Simulation, Architecture, Algorithms and Experiments. ROBOTICA Journal. June 2014, pp. 1–32. doi: 10.1017/S0263574714001428.

Percepción:

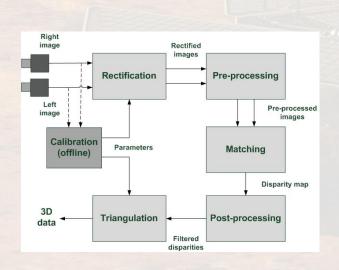

Basada en visión estereoscópica. Reconstrucción 3D del terreno.

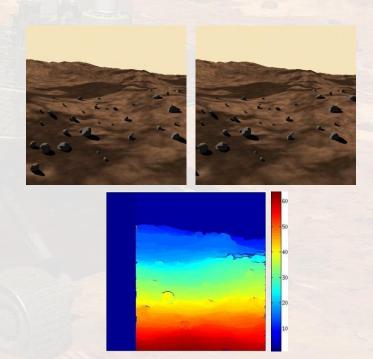




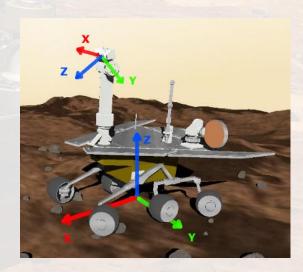
Percepción:

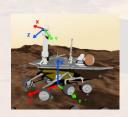
• Basada en visión estereoscópica. Reconstrucción 3D del terreno.

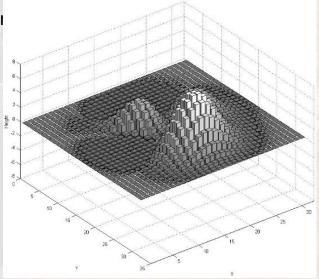




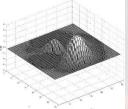
Percepción:

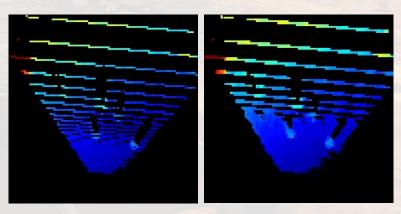

• Basada en visión estereoscópica. Reconstrucción 3D del terreno.



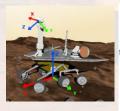

- Reproyección de la nube de puntos 3D y cambio de sistemas de referencia.
- Mapa de alturas: vista cenital, centrado en el rover.
- Interpolación.
- Fusión de mapas. Mapa local y global.

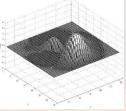
- Reproyección de la nube de puntos 3D y cambio de sistemas de referencia.
- Mapa de alturas: vista cenital, centrado en el rovei
- Interpolación.
- Fusión de mapas. Mapa local y global.

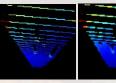


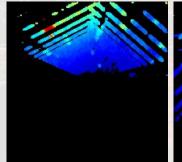


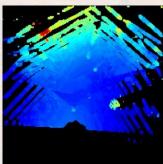
- Reproyección de la nube de puntos 3D y cambio de sistemas de referencia.
- Mapa de alturas: vista cenital, centrado en el rover.
- Interpolación.
- Fusión de mapas. Mapa local y global.





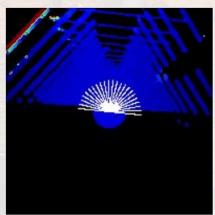



- Reproyección de la nube de puntos 3D y cambio de sistemas de referencia.
- Mapa de alturas: vista cenital, centrado en el rover.
- Interpolación.
- Fusión de mapas. Mapa local y global.



Planificación de trayectorias:

- Factores / restricciones:
 - No hay información a priori disponible.
 - El mapa se va construyendo progresivamente una vez el vehículo aterriza en el planeta.
 - El mapa construido en cada ciclo no es completo, existen zonas desconocidas.
 - El destino puede quedar fuera de los límites del mapa.
 - El entorno no puede representarse de forma binaria (ocupado/libre).
 - El vehículo no es puntual, ni holonómico.
 - No existe ningún sistema de posicionamiento global (GPS).



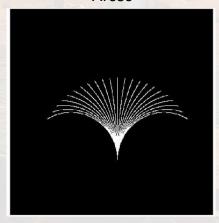
Planificación de trayectorias:

- Estrategia exploratoria.
- Cálculo de caminos candidatos.

