
Making the most out of
Heterogeneous Chips with CPU,

GPU and FPGA

Rafael Asenjo
Dept. of Computer Architecture

University of Malaga, Spain.

2

Xilinx Zynq UltraScale+ MPSoC

3

4 CPUs
ARM

Cortex-A53

GPU
ARM

Mali 400

2x CPUs
ARM

Cortex-R5

FPGA

Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline

4

Motivation
• A new mantra: Power and Energy saving
• In all domains

5

Motivation

• GPUs came to rescue:
– Massive Data Parallel Code at

a low price in terms of power
– Supercomputers and servers:

NVIDIA

• GREEN500 Top 5:
– June 2017

• Top500.org (Nov 2017):
– 87 systems w. NVIDIA
– 12 systems w. Xeon Phi
– 5 systems w. PEZY

6

Xeon + Tesla P100

Xeon + Tesla P100

Xeon + Tesla P100

Xeon + Tesla P100

Xeon + Tesla P100

7

Green 500 Nov 2017

Xeon + PEZY

Xeon + PEZY

Xeon + PEZY

Xeon + PEZY

Motivation

• There is (parallel) life beyond supercomputers:

8

Motivation

• Plenty of GPUs elsewhere:
– Integrated GPUs on more than 90% of shipped processors

9

Motivation

• Plenty of GPUs on desktops and laptops:
– Desktops (35 – 130 W) and laptops (15 – 60 W):

10

Intel Kaby Lake AMD APU Kaveri

http://www.techspot.com/photos/article/770-amd-a8-7600-kaveri/http://www.anandtech.com/show/10610/intel-announces-7th-gen-
kaby-lake-14nm-plus-six-notebook-skus-desktop-coming-in-
january/2

GPU

Motivation

• Plenty of integrated GPUs in mobile devices too.

11

Huawei HiSilicon Kirin 960 (2 - 6 W)

http://www.anandtech.com/show/10766/huawei-announces-hisilicon-kirin-960-a73-g71

Huawei Mate 9

Mali

Motivation

• And user-programmable DSPs as well:

12

Qualcomm Snapdragon 820/821 (2 - 6 W)

https://www.qualcomm.com/products/snapdragon/processors/820

Samsung
Galaxy S7 Google Pixel

• And FPGAs too…
– ARM + iFPGA

• Altera Cyclon V
• Xilinx Zynq-7000

– Intel + Altera’s FPGA
• Heterogeneous

Architecture Research
Platform

• CPU + iGPU + iFPGA
– Xilinx Zynq UltraScale+

• 4 Cortex A53
• 2 Cortex R5
• GPU Mali 400
• FPGA

Motivation

13 http://www.analyticsengines.com/developer-blog/xilinx-announce-new-zynq-architecture/

4 A53 GPU

2 R5

FPGA

Motivation

• Overwhelming heterogeneity:

14

Motivation

• Plenty of room for improvements
– Want to make the most out of the CPU, the GPU and the FPGA

– Taking productivity into account:
Productivity = Performance - Pain

• High level abstractions in order to hide HW details
• Lack of high-level productive programming models
• “Homogeneous programming of heterogeneous architectures”

– Taking energy consumption into account:
Performance ➔ Performance / Watt
Performance ➔ Performance / Joule

Productivity = Performance / Joule - Pain
15

Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline

16

Hardware: iGPUs

17

Intel Skylake AMD Kaveri

Iris Pro Graphics Graphic Core Next

HiSilicon Kirin 960

ARM Mali-G71

Intel Skylake – Kaby Lake

18

• Modular design
– 2 or 4 cores
– GPU

• GT-1: 12 EU
• GT-2: 24 EU
• GT-3: 48 EU
• GT-4: 72 EU

• SKU options
– 2+2 (4.5W, 15W)
– 4+2 (35W -- 91W)
– 2+3 (15W, 28W,...)
– 4+4 (65W)
–

http://www.anandtech.com/show/6355/intels-haswell-architecture

Intel Skylake – Kaby Lake

19

https://software.intel.com/sites/default/files/managed/c5/9a/The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

Intel Processor Graphics

20

GT2
GT3

GT4

Intel Processor Graphics

21

• Peak
performance:

– 72 EUs
– 2 x 4-wide

SIMD
– 2 flop/ck

(fmadd)
– 1GHz

2 x 4-wide
SIMD Units7 in-flight

wavefronts

1.15 TFlops

Intel Processor Graphics

23

NDRange ≈ grid work-group ≈ block

EU-thread (SIMD16) ≈
wavefront ≈ warp:

16 work-items ≈ 16 thrds

=

• Each SIMD16 wavefront takes 2cks
• IMT: fine-grained multi-threading

– Latency hiding mechanism

Intel Virt. Technology for Directed I/O (Intel VT-d)

24

Cache coherent
path

GPU

CPU

AMD Kaveri

• Steamroller microarch (2 – 4 “Cores”) + 8 GCN Cores.

