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Xilinx Zynq UltraScale+ MPSoC
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Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline
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Motivation
• A new mantra: Power and Energy saving
• In all domains
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Motivation

• GPUs came to rescue:
– Massive Data Parallel Code at 

a low price in terms of power
– Supercomputers and servers: 

NVIDIA

• GREEN500 Top 5:
– June 2017

• Top500.org (Nov 2017):
– 87 systems w. NVIDIA
– 12 systems w. Xeon Phi
– 5 systems w. PEZY
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Green 500 Nov 2017

Xeon + PEZY
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Motivation

• There is (parallel) life beyond supercomputers:
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Motivation

• Plenty of GPUs elsewhere: 
– Integrated GPUs on more than 90% of shipped processors
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Motivation

• Plenty of GPUs on desktops and laptops: 
– Desktops (35 – 130 W) and laptops (15 – 60 W): 
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Intel Kaby Lake AMD APU Kaveri

http://www.techspot.com/photos/article/770-amd-a8-7600-kaveri/http://www.anandtech.com/show/10610/intel-announces-7th-gen-
kaby-lake-14nm-plus-six-notebook-skus-desktop-coming-in-
january/2

GPU



Motivation

• Plenty of integrated GPUs in mobile devices too.
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Huawei HiSilicon Kirin 960 (2 - 6 W)

http://www.anandtech.com/show/10766/huawei-announces-hisilicon-kirin-960-a73-g71

Huawei Mate 9

Mali



Motivation

• And user-programmable DSPs as well:
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Qualcomm Snapdragon 820/821 (2 - 6 W)

https://www.qualcomm.com/products/snapdragon/processors/820

Samsung 
Galaxy S7 Google Pixel



• And FPGAs too…
– ARM + iFPGA

• Altera Cyclon V
• Xilinx Zynq-7000 

– Intel + Altera’s FPGA
• Heterogeneous 

Architecture Research 
Platform

• CPU + iGPU + iFPGA
– Xilinx Zynq UltraScale+

• 4 Cortex A53
• 2 Cortex R5
• GPU Mali 400
• FPGA

Motivation

13 http://www.analyticsengines.com/developer-blog/xilinx-announce-new-zynq-architecture/

4 A53 GPU

2 R5

FPGA



Motivation

• Overwhelming heterogeneity:
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Motivation

• Plenty of room for improvements
– Want to make the most out of the CPU, the GPU and the FPGA

– Taking productivity into account:
Productivity = Performance - Pain 

• High level abstractions in order to hide HW details
• Lack of high-level productive programming models
• “Homogeneous programming of heterogeneous architectures”

– Taking energy consumption into account:
Performance ➔ Performance / Watt
Performance ➔ Performance / Joule

Productivity = Performance / Joule - Pain
15



Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline
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Hardware: iGPUs
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Intel Skylake AMD Kaveri

Iris Pro Graphics Graphic Core Next

HiSilicon Kirin 960

ARM Mali-G71



Intel Skylake – Kaby Lake
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• Modular design
– 2 or 4 cores
– GPU

• GT-1: 12 EU
• GT-2: 24 EU
• GT-3: 48 EU
• GT-4: 72 EU

• SKU options
– 2+2 (4.5W, 15W)
– 4+2 (35W -- 91W)
– 2+3 (15W, 28W,...)
– 4+4 (65W)
– ....

http://www.anandtech.com/show/6355/intels-haswell-architecture



Intel Skylake – Kaby Lake
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https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf



Intel Processor Graphics
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GT2
GT3

GT4



Intel Processor Graphics
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• Peak 
performance:

– 72 EUs
– 2 x 4-wide 

SIMD 
– 2 flop/ck

(fmadd)
– 1GHz

2 x 4-wide 
SIMD Units7 in-flight 

wavefronts

1.15 TFlops



Intel Processor Graphics
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NDRange ≈ grid work-group ≈ block

EU-thread (SIMD16) ≈ 
wavefront ≈ warp:

16 work-items ≈ 16 thrds

=

• Each SIMD16 wavefront takes 2cks
• IMT: fine-grained multi-threading

– Latency hiding mechanism



Intel Virt. Technology for Directed I/O (Intel VT-d)
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Cache coherent 
path

GPU

CPU



AMD Kaveri

• Steamroller microarch (2 – 4 “Cores”) + 8 GCN Cores.