Caminos candidatos

Caminos rectos

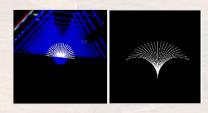
Parámetros configurables


Planificación de trayectorias:

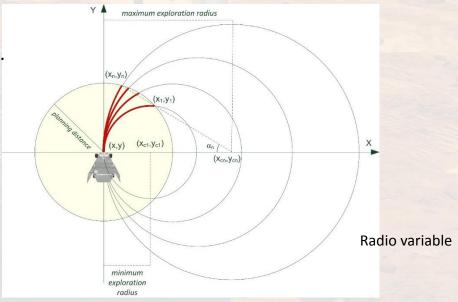
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

Caminos candidatos

Arcos

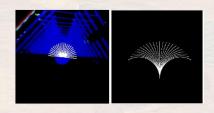


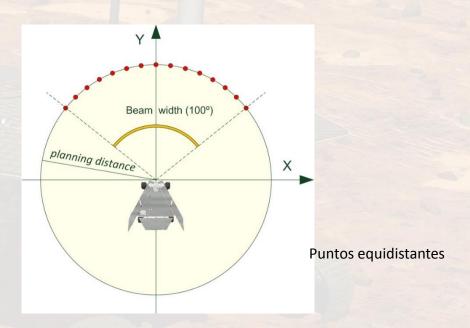
Parámetros configurables



Planificación de trayectorias:

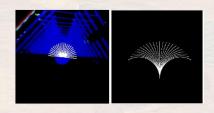
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

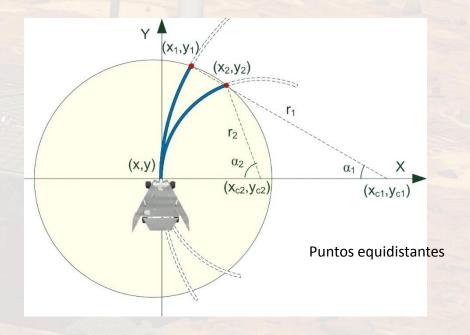

Caminos candidatos



Planificación de trayectorias:

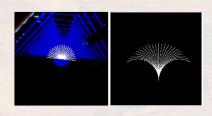
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

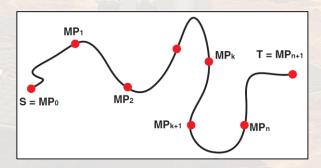

Caminos candidatos



Planificación de trayectorias:

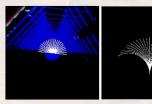
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

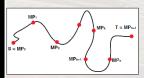

Caminos candidatos



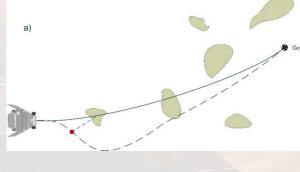
Planificación de trayectorias:

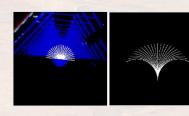
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

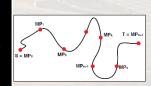

Caminos candidatos

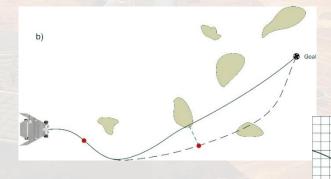


Planificación de trayectorias:


- Estrategia exploratoria.
- Cálculo de caminos candidatos.

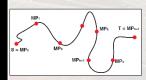

Caminos candidatos



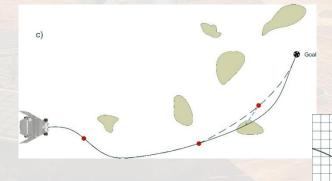

Planificación de trayectorias:

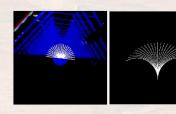
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

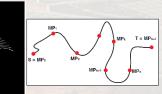
Caminos candidatos

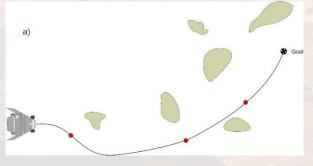


Planificación de trayectorias:


- Estrategia exploratoria.
- Cálculo de caminos candidatos.

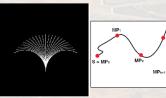

Caminos candidatos

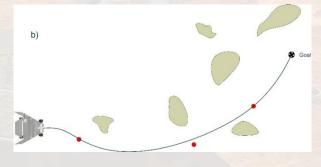



Planificación de trayectorias:

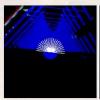
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

Caminos candidatos




Planificación de trayectorias:

- Estrategia exploratoria.
- Cálculo de caminos candidatos.


Caminos candidatos

Planificación de trayectorias:

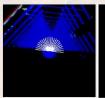
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

S = MPo MP2 MPa:1

Menor desviación

Menor distancia desde el extremo

Camino único

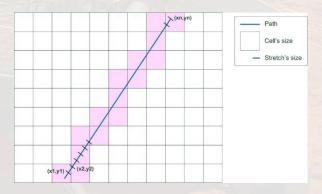

Caminos candidatos

Selección de caminos



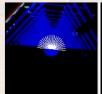
Planificación de trayectorias:

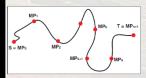
- Estrategia exploratoria.
- Cálculo de caminos candidatos.

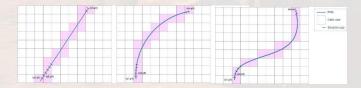


Caminos candidatos

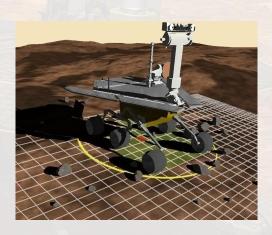
Determinar celdas atravesadas


Caminos rectos

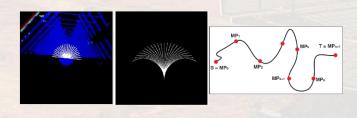


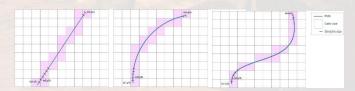

Planificación de trayectorias:

- Estrategia exploratoria.
- Cálculo de caminos candidatos.

