

Tendencias de Uso y Diseño de Redes de Interconexión en Computadores Paralelos

14 de Abril, 2016 Universidad Complutense de Madrid

> Ramón Beivide Universidad de Cantabria

Outline

- 1. Introduction
- 2. Network Basis
- 3. System networks
- 4. On-chip networks (NoCs)
- 5. Some current research

1. Intro: MareNostrum

1. Intro: Infiniband core switches

1. Intro: Cost dominated by (optical) wires

1. Intro: Multicore E5-2670 Xeon Processor

Figure 1.1: Sketch of the typical elements in warehouse-scale systems: 1U server (left), 7' rack with Ethernet switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).

- 1. Introduction
- 2. Network Basis
 - Crossbars & Routers
 - Direct vs Indirect Networks
- 3. System networks
- 4. On-chip networks (NoCs)
- 5. Some current research

17

2. Network Basis

All networks based on Crossbar switches

- Switch complexity increases quadratically with the number of crossbar input/output ports, N, i.e., grows as O(N²)
- Has the property of being non-blocking (N! I/O permutations)
- Bidirectional for exploiting communication locality
- Minimize latency & maximize throughput

2. IBM BG/Q (Direct, Distributed)

23

2. Network Organization

- As crossbars do not scale they need to be interconnected for servicing an increasing number of endpoints.
- **Direct** (Distributed) vs **Indirect** (Centralized) Networks
- Concentration can be used to reduce network costs
 - "c" end nodes connect to each switch
 - Allows larger systems to be built from fewer switches and links
 - Requires larger switch degree

64-node system with 8-port switches, c = 4

32-node system with 8-port switches

- 1. Introduction
- 2. Network Basis
- 3. System networks
 - Folded Clos
 - Tori
 - Dragonflies
- 4. On-chip networks (NoCs)
- 5. Some current research

3. IBM BlueGene/L/P Network

Prismatic 32x32x64 Torus (mixed-radix networks) BlueGene/P: 32x32x72 in maximum configuration Mixed-radix prismatic Tori also used by Cray

CANTABRIA CAMPUS INTERNACIONAL

33

3. IBM BG/Q

3. More Recent Network Topologies

Distributed Switched (Direct) Networks

• Fully-connected network: all nodes are directly connected to all other nodes using bidirectional dedicated links

3. IBM PERCS

- 1. Introduction
- 2. Network Basis
- 3. System networks
- 4. On-chip networks (NoCs)
 - Rings
 - Meshes
- 5. Some current research

4

4. On-Chip local interconnects

SEM photo of local levels interconnect

Global levels interconnect

4. Metal Layers

4. Rings (Direct or Indirect?)

- · Bidirectional Ring networks (folded)
 - N switches (3 × 3) and N bidirectional network links
 - Simultaneous packet transport over disjoint paths
 - Packets must hop across intermediate nodes
 - Shortest direction usually selected (N/4 hops, on average)
 - Bisection Bandwidth???

- 6 bi-directional ports switches
- 4 physical channels for cache coherence
- 3 cycles for each hop
- 384 GB/s each cell

Doon	Luti (o) oloo)
0	3
1	6
2	9
3	12
4	15
5	12
6	9
7	6
Avg.	9

Lat. (cycles)

Dest.

This image was taken form the slides presented at Hot Chips 2015

4. Meshes from Intel Knights Landing

Knights Landing: Next Intel® Xeon Phi™ Processor

Intel® Many-Core Processor targeted for HPC and Supercomputing

First self-boot Intel® Xeon Phi™ processor that is binary compatible with main line IA. Boots standard OS.

Significant improvement in scalar and vector performance

Integration of Memory on package: innovative memory architecture for high bandwidth and high capacity

Integration of Fabric on package

Three products

KNL Self-Boot KNL Self-Boot w/ Fabric

(Baseline)

(Fabric Integrated)

4. Intel Knights Landing KNL Mesh Interconnect Mesh of Rings Every row and column is a (half) ring YX routing: Go in Y → Turn → Go in X Messages arbitrate at injection and on turn Cache Coherent Interconnect MESIF protocol (F = Forward) Distributed directory to filter snoops Three Cluster Modes All-to-All (2) Quadrant (3) Sub-NUMA Clustering

- 1. Introduction
- 2. Network Basis
- 3. System networks
- 4. On-chip networks (NoCs)
- 5. Some current research

5. Router Power and Area

Router leakage power and area evaluation:

- · Buffers are the most consuming part of the router.
- Crossbars and allocators grew quadratically with the number of ports.
- The load in these simulations is low. Hence, the leakage power is the dominant one