25
http://wccftech.com/

CU CU CU CU

CU CU CU CU

AMD Graphics Core Next (GCN)

• In Kaveri,
– 8 Compute Units (CU)
– Each CU: 4 x 16-wide SIMD
– Total: 512 FPUs
– 866 MHz

• Max GFLOPS=
• 0.86 GHz x
• 512 FPUs x
• 2 fmad =
• 880 GFLOPS

26

OpenCL execution on GCN

Work-group à wavefronts (64 work-items) à pools

27

WG

CU0

SIMD0-0

SIMD0 SIMD1 SIMD2 SIMD3

SIMD1-0
SIMD2-0
SIMD3-0
SIMD0-1
SIMD1-1
SIMD2-1
SIMD3-1
SIMD0-2
SIMD1-2

4 pools:
4 wavefronts in
flight per SIMD

4 ck to execute
each wavefront

pool number

Wavefronts

HiSilicon Kirin 960

• ARM64 big.LITTLE (Cortex A73+Cortex A53) + Mali G71

28

Mali

Mali G71

• Supports OpenCL 2.0

• 4, 6, 8, 16, 32 Cores
• Each core:

– 3 x 4-wide SIMD units

• 32 x 12 x 2 fmad x
0.85GHz=652 GFLOPS

29

HSA (Heterogeneous System Architecture)

– CPU, GPU, DSPs,...
• Founders:

30

• HSA Foundation’s goal: Productivity on heterogeneous HW

Advantages of iGPUs

• Discrete and integrated GPUs: different goals
– NVIDIA Pascal: 3584 CUDA cores, 250W, 10 TFLOPS
– Intel Iris Pro Graphics 580: 72EU x 8 SIMD, ~15W, 1.15 TFLOPS
– Mali-G71: 32 EU x 3 x 4 SIMD, ~ 2W, 0.652 TFLOPS

• CPU and GPU are both first-class citizens.
– SVM and platform atomics allows for closer collaboration

• Avoid PCI data transfer and associated POWER dissipation
– Operating System doesn’t get in the way à less overhead

• CPU and GPU may have similar performance
– It’s more likely that they can collaborate

• Cheaper!

31

Hardware: iFPGAs

32

Altera Cyclone V Xilinx Zynq UltraScale+ Intel Xeon+Arria10

QPI

FPGA

2 x A9 4 x
A53

GPU

2xR5

FPGA

FPGA Architecture

33

Courtesy: Javier
Navaridas, U.
Manchester.

CLB: Configurable Logic Block

34

CIN

Switch
Matrix

COUTCOUT

Slice X0Y0

Slice X0Y1

Fast Connects

Slice X1Y0

Slice X1Y1

CIN

SHIFTIN

Left-Hand SLICEM Right-Hand SLICEL

SHIFTOUT

Courtesy: Jose Luis Nunez-Yanez, U. Bristol.

LUT

LUT

FF

FF

FPGA Architecture

35

How do we “mold this liquid silicon”?

• Hardware overlays
– Map a CPU or GPU onto the FPGA

ü100s of simple CPU can fit on large FPGAs
üThe CPU or GPU overlay can change/adapt
!Resulting overlay is not as efficient as a “real” one
!Same drawbacks as “general purpose” processors

36

CPU: GPU:

FPGAs for Software Programmers, Dirk Kock, Daniel Ziener

How do we “mold this liquid silicon”?

üNo FETCH nor DECODE of instructions à already hardwired
üData movement (Exec. Units ⇔ MEM) reduction à Power save
üNot constrained by a fixed ISA:

üBit-level parallelism; shift, bit mask, ...; variable precision arith.
!Less frequency (hundreds of MHz)
!In order execution (proposal from David Kaeli’s group to OoO)
!Programming effort

37

FPGA:

Hardware thread reordering to boost OpenCL throughput on
FPGAs, ICCD’16

FPGAs for Software Programmers, Dirk Kock, Daniel Ziener

Xilinx Zynq UltraScale+ MPSoC

• Available:
– SW coherence (cache flush) à Slow
– HW coherence (MESI coherence protocol) à Fast. Ports:

• Accelerator Coherency Port, ACP
• Cache-coherent interconnect (CCI) ACE-Lite ports

– Part of ARM® AMBA® AXI and ACE protocol specification

38

4 x
A53

GPU

2xR5

FPGA

Intel Broadwell+Arria10

• Cache Coherent Interconnect (CCI)
– New IP inside the FPGA: Intel Quick Path Interconnect with CCI
– AFU (Accelerated Function Unit) can access cached data

39

Towards CCI everywhere

• CCIX consortium (http://www.ccixconsortium.com)
– New chip-to-chip interconnect operating at 25Gbps
– Protocol built for FPGAs, GPUs, network/storage adapters, ...
– Already in Xilinx Virtex UltraScale+

40

Which architecture suits me best?