25
http://wccftech.com/

CU CU CU CU

CU CU CU CU



AMD Graphics Core Next (GCN)

• In Kaveri, 
– 8 Compute Units (CU)
– Each CU: 4 x 16-wide SIMD
– Total: 512 FPUs
– 866 MHz

• Max GFLOPS=
• 0.86 GHz x
• 512 FPUs x
• 2 fmad =
• 880 GFLOPS
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OpenCL execution on GCN

Work-group à wavefronts (64 work-items) à pools
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WG

CU0

SIMD0-0

SIMD0 SIMD1 SIMD2 SIMD3

SIMD1-0
SIMD2-0
SIMD3-0
SIMD0-1
SIMD1-1
SIMD2-1
SIMD3-1
SIMD0-2
SIMD1-2

4 pools:
4 wavefronts in 
flight per SIMD

4 ck to execute 
each wavefront

pool number

Wavefronts



HiSilicon Kirin 960

• ARM64 big.LITTLE (Cortex A73+Cortex A53) + Mali G71
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Mali



Mali G71

• Supports OpenCL 2.0

• 4, 6, 8, 16, 32 Cores
• Each core:

– 3 x 4-wide SIMD units

• 32 x 12 x 2 fmad x 
0.85GHz=652 GFLOPS
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HSA (Heterogeneous System Architecture)

– CPU, GPU, DSPs,...
• Founders:

30

• HSA Foundation’s goal:  Productivity on heterogeneous HW



Advantages of iGPUs

• Discrete and integrated GPUs: different goals
– NVIDIA Pascal: 3584 CUDA cores, 250W, 10 TFLOPS
– Intel Iris Pro Graphics 580: 72EU x 8 SIMD, ~15W, 1.15 TFLOPS
– Mali-G71: 32 EU x 3 x 4 SIMD, ~ 2W, 0.652 TFLOPS

• CPU and GPU are both first-class citizens. 
– SVM and platform atomics allows for closer collaboration

• Avoid PCI data transfer and associated POWER dissipation
– Operating System doesn’t get in the way à less overhead

• CPU and GPU may have similar performance
– It’s more likely that they can collaborate

• Cheaper!

31



Hardware: iFPGAs
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Altera Cyclone V Xilinx Zynq UltraScale+ Intel Xeon+Arria10

QPI

FPGA

2 x A9 4 x 
A53

GPU

2xR5

FPGA



FPGA Architecture
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Courtesy: Javier 
Navaridas, U. 
Manchester.



CLB: Configurable Logic Block
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Courtesy: Jose Luis Nunez-Yanez, U. Bristol.
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FPGA Architecture

35



How do we “mold this liquid silicon”?

• Hardware overlays
– Map a CPU or GPU onto the FPGA

ü100s of simple CPU can fit on large FPGAs
üThe CPU or GPU overlay can change/adapt
!Resulting overlay is not as efficient as a “real” one
!Same drawbacks as “general purpose” processors

36

CPU: GPU:

FPGAs for Software Programmers, Dirk Kock, Daniel Ziener



How do we “mold this liquid silicon”?

