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1. Intro: MareNostrum
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1. Intro: MareNostrum BSC,
Infiniband FDR10 non-blocking Folded Clos (up to 40 racks)
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1. Intro: Infiniband core switches

1. Intro: Cost dominated by (optical) wires 
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1. Intro: Blades
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1. Intro: Blades
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1. Intro: Multicore E5-2670 Xeon Processor

1. Intro: A row of servers in a Google DataCenter, 2012.
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3. WSCs Array: Enrackable boards or blades + rack router

To other 
clusters

Figure 1.1: Sketch of the typical elements in warehouse-scale systems: 1U 
server (left), 7’ rack with Ethernet switch (middle), and diagram of a small 
cluster with a cluster-level Ethernet switch/router (right).
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3. WSC Hierarchy



1. Intro: Cray Cascade (XC30, XC40)
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1. Intro: Cray Cascade (XC30, XC40)



15

1. Intro: An Architectural Model
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1. Intro: What we need for one ExaFlop/s
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Networks are pervasive and critical components in Supercomputers, 
Datacenters, Servers and Mobile Computers.

Complexity is moving from system networks towards on-chip networks:
less nodes but more complex
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2. Network Basis
All networks based on Crossbar switches

• Switch complexity increases quadratically with the number of 
crossbar input/output ports, N, i.e., grows as O(N2)

• Has the property of being non-blocking (N! I/O permutations)
• Bidirectional for exploiting communication locality 
• Minimize latency & maximize throughput 
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2. Blocking vs. Non-blocking

• Reduction cost comes at the price of performance
– Some networks have the property of being blocking (Not N!)

– Contention is more likely to occur on network links
› Paths from different sources to different destinations share one or 

more links

blocking topology

X

non-blocking topology
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2. Swith or Router Microarchitecture
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of the internal switch 
datapath to the external 
link BW is the goal
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2. Network Organization

Switches

End Nodes

Indirect (Centralized) and Direct (Distributed) Networks

2. Previous Myrinet core switches (Indirect, 
Centralized)
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2. IBM BG/Q (Direct, Distributed)
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2. Network Organization

64-node system with 8-port switches, c = 4 32-node system with 8-port switches

• As crossbars do not scale they need to be interconnected for 
servicing an increasing number of endpoints.  

• Direct (Distributed) vs Indirect (Centralized) Networks
• Concentration can be used to reduce network costs

– “c” end nodes connect to each switch

– Allows larger systems to be built from fewer switches and links

– Requires larger switch degree
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3. MareNostrum BSC,
Infiniband FDR10 non-blocking Folded Clos (up to 40 racks)
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3. Network Topology

Centralized Switched (Indirect) Networks

16 port Crossbar network
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3. Network Topology

Centralized Switched (Indirect) Networks

16 port, 3-stage Clos network
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3. Network Topology

Centralized Switched (Indirect) Networks

16 port, 5-stage Clos network
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3. Network Topology

Centralized Switched (Indirect) Networks

16 port, 7 stage Clos network = Benes topology
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3. Network Topology

• Bidirectional MINs
• Increase modularity
• Reduce hop count, d
• Folded Clos network

– Nodes at tree leaves

– Switches at tree vertices

– Total link bandwidth   is 
constant across all tree 
levels, with full bisection 
bandwidth

Folded Clos = Folded Benes <> Fat tree network !!!

Centralized Switched (Indirect) Networks
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3. Other DIRECT System Network Topologies

Distributed Switched (Direct) Networks
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3. IBM BlueGene/L/P Network

Prismatic 32x32x64 Torus (mixed-radix networks)

BlueGene/P: 32x32x72 in maximum configuration

Mixed-radix prismatic Tori also used by Cray

3. IBM BG/Q
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3. IBM BG/Q
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3 .BG Network Routing

X Wires

Y Wires

Z Wires

Adaptive Bubble Routing

ATC-UC  Research Group



3. Fujitsu Tofu Network
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3. More Recent Network Topologies

Distributed Switched (Direct) Networks
• Fully-connected network: all nodes are directly connected to 

all other nodes using bidirectional dedicated links
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3. IBM PERCS

39

3. IBM PERCS
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3. IBM PERCS
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Organized as groups of 
routers

Parameters:
• a: Routers per group
• p: Node per router
• h: Global link per 

router
• Well-balanced 

dragonfly [1]
a = 2p =2h   

3. Dragonfly Interconnection Network

Inter-group
•Global links

•Complete graph
Intra-group

•Local links
•Complete graph 



Minimal routing
• Longest path 3 hops:

local-global-local
• Good performance under 

UN traffic

Adversarial traffic [1]
• ADV+N: Nodes in group i 

send traffic to group i+N
• Saturation of the global 

link

3. Dragonfly Interconnection Network

Source 
Node

Destination
Node

Destination 
Group i+N

Source Group 
i

SATURATION

[1] J. Kim, W. Dally, S. Scott, and D. Abts.
“Technology-driven, highly-scalable dragonfly 

topology.” ISCA ‘08.