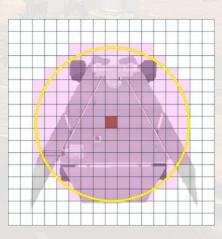


Caminos candidatos


Evaluar seguridad del camino

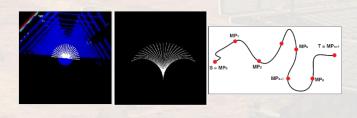


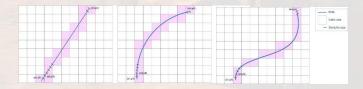
Planificación de trayectorias:


- Estrategia exploratoria.
- Cálculo de caminos candidatos.

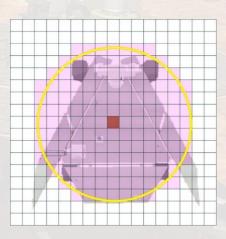
Caminos candidatos

Evaluar seguridad del camino



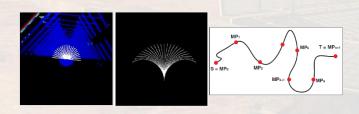

1. Excesivo escalón

Planificación de trayectorias:


- Estrategia exploratoria.
- Cálculo de caminos candidatos.

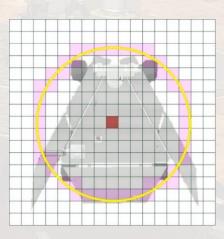
Caminos candidatos

Evaluar seguridad del camino



2. Excesiva rugosidad

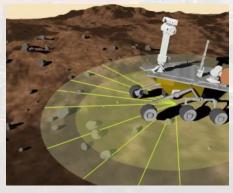
Planificación de trayectorias:

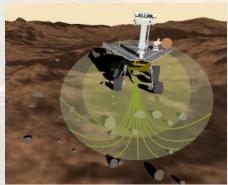

- Estrategia exploratoria.
- Cálculo de caminos candidatos.

Caminos candidatos

Evaluar seguridad del camino

3. Excesiva inclinación

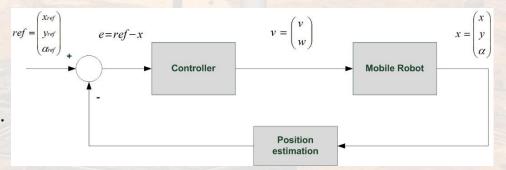



Navegación:

- Locomoción.
- · Control.
- Estimación de localización.

Locomoción

Distancia de planificación y de navegación



Navegación:

- Locomoción.
- · Control.
- Estimación de localización.

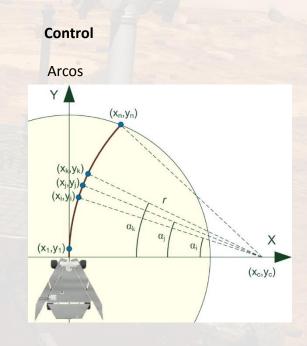
Control

Navegación:

- Locomoción.
- Control.
- Estimación de localización.

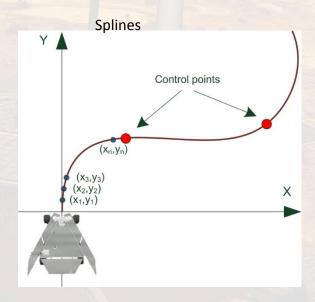
Control

Trayectorias rectas

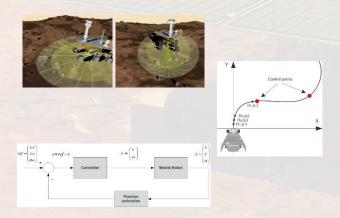


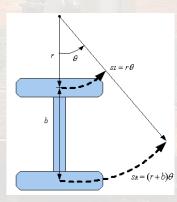
Navegación:

- · Locomoción.
- Control.
- Estimación de localización.


Navegación:

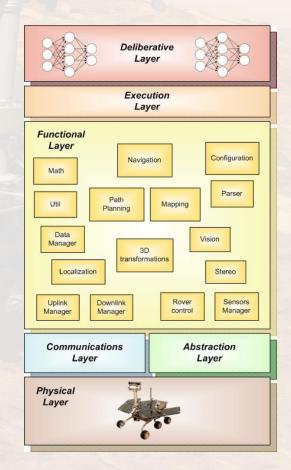
- · Locomoción.
- Control.
- Estimación de localización.


Control

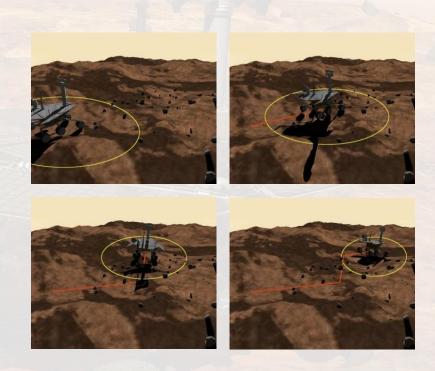

Navegación:

- Locomoción.
- Control.
- Estimación de localización.