üNo FETCH nor DECODE of instructions à already hardwired
üData movement (Exec. Units ⇔ MEM) reduction à Power save
üNot constrained by a fixed ISA:

üBit-level parallelism; shift, bit mask, ...; variable precision arith.
!Less frequency (hundreds of MHz)
!In order execution (proposal from David Kaeli’s group to OoO)
!Programming effort

37

FPGA:

Hardware thread reordering to boost OpenCL throughput on
FPGAs, ICCD’16

FPGAs for Software Programmers, Dirk Kock, Daniel Ziener



Xilinx Zynq UltraScale+ MPSoC

• Available: 
– SW coherence (cache flush) à Slow
– HW coherence (MESI coherence protocol) à Fast. Ports:

• Accelerator Coherency Port, ACP 
• Cache-coherent interconnect (CCI) ACE-Lite ports

– Part of ARM® AMBA® AXI and ACE protocol specification 

38

4 x 
A53

GPU

2xR5

FPGA



Intel Broadwell+Arria10

• Cache Coherent Interconnect (CCI)
– New IP inside the FPGA: Intel Quick Path Interconnect with CCI
– AFU (Accelerated Function Unit) can access cached data 
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Towards CCI everywhere

• CCIX consortium (http://www.ccixconsortium.com)
– New chip-to-chip interconnect operating at 25Gbps
– Protocol built for FPGAs, GPUs, network/storage adapters, ...
– Already in Xilinx Virtex UltraScale+

40



Which architecture suits me best?

41

• All of them are Turing complete, but
• Depending on the problem:

– CPU:
• For control-dominant problems
• Frequent context switching

– GPU:
• Data-parallel problems (vectorized/SIMD)
• Little control flow and little synchronization

– FPGA:
• Stream processing problems
• Large data sets processed in a pipelined fashion
• Low power constraints



Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline
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http://imgs.xkcd.com/comics/standards.png

43

HOW STANDARDS PROLIFERATE
see: A/C chargers, Character encodings, Instant Messaging, etc)



Programming models for heterogeneous: GPUs

• Targeted at exploiting one device at a time
– CUDA (NVIDIA)
– OpenCL (Khronos Group Standard)
– OpenACC (C, C++ or Fortran + Directives à OpenMP 4.0)
– C++AMP (Windows’ extension of C++. Recently HSA announced own ver.)
– Sycl (Khronos Gruop’s specification for “Single-source C++ progr.)
– ROCm (Radeon Open Compute, HCC, HIP, for AMD GCN –HSA–) 
– RenderScript (Google’s Java API for Android)
– ParallDroid (Java + Directives from ULL, Spain)
– Many more (Numba Python, IBM Java, Matlab, R, JavaScript, …)

• Targeted at exploiting both devices simultaneously (discrete GPUs)
– Qilin (C++ and Qilin API compiled to TBB+CUDA)
– OmpSs (OpenMP-like directives + Nanos++ runtime + Mercurium compiler)
– XKaapi
– StarPU

• Targeted at exploiting both devices simultaneously (integrated GPUs)
– Qualcomm Symphony
– Intel Concord

44



Programming models for heterogeneous: GPUs

Targeted at exploiting 
ONE device at a time

45

parallel_for

CPU GPU

Targeted at exploiting SEVERAL 
devices at the same time

parallel_for
compiler 

+
runtime

CPU GPU

CUDA OpenCL

OpenMP4.0C++AMP
Sycl

ROCm

RenderScript
ParallDroid

Numba Python

JavaScriptMatlab
R

Qilin OmpSs

XKaapi StarPU

Qualcomm Symphony

Concord



Programming models for heterogeneous: FPGAs

• HDL-like languages
– SystemVerilog, Bluespec System Verilog
– Extend RTL languages by adding new features

• Parallel libraries
– CUDA, OpenCL
– Instrument existing parallel libraries to generate RTL code

• C-based languages
– SDSoC, LegUp, ROCCC, Impulse C, Vivado, Calypto Catapult C
– Compile* C into intermediate representation and from there to HDL
– Functions become Finite State Machines and variables mem. blocks

• Higher level languages
– Kiwi (C#), Lime (Java), Chisel (Scala)
– Translate* input language into HDL

46

* Normally	a	subset	thereof

Courtesy: Javier Navaridas, U. Manchester.