Valiant Routing [2]
• Randomly selects an 

intermediate group to 
misroute packets

• Avoids saturated 
channel

• Longest path 5 hops
local-global-local-

global-local

3. Dragonfly Interconnection Network

Source 
Node

Destination
Node

Intermediate 
Group

[2] L. Valiant, “A scheme for fast parallel 
communication," SIAM journal on com-

puting, vol. 11, p. 350, 1982.
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3. Cray Cascade, electrical supernode
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3. Cray Cascade, system and routing
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SEM photo of local levels interconnect

4. On-Chip local interconnects
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Global levels interconnect

4. On-Chip global interconnects
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4. Metal Layers
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4. Bumps & Balls
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Multiple integration with 3D stacking…

4. 3D (& 2.5D) Stacking & Silicon Photonics

3M, IBM team to develop 3D IC adhesive, EETimes India                                                                            STMicroelectronics & CEA

52



4. Rings from ARM
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4. Rings from Intel
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Folded ring:
Lower 

maximum 
physical

link length

4. Rings (Direct or Indirect?)

• Bidirectional Ring networks (folded)
– N switches (3 × 3) and N bidirectional network links

– Simultaneous packet transport over disjoint paths

– Packets must hop across intermediate nodes

– Shortest direction usually selected (N/4 hops, on average)

– Bisection Bandwidth???
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4. Meshes and Tori

Distributed Switched (Direct) Networks
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4. Meshes from Tilera

4. Mesh from Pythium Mars Architecture

These images were taken form the slides presented at Hot Chips 2015

• L1:
– Separated L1 Icache and L1 Dcache
– 32 KB Icache
– 32 KB Dcache

• 6 outstanding loads
• 4 cycles latency from load to use

• L2:
– 16 L2 banks of 4 MB
– 32 MB of shared L2

• L3:
– 8 L3 arrays of 16 MB
– 128 MB of L3

• Memory Controllers:
– 16 DDR3-1600 channels

• 2x16-lane PCIe-3.0
• Directory based cache coherency

– 16 Directory Control Unit (DCU)
• MOESI like cache coherence protocol



4. Pythium Mars NoC

This image was taken form the slides presented at Hot Chips 2015

• 6 bi-directional ports switches

• 4 physical channels for cache coherence

• 3 cycles for each hop

• 384 GB/s each cell

4. Meshes from Intel Knights Landing
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Intel Knights Landing – 3 options



4. Intel Knights Landing
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4. Intel Knights Landing
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4. Intel Knights Landing
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4. Intel Knights Landing
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5. Some research on NUCA-based CMP Models
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5. Full-system simulation including concentration 

67

GEM5 + BookSim full‐system simulation platform parameters

ISA X86

Number of Cores 64

CPU Model Out of Order

CPU Frequency 2 GHz

Cache Coherence Protocol MESI

L1 Instructions Size 32 KB

L1 Data Size 64 KB

Shared distributed L2 256 KB per Core

# Memory Controllers 4

Network Frequency 1 GHz

Router Pipeline Stages 4

Physical Networks 3

Buffer Size 10 flits

Link Width 64 bits

Topologies
8x8 mesh, torus and FBFLY

4x4 FBFBLY with C=4

Applications used PARSEC benchmarks

5. Topology comparison

Three different topologies are considered:

68

Topology 2D Mesh 2D Torus 2D FBFLY

Degree (ports) ↓

Diameter (max. distance)↓ 2

Average distance ↓

Bisection Bandwidth (links)↑

Advantages
Low degree

Shortest links

Low degree

Symmetry

Better properties

Symmetry

Best properties

Larger concentration

Disadvantages
Largest distances

Lowest BB

Folding

Deadlock

Highest costs

Non‐uniform link 

lengths

N=16



5. Full-system simulation
Normalized execution time

and network latencies:
• Average latency has impact in AMAT.
• High latencies can degrade execution 

times if the affected data are critical. 
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5. Router Power and Area
Router leakage power and area evaluation:

• Buffers are the most consuming part of the router.
• Crossbars and allocators grew quadratically with the number of 

ports.
• The load in these simulations is low. Hence, the leakage power is 

the dominant one.
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5. Router Power and Area
Network leakage power evaluation:

• FBFLY can manage higher concentrations because its higher BB.
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5. OmpSs vs. pThreads

72