Estimación de localización


Cinemática diferencial

Diseño de la arquitectura del software de control:


- Estructurar el código. Multi-capa (jerárquica).
- · Modular.
- Mantenibilidad / escalabilidad / reusabilidad.
- Plataforma de investigación.

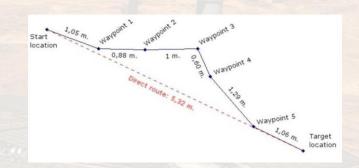
Pruebas y validación:

Simulación.

Pruebas y validación:

Simulación.

Cycle	Total time (s)	Comp. time (s)	Nav. time (s)	Turn (rad)	Distance (m)
1	85	52	33	0.29 (9s)	1.05
2	79	46	33	-0.43 (12s)	0.88
3	68	47	21	0 (0 s)	1.00
4	118	62	55	1.29 (40s)	0.60
5	105	63	41	-0.43 (12s)	1.29
6	114	78	35	-0.43 (12s)	1.06
	9:29	5:48	3:38		5.88


- 6 ciclos
- 9:29 min.
- 5,88 m.
- v. nominal -> 5 cm/s
- Pan/Tilt -> 28-30 s.

Pruebas y validación:

Simulación.

Function	Computing
runction	time (ms)
Stereo matching	410-480
Disparity filtering	90-130
Computing 3D points	430-470
Reprojection	210-320
Height map construction	70-90
Height map interpolation	< 10
Height map update	< 10
Merge height maps	< 10
Path planning process	40-50

Cycle	Total time (s)	Comp. time (s)	Nav. time (s)	Turn (rad)	Distance (m)
1	85	52	33	0.29 (9s)	1.05
2	79	46	33	-0.43 (12s)	0.88
3	68	47	21	0 (0 s)	1.00
4	118	62	55	1.29 (40s)	0.60
5	105	63	41	-0.43 (12s)	1.29
6	114	78	35	-0.43 (12s)	1.06
	9:29	5:48	3:38		5.88

- 6 ciclos
- 9:29 min.
- 5,88 m.
- v. nominal -> 5 cm/s
- Pan/Tilt -> 28-30 s.

Pruebas y validación:

Pruebas de campo.

Pruebas y validación:

Pruebas de campo.

Function	Computing	
Function	time	
Stereo matching	29.25-29.45 s	
Disparity filtering	1.02-1.16 s	
Computing 3D points	3.66-3.85 s	
Reprojection	2.15-2.95 ms	
Height map construction	460-560 ms	
Height map interpolation	120-130 ms	
Height map updating	< 10 ms	
Merge height maps	< 10 ms	
Path planning process	440-610 ms	

Pruebas y validación:

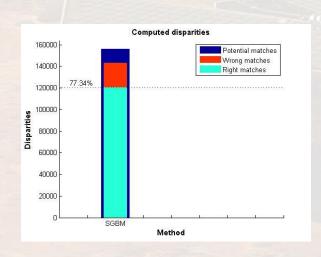
Pruebas de campo.

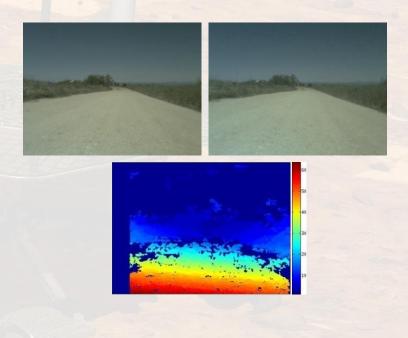
Function	Computing	
Function	time	
Stereo matching	29.25-29.45 s	
Disparity filtering	1.02-1.16 s	
Computing 3D points	3.66-3.85 s	
Reprojection	2.15-2.95 ms	
Height map construction	460-560 ms	
Height map interpolation	120-130 ms	
Height map updating	< 10 ms	
Merge height maps	< 10 ms	
Path planning process	440-610 ms	

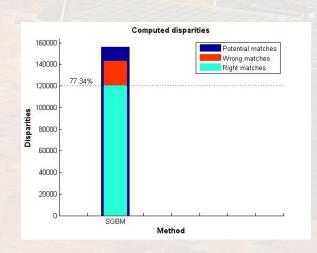
- Tiempos de proceso similares a HW representativo de vuelo
- Aceleración (resolución de imágenes, paralelización).
- Validación funcional

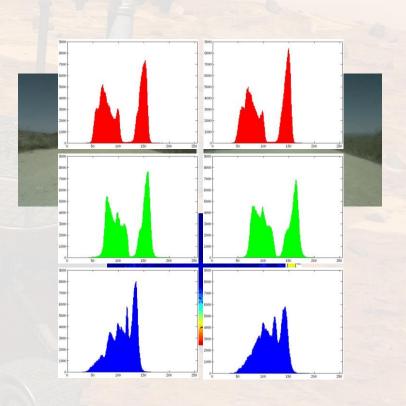
Contenido

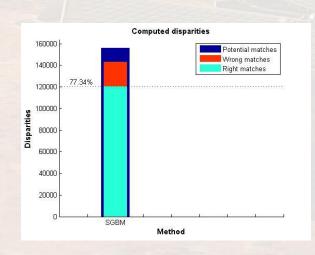
- 1. Exploración espacial robótica. Autonomía.
- 2. Entorno de soporte al desarrollo.
- 3. Autonomía para rovers de exploración planetaria: arquitectura y navegación.
- 4. Percepción: filtros de imagen para reconstrucción 3D del entorno.
- 5. Conclusiones y trabajos futuros