OpenCL 2.0

• OpenCL 2.0 supports:
– Coherent SVM (Shared Virtual Memory) & Platform atomics
– Example: allocating an array of atomics:
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clContex = ...
clCommandQueue = ...
clKernel = ...

cl_svm_mem_flags flags = CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS;
atomic_int * data;
data = (atomic_int *) clSVMAlloc(clContext, flags, NUM * sizeof(atomic_int), 0);

clSetKernelArgSVMPointer(clKernel, 0, data);
clSetKernelArg(clKernel, 1, sizeof(int), &NUM);
clEnqueueNDRangeKernel(clCommandQueue, clKernel, .... );

atomic_store_explicit ((atomic_int*)&data[0], 99, memory_order_release);

CPU Host Code

kernel void myKernel(global int *data, global int* NUM){

int i=atomic_load_explicit((global atomic_int *)&data[0], memory_order_acquire);
....
}

GPU Kernel Code



C++AMP

• C++ Accelerated Massive Parallelism
• Example: Vector Add (C[i]=A[i]+B[i])

48

A, B and C buffers

Initialize A and B

Run on GPU



SYCL Parallel STL

• Parallel STL aimed at C++17 standard:
– std::sort(vec.begin(), vec.end()); //Vector sort
– std::sort(seq, vec.begin(), vec.end()); // Explicit SEQUENTIAL
– std::sort(par, vec.begin(), vec.end()); // Explicit PARALLEL

• SYCL exposes the execution policy (user-defined)
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std::vector<int>(N);
float ratio = 0.5; 
sycl::het_sycl_policy<class ForEach> policy(ratio);
std::for_each(policy, v.begin(), v.end(),

[=](int& val) {
val= val*val;
}

);

Courtesy: Antonio Vilches

50% of the iterations on CPU
50% of the iterations on GPU

https://github.com/KhronosGroup/SyclParallelSTL



Qualcomm Symphony

• Point Kernel: write once, run everywhere
– Pattern tuning extends to heterogeneous load hints 

51

SYMPHONY_POINT_KERNEL_3(vadd, int, i, float*, a, int, na,
float*, b, int, nb, float*, c, int, nc, 

{ c[i] = a[i] + b[i];}); ... 

symphony::buffer_ptr buf_a(1024), buf_b(1024), buf_c(1024); 
... 
symphony::range<1>(1024) r; 
symphony::pfor_each(r, vadd_pk, buf_a, buf_b, buf_c,

symphony::pattern::tuner().set_cpu_load(10)
.set_gpu_load(50) 
.set_dsp_load(40) 

);

Executed across CPU(10%) + GPU(50%) + DSP(40%)
A kernel for

each device is
automatically

generated



Intel Concord

• C++ heterogeneous programming framework

• Papers:
– Rashid Kaleem et al. Adaptive heterogeneous scheduling on 

integrated GPUs. PACT 2014.
• Intel Heterogeneous Research Compiler (iHRC) at 

https://github.com/IntelLabs/iHRC/
– Naila Farooqui et al. Affinity-aware work-stealing for integrated 

CPU-GPU processors. PPoPP ’16. PhD dissertation: 
https://smartech.gatech.edu/bitstream/handle/1853/54915/FAROOQUI-DISSERTATION-2016.pdf
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class Foo { 
int *a, *b, *c; 
void operator(int i) { c[i] = a[i]+b[i]; }

Foo *f = new Foo();

parallel_for(0, N, *f); 
Executed across CPU+GPU, 
dynamic partition



Xilinx SDSoC

• Without SDSoC:

53

FPGA

CPU

main(){

init(A,B,C);

mmult(A,B,D);

madd(C,D,E);

consume(E);

}

Courtesy: Xilix

mmult madd

ABC

D

E



Xilinx SDSoC

• With SDSoC:
– Eclipse-based SDK
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FPGA

CPU

Refine Code:

• Re-factoring 
code to be 
more HLS-
friendly

• Adding code 
annotations 
(i.e., pragmas)