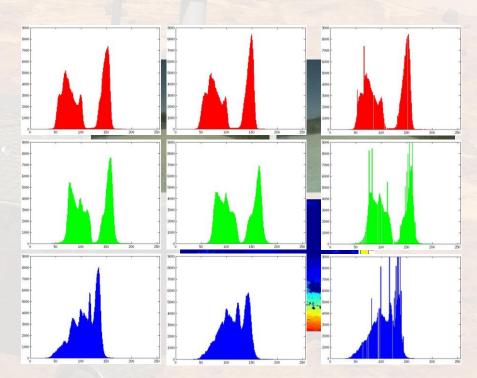

Antecedentes:

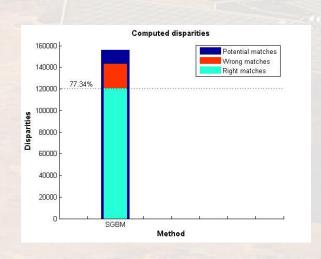

- Percepción clave para reconstrucción, mapeado y posterior navegación.
- Problema: funcionamiento de algoritmos con imágenes concretas (reales).
- Objetivo: tratar de optimizar más aún los resultados.
- Suposición de intensidad constante -> a menudo no se cumple.
- Estrategia: aparte del proceso estéreo, tratamientos previos y posteriores de las imágenes. Corrección automática y coordinada de las imágenes.
- Filtros y procesos existentes pero no aplicados habitualmente a pares estéreo.

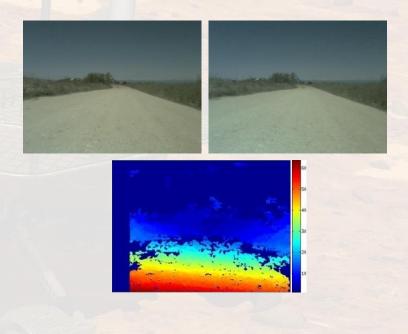

- Técnica relativa: ecualización de histogramas -> para una imagen.
- Los histogramas del par de imágenes pueden variar significativamente.
- Estrategia: ecualizar el histograma de una imagen con el de la otra. Hacer corresponder las distribuciones de probabilidad (intensidades).