#pragma SDS data copy(Array)
#pragma SDS zero_copy(Array)
#pragma SDS data access_pattern
#pragma SDS data sys_port (...)
#pragma HLS PIPELINE II = 1
#pragma HLS unroll
#pragma HLS inline



Altera OpenCL
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main() {
read_data( ... );
manipulate( ... );
clEnqueueWriteBuffer( ... );
clEnqueueNDRange(...,sum,...);
clEnqueueReadBuffer( ... );
display_result( ... ); 

}

__kernel void
sum(__global float *a, 

__global float *b, 
__global float *y) 

{ 
int i = get_global_id(0); 
c[i] = a[i] + b[i];

}

Host Code

Kernel Code

Standard
C Compiler

OpenCL
aoc compiler

Verilog

.EXE

.OUT
.AOCX

bitstream

CPU FPGA



Altera OpenCL optimizations

• Locality:
– Shift-Register Pattern (SRP)
– Local Memory (LM)
– Constant Memory (CM)
– Load-Store Units Buffers (LSU)

• Loop Unrolling (LU)
– Deeper pipelines
– Optimized tree-like reductions

• Kernel vectorization (SIMD)
– Wider ALUs

• Compute Unit Replication (CUR)
– Replicate Pipelines
– Downsides: memory divergence ⬆, complexity ⬆, frequency ⬇
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Shift Register Pattern

• Example: 1D stencil computation

57

x x x

+

NDRange
No SRP

SingleTask
SRP

x x x

+

shft_reg

64x faster than Naive (17 elem. filter)
“Tuning Stencil Codes in OpenCL for

FPGAs”, ICCD’16

Shift !!



Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline
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Our work: parallel_for

• Heterogeneous parallel for based on TBB
– Dynamic scheduling / Adaptive partitioning for irregular codes
– CPU and GPU chunk size re-computed every time

59

A15

GPU

A15

A15

A15

A7

A7

A7

Problem:
BarnesHut

Archit.:
Exynos 5

One A7 
feeds
the GPU

Time

Time to execute
this chunk of 

iterations on GPU



New scheduler and API
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New API

61

Use the GPU

Exploit Zero-Copy-Buffer

Scheduler class
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Related work: Qilin
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• Static Approach: Bulk-Oracle 
Offline search (11 executions)

– Work partitioning between CPU and GPU

– One big chunk with 70% of the iterations: on the GPU
– The remaining 30% processed on the cores

0"

50"

100"

150"

0%" 10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%"100%"
Percentage)of)the)itera.on)space)offloaded)to)the)GPU)

Barnes)Hut:)Offline)search)for)sta.c)par..on)

Execu2on"2me"in"seconds"



Related work: Intel Concord
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• Papers:
– Rashid Kaleem et al. 

Adaptive heterogeneous 
scheduling on integrated 
GPUs. PACT 2014.

– Naila Farooqui et al. 
Affinity-aware work-stealing 
for integrated CPU-GPU 
processors. PPoPP ’16
(poster).

assign chunk
size just for

GPU

compute
on CPU

compute
chunk on

GPU

when the GPU is done

according to 
relative speeds:
partition the rest 
of the iteration 

space



Related Work: HDSS
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• Belviranli et al, A Dynamic Self-Scheduling Scheme for 
Heterogeneous Multiprocessor Architectures, TACO 2013

TACO0904-57 ACM-TRANSACTION December 22, 2012 2:21

57:8 M. E. Belviranli et al.

Fig. 6. An example showing block assignments by time for a two-threaded (1 GPU and 1 CPU thread) run of
Histogram application on CPU+GPU system. Figure (a), on the left, illustrates the assignments dispatched
during the adaptive phase. In this figure, block size axis is shown in logarithmic scale for a better separation
of block assignments in the chart. Figure (b), on the right, shows the two phases of the algorithm separated
with a clear jump in assigned block sizes just after computational weights are determined and stabilized.

a block size is retrieved, the programmer must call processor-specific implementations
(kernels) of her application on the determined data block.