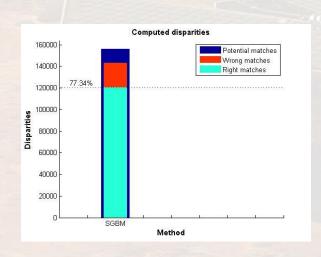


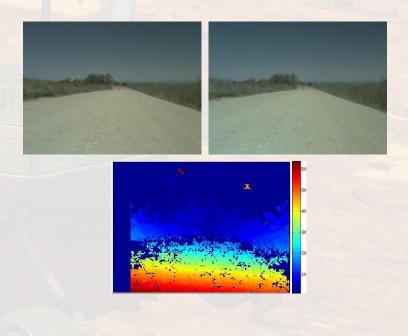


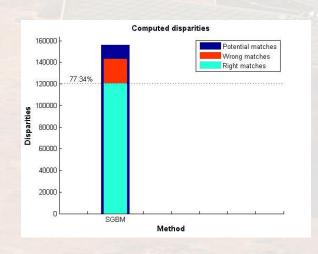


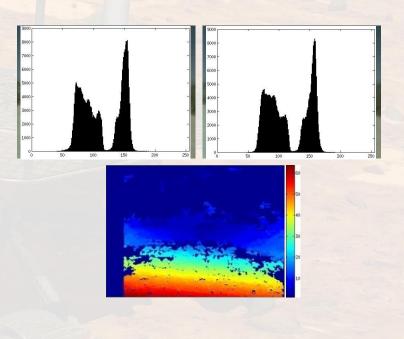


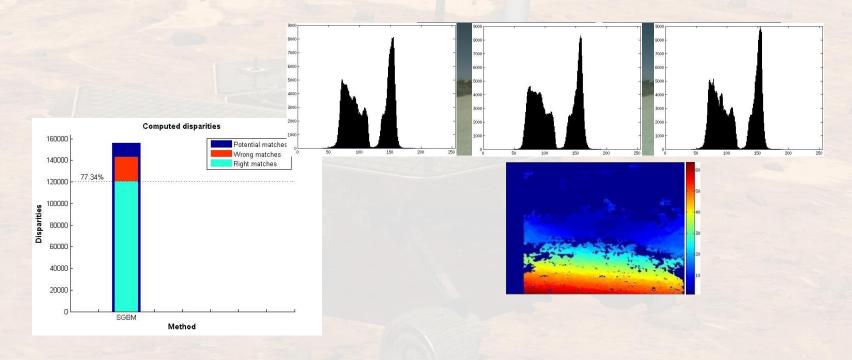


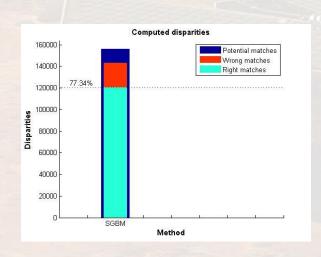


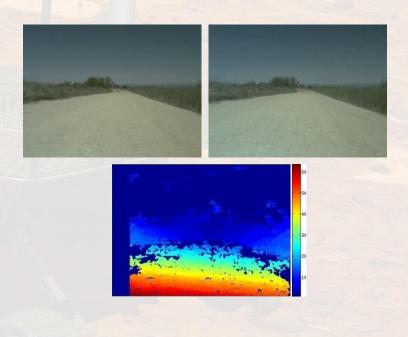


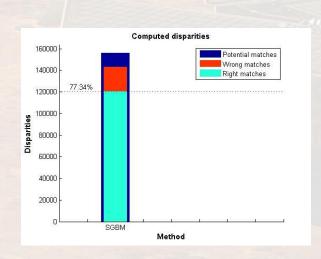


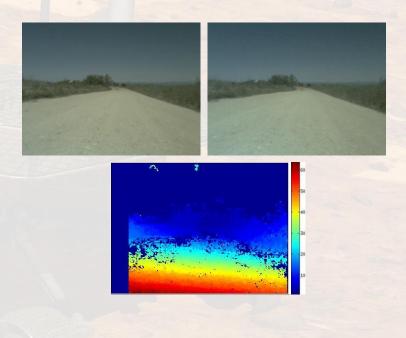


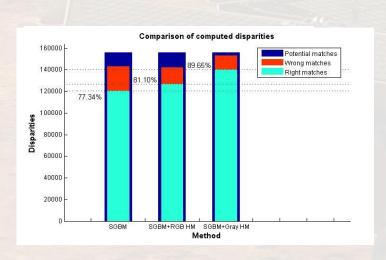


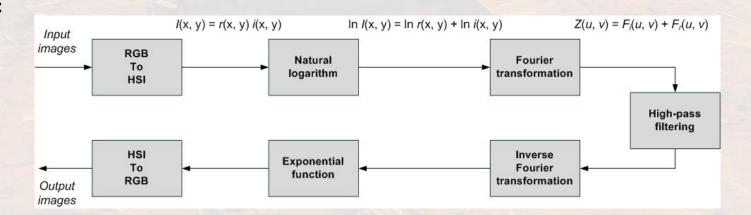


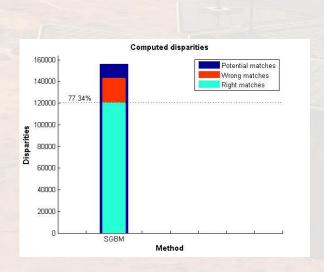


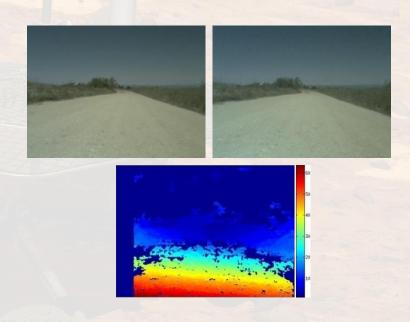




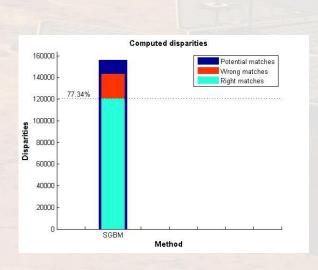


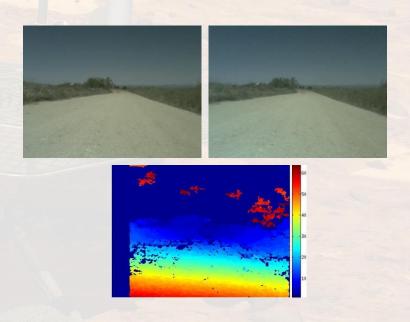


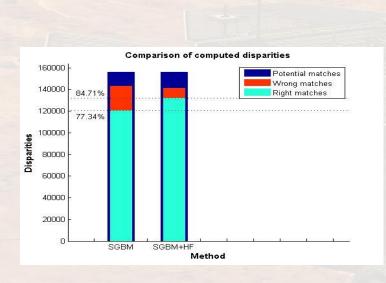

Stereo matching algorithm	Original Images	Histogram Matching (RGB)	Histogram Matching (Gray)
Total image's pixels	307,200	307,200	307,200
Potential matches	156,111	156,111	156,111
Matches found	143,296	141,993	153,305
Right matches	120,738	126,608	139,955
(%)	77.34%	81.1%	89.65%
Wrong matches	22,558	15,385	13,350
Missed matches	35,373	29,503	16,156
(%)	22.66%	18.9%	10.35%
		10	