3.2. The Algorithm
Overview. The HDSS algorithm determines the ideal block size per processor using
a two-phased approach. The initial phase, called the adaptive phase, is responsible
for accurately finding the computational weights which reflect the relative processor
speeds. This phase processes a relatively small amount of data whose upper bound is
set as a fixed percentage of the total data. The final phase, called completion phase,
processes the remainder of the data using the weights computed in the adaptive phase.
This phase starts with the largest possible blocks to optimize the execution time by
reducing the dispatching overhead. Block size decreases steadily as the computation
works towards end so that all units complete execution at nearly the same time. As
an example, the progression of block sizes during the adaptive phase is illustrated
in Figure 6(a). The experiment is for Histogram application on a CPU+GPU system
with 210M inputs. The overall process including completion phase is illustrated in
Figure 6(b) for the same experiment. The sudden increase in the curve is the moment
where HDSS assigns largest possible block for the very first block request of the second
phase.

A flow chart for our proposed self-scheduling algorithm, HDSS, is given in Figure 7.
Our algorithm stores the remaining number of iterations and total computational
weight as global variables. In addition, each processing element has the following
attributes:

—the initial block size (user-defined);
—computational weight in iterations per microsecond;
—block size factor (user-defined);
—dynamic list of blocks that have been assigned to the processor before. Each entry in

the list contains the size of the block as well as the execution start and end times of
the block.

For the first block assignment, the initial block size parameter for the requesting
processor is set as the block size. During subsequent block requests, HDSS decides
whether to continue with the adaptive phase or move to the next phase based on
dynamics of the execution. Once HDSS concludes that the adaptive phase should be
terminated, all subsequent block assignments by all processors are calculated by the
completion phase.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 57, Publication date: January 2013.

Fermi
Discrete

GPU



Debunking big chunks

• Example: irregular Barnes-Hut benchmark
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Debunkign big chunks

A larger chunk causes more memory traffic
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Updated
chunkArray of bodies:

Written	body

Read	body

Updated
chunkArray of bodies:

Written	body

Read	body



Debunking big chunks

• BarnesHut: GPU throughput along the iteration space
– For two different time-steps
– Different GPU chunk-sizes

68

0 2 4 6 8 10
x 104

20

40

60

80

100

120

140

160

Barnes−Hut: Throughput variation (time step=0)

Iteration Space

Th
ro

ug
hp

ut

 

 

chunk=320
chunk=640
chunk=1280
chunk=2560

0 2 4 6 8 10
x 104

20

40

60

80

100

120

140

160

Barnes−Hut: Throughput variation (time step=5)

Iteration Space

Th
ro

ug
hp

ut

 

 

chunk=320
chunk=640
chunk=1280
chunk=2560

640

2560

1280

640

2560

Time step=0 Time step=5



LogFit main idea
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Parallel_for: Performance per joule

• Static: Oracle-Like static partition of the work based on profiling
• Concord: Intel approach: GPU size provided by user once
• HDSS: Belviranli et al. approach: GPU size computed once

• LogFit: our work
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GPU

GPU+1Core

GPU+2Cores

GPU+4Cores

GPU+3Cores

Antonio Vilches et al. Adaptive 
Partitioning for Irregular 

Applications on Heterogeneous 
CPU-GPU Chips, Procedia 
Computer Science, 2015.

On Intel Haswell
Core i7-4770



LogFit: better for irregular benchmarks
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LogFit working on FPGA

• Energy probe: AccelPower Cap (Luis Piñuel, U. Complut.)
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DE1-SoC

Altera 
Cyclone V

AccelPower Cap 
+ BeagelBone

Shunt resistor
(power flow)



LogFit working on FPGA
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LogFit
2C+FPGA

Static

• Terasic DE1: Altera Cyclone V (FPGA+2 Cortex A9)
• Energy probe: AccelPower Cap (Luis Piñuel, U. Complut.)