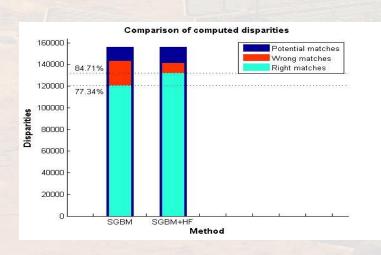


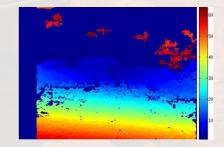
- Imágenes, 2 componentes: 1) reflectancia (naturaleza del objeto) e 2) iluminación (luz en la escena).
- **Estrategia:** eliminar la componente de iluminación y mantener la reflectancia. Maximizar la similitud de los niveles espectrales del par estéreo.
- · Proceso:



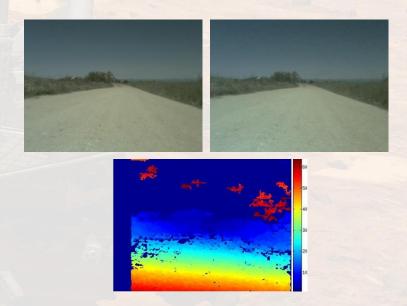


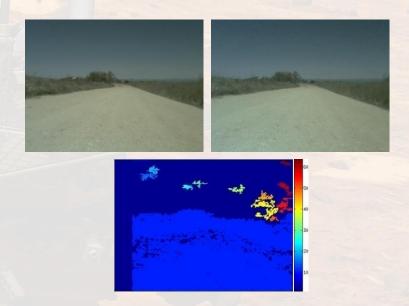




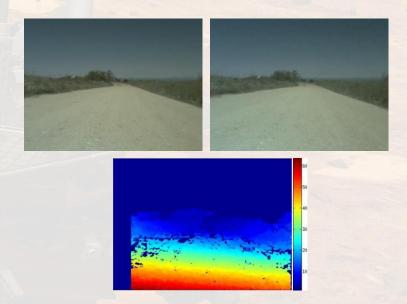


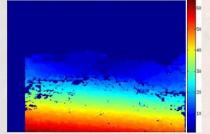
Chausa matabina alaanithus	Original	Homomorphic
Stereo matching algorithm	Images	Filtering
Total image's pixels	307,200	307,200
Potential matches	156,111	156,111
Matches found	143,296	141,200
Right matches	120,738	132,235
(%)	77.34%	84.71%
Wrong matches	22,558	8,965
Missed matches	35,373	23,876
(%)	22.66%	15.29%
	eglas y des	10


Stereo matching algorithm	Original	Homomorphic
Stereo matching algorithm	Images	Filtering
Total image's pixels	307,200	307,200
Potential matches	156,111	156,111
Matches found	143,296	141,200
Right matches	120,738	132,235
(%)	77.34%	84.71%
Wrong matches	22,558	8,965
Missed matches	35,373	23,876
(%)	22.66%	15.29%

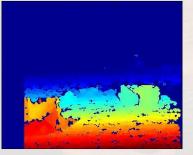


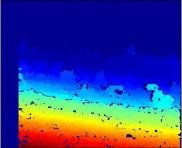
- Proceso de filtrado posterior (sobre los resultados).
- Estrategia: principio de continuidad espacial. Agrupar píxeles aislados del resto (terreno).
- Proceso: 1) detectar clusters, 2) filtrarlos acorde a parámetros configurados.





Stereo matching algorithm	Original	Homomorphic	Clustering
	Images	Filtering	Filter
Total image's pixels	307,200	307,200	307,200
Potential matches	156,111	156,111	156,111
Matches found	143,296	141,200	135,086
Right matches	120,738	132,235	131,862
(%)	77.34%	84.71%	84.47%
Wrong matches	22,558	8,965	3,224
Missed matches	35,373	23,876	24,249
(%)	22.66%	15.29%	15.53%





Stereo matching algorithm	Original	Homomorphic	Clustering
	Images	Filtering	Filter
Total image's pixels	307,200	307,200	307,200
Potential matches	156,111	156,111	156,111
Matches found	143,296	141,200	135,086
Right matches	120,738	132,235	131,862
(%)	77.34%	84.71%	84.47%
Wrong matches	22,558	8,965	3,224
Missed matches	35,373	23,876	24,249
(%)	22.66%	15.29%	15.53%

Contenido

- 1. Exploración espacial robótica. Autonomía.
- 2. Entorno de soporte al desarrollo.
- 3. Autonomía para rovers de exploración planetaria: arquitectura y navegación.
- 4. Percepción: filtros de imagen para reconstrucción 3D del entorno.
- 5. Conclusiones y trabajos futuros

6. Conclusiones y trabajos futuros (1/3)

Conclusiones:

- Se demuestra que la integración de paquetes, con adaptaciones y extensiones, hace posible la creación de un entorno de trabajo para soportar desarrollos de autonomía en robótica espacial.
- El entorno de trabajo construido a propósito ha resultado clave para el desarrollo y validación.
- La estrategia de autonomía ha sido validada funcionalmente, tanto en simulación como en real.
- Nuevas estrategias de path planning suponen un avance con respecto a enfoques anteriores.
- La arquitectura multicapa ha sido clave como plataforma de investigación y operación.
- La estrategia de navegación requiere recursos acordes a actuales misiones y hardware de vuelo.

6. Conclusiones y trabajos futuros (2/3)

- Se ha confirmado la percepción como el proceso clave, tanto en funcionalidad como para optimizaciones.
- Los filtros y procesos de imagen desarrollados mejoran significativamente el proceso de percepción: incrementan correspondencias y disminuyen errores -> reconstrucción 3D.
- El trabajo desarrollado sirve de partida para dar respuesta a futuras necesidades de ESA.
- El trabajo desarrollado es altamente portable a otras aplicaciones similares terrestres: navegación por entornos naturales, agricultura, rescate, vigilancia, etc.

6. Conclusiones y trabajos futuros (3/3)

Trabajos futuros:

- Sofisticación del entorno de soporte: centro de control y entorno de simulación (modelos, funcionalidad).
- Estrategia de navegación. Algoritmos de percepción, path planning, mapeado, control, etc. ->
 plataforma base para futuros trabajos de investigación.
- Filtros y procesos de imagen que mejoren la percepción y disminuyan errores.
- Robustecer los desarrollos para aplicación a misiones futuras y adaptación a otras aplicaciones.

Publicaciones

PUBLICACIONES EN REVISTAS INDEXADAS:

- Correal, R.; Pajares, G.; Ruz, J. J. (2013). Mejora del Proceso de Correspondencia en Imágenes Estereoscópicas
 Mediante Filtrado Homomórfico y Agrupaciones de Disparidad. Revista Iberoamericana de Automática e Informática
 Industrial, vol. 10, issue 2, pp 178-184, doi: 10.1016/j.riai.2013.03.008.
- Correal, R.; Pajares, G.; Ruz, J.J. (2014a). Automatic Expert System for 3D Terrain Reconstruction Based on Stereo Vision and Histogram Matching. Expert Systems with Applications, no. 41, pp. 2043-2051, doi: 10.1016/j.eswa.2013.09.003.
- Correal, R.; Pajares, G.; Ruz, J.J. (2014b). Autonomy for Ground-level Robotic Space Exploration: Framework, Simulation, Architecture, Algorithms and Experiments. ROBOTICA Journal. June 2014, pp. 1–32. doi: 10.1017/S0263574714001428.

PUBLICACIONES EN CONGRESOS Y CONFERENCIAS:

- Odwyer, A.; Correal, R. (2008). Experiences in Producing a Preliminary Navigation OBSW Prototype for the Exomars Rover Based on EDRES. ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), ESA/ESTEC, November 11-14, 2008, Noordwijk, The Netherlands.
- Correal, R.; Pajares, G. (2010). Framework for Simulation and Rover' Visual-Based Autonomous Navigation in Natural Terrains. 7th Workshop RoboCity2030-II, October, 2010, Madrid, Spain.
- Correal, R.; Pajares, G. (2011a). **Modeling, simulation and onboard autonomy software for robotic exploration on planetary environments**. International Conference on DAta Systems In Aerospace (DASIA), 17-20 Mayo, 2011, Malta, pp. 1-21.
- Correal, R.; Pajares, G. (2011b). Onboard Autonomous Navigation Architecture for a Planetary Surface Exploration Rover and Functional Validation Using Open-Source Tools. ESA International Conference on Advanced Space Technologies in Robotics and Automation (ASTRA 2008), ESA/ESTEC, Noordwijk, The Netherlands, pp 1-8.

Autonomy for Robotic Planetary Exploration Missions: Perception and Navigation for Autonomous Rovers

Publicaciones

SEMINARIOS:

- Conferencia en la Facultad de Informática de la Universidad Complutense de Madrid (Noviembre 2009), titulada "Computer Vision for Planetary Exploration Rovers".
- Conferencia en la Facultad de Informática de la Universidad Rey Juan Carlos (Octubre 2010), titulada "Framework for Simulation and Rover' Visual-Based Autonomous Navigation in Natural Terrains", en el marco de 7th workshop de RoboCity2030-II-CM.
- Conferencia en la Facultad de Informática de la Universidad Complutense de Madrid (Noviembre 2010), titulada "Computer Vision in Space and Planetary Environments".
- Conferencia en la Escuela Politécnica Superior de la Universidad Carlos III de Madrid (Abril 2011), titulada "Unmanned Vehicles' Autonomous Navigation for Space Exploration Missions".
- Conferencia en Malta (Mayo 2011), titulada "Modeling, simulation and onboard autonomy software for robotic exploration on planetary environments", en el marco de la conferencia internacional DASIA (DAta Systems In Aerospace).
- Conferencia en la Escuela Politécnica Superior de la Universidad Carlos III de Madrid (Mayo 2012), titulada "Unmanned Vehicles' Autonomous Navigation for Space Exploration Missions".
- Conferencia en la Escuela Politécnica Superior de la Universidad Carlos III de Madrid (Abril 2015), titulada "Unmanned Vehicles' Autonomous Navigation for Space Exploration Missions".
- Conferencia en la Escuela Politécnica Superior de la Universidad Carlos III de Madrid (Abril 2016), titulada "Unmanned Vehicles' Autonomous Navigation for Space Exploration Missions".