Our work: pipeline
• ViVid, an object detection application
• Contains three main kernels that form a pipeline

• Would like to answer the following questions:
– Granularity: coarse or fine grained parallelism?
– Mapping of stages: where do we run them (CPU/GPU)?
– Number of cores: how many of them when running on CPU?
– Optimum: what metric do we optimize (time, energy, both)?
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Granularity

• Coarse grain:
– CG

• Medium grain:
– MG

• Fine grain:

– Fine grain also in the CPU via AVX intrinsics

77

Input Stage Output Stage

CPU

C
item

CPU

C
item

CPU

Stage 1

C
item

CPU

Stage 2

C
item

CPU

Stage 3

C
item

C =core

Input Stage

CPU

C
item

Output Stage

CPU

C
item

CPU

Stage 1

C
item

C
C C

CPU

Stage 2

C
item

C
C C

CPU

Stage 3

C
item

C
C C

Input Stage Output Stage

GPU
C C C
C C C

item
CPU

C
item

CPU

C
item

GPU
C C C
C C C

item
GPU
C C C
C C C

item

Stage 1 Stage 2 Stage 3



Our work: pipeline
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Accounting for all alternatives

• In general: nC CPU cores, 1 GPU and p pipeline stages

# alternatives = 2p x (nC +2)

• For Rodinia’s SRAD benchmark (p=6,nC=4) à 384 alternatives
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Mapping streaming applications on commodity multi-CPU and GPU on-
chip processors, IEEE Tran. Parallel and Distributed Systems, 2016.



Framework and Model

• Key idea: 
1. Run only on GPU
2. Run only on CPU
3. Analytically extrapolate for heterogeneous execution
4. Find out the best configuration à RUN
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Environmental Setup: Benchmarks

• Four Benchmarks
– ViVid (Low and High Definition inputs)

– SRAD

– Tracking

– Scene Recognition
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Does Higher Throughput imply Lower Energy?
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Results on big.LITTLE architecture
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• On Odroid XU3: 4 Cortex A15 + 4 Cortex A7 + GPU Mali
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Pipeline on CPU-FPGAs

• Change the GPU by a FPGA
– Core i7 4770k 3.5 GHz Haswell quad-core CPU
– Altera DE5-Net FPGA from Terasic
– Intel HD6000 embedded GPU 
– Nvidia Quadro K600 discrete GPU (192 cuda cores)

• Homogeneous results:
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Device Time 
(sec.) 

Throughput 
(fps) 

Power 
(watts) 

Energy 
(Jules) 

CPU (1 core) 167.610 0.596& 37& 6201&
CPU (4 cores) 50.310& 1.987& 92& 4628&

FPGA 13.480& 7.418& 5" 67"
On-chip GPU 7.855" 12.730" 16& 125&
Discrete GPU 13.941& 7.173& 47& 655&

 



Pipeline on CPU-FPGA

• Heterogeneous results based on our TBB scheduler:
- Accelerator + CPU
- Mapping 001 
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onGPU+CPU ~ FPGA+CPU



Conclusions
• Plenty of heterogeneous on-chip architectures out there 

• Why not use all devices?
– Need to find the best mapping/distribution/scheduling out of the 

many possible alternatives. 

• Programming models and runtimes aimed at this goal are in 
their infancy: striving to solve this.

• Challenges: 
– Hide HW complexity providing a productive programming model
– Consider energy in the partition/scheduling decisions
– Minimize overhead of adaptation policies
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Future Work

• Exploit	CPU-GPU-FPGA	chips	and	coherency
• Predict	energy	consumption	on	heterogeneous	CPU-

GPU-FPGA	chips

• Consider	energy	consumption	in	the	partitioning	
heuristic

• Rebuild	the	scheduler	engine	on	top	of	the	new TBB	
library	(OpenCL	node)

• Tackle	other	irregular	codes
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Future Work: TBB OpenCL node

buffer

get_next_image preprocess

detect_with_A

detect_with_B

make_decision

Can express pipelining, task parallelism and data parallelism

OpenCL node



Future Work: other irregular codes
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