41

• All of them are Turing complete, but
• Depending on the problem:

– CPU:
• For control-dominant problems
• Frequent context switching

– GPU:
• Data-parallel problems (vectorized/SIMD)
• Little control flow and little synchronization

– FPGA:
• Stream processing problems
• Large data sets processed in a pipelined fashion
• Low power constraints

Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline

42

http://imgs.xkcd.com/comics/standards.png

43

HOW STANDARDS PROLIFERATE
see: A/C chargers, Character encodings, Instant Messaging, etc)

Programming models for heterogeneous: GPUs

• Targeted at exploiting one device at a time
– CUDA (NVIDIA)
– OpenCL (Khronos Group Standard)
– OpenACC (C, C++ or Fortran + Directives à OpenMP 4.0)
– C++AMP (Windows’ extension of C++. Recently HSA announced own ver.)
– Sycl (Khronos Gruop’s specification for “Single-source C++ progr.)
– ROCm (Radeon Open Compute, HCC, HIP, for AMD GCN –HSA–)
– RenderScript (Google’s Java API for Android)
– ParallDroid (Java + Directives from ULL, Spain)
– Many more (Numba Python, IBM Java, Matlab, R, JavaScript, …)

• Targeted at exploiting both devices simultaneously (discrete GPUs)
– Qilin (C++ and Qilin API compiled to TBB+CUDA)
– OmpSs (OpenMP-like directives + Nanos++ runtime + Mercurium compiler)
– XKaapi
– StarPU

• Targeted at exploiting both devices simultaneously (integrated GPUs)
– Qualcomm Symphony
– Intel Concord

44

Programming models for heterogeneous: GPUs

Targeted at exploiting
ONE device at a time

45

parallel_for

CPU GPU

Targeted at exploiting SEVERAL
devices at the same time

parallel_for
compiler

+
runtime

CPU GPU

CUDA OpenCL

OpenMP4.0C++AMP
Sycl

ROCm

RenderScript
ParallDroid

Numba Python

JavaScriptMatlab
R

Qilin OmpSs

XKaapi StarPU

Qualcomm Symphony

Concord

Programming models for heterogeneous: FPGAs

• HDL-like languages
– SystemVerilog, Bluespec System Verilog
– Extend RTL languages by adding new features

• Parallel libraries
– CUDA, OpenCL
– Instrument existing parallel libraries to generate RTL code

• C-based languages
– SDSoC, LegUp, ROCCC, Impulse C, Vivado, Calypto Catapult C
– Compile* C into intermediate representation and from there to HDL
– Functions become Finite State Machines and variables mem. blocks

• Higher level languages
– Kiwi (C#), Lime (Java), Chisel (Scala)
– Translate* input language into HDL

46

* Normally	a	subset	thereof

Courtesy: Javier Navaridas, U. Manchester.

OpenCL 2.0

• OpenCL 2.0 supports:
– Coherent SVM (Shared Virtual Memory) & Platform atomics
– Example: allocating an array of atomics:

47

clContex = ...
clCommandQueue = ...
clKernel = ...

cl_svm_mem_flags flags = CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS;
atomic_int * data;
data = (atomic_int *) clSVMAlloc(clContext, flags, NUM * sizeof(atomic_int), 0);

clSetKernelArgSVMPointer(clKernel, 0, data);
clSetKernelArg(clKernel, 1, sizeof(int), &NUM);
clEnqueueNDRangeKernel(clCommandQueue, clKernel,);

atomic_store_explicit ((atomic_int*)&data[0], 99, memory_order_release);

CPU Host Code

kernel void myKernel(global int *data, global int* NUM){

int i=atomic_load_explicit((global atomic_int *)&data[0], memory_order_acquire);
....
}

GPU Kernel Code

C++AMP

• C++ Accelerated Massive Parallelism
• Example: Vector Add (C[i]=A[i]+B[i])

48

A, B and C buffers

Initialize A and B

Run on GPU

SYCL Parallel STL

• Parallel STL aimed at C++17 standard:
– std::sort(vec.begin(), vec.end()); //Vector sort
– std::sort(seq, vec.begin(), vec.end()); // Explicit SEQUENTIAL
– std::sort(par, vec.begin(), vec.end()); // Explicit PARALLEL

• SYCL exposes the execution policy (user-defined)

50

std::vector<int>(N);
float ratio = 0.5;
sycl::het_sycl_policy<class ForEach> policy(ratio);
std::for_each(policy, v.begin(), v.end(),

[=](int& val) {
val= val*val;
}

);

Courtesy: Antonio Vilches

50% of the iterations on CPU
50% of the iterations on GPU

https://github.com/KhronosGroup/SyclParallelSTL

Qualcomm Symphony

• Point Kernel: write once, run everywhere
– Pattern tuning extends to heterogeneous load hints

51

SYMPHONY_POINT_KERNEL_3(vadd, int, i, float*, a, int, na,
float*, b, int, nb, float*, c, int, nc,

{ c[i] = a[i] + b[i];}); ...

symphony::buffer_ptr buf_a(1024), buf_b(1024), buf_c(1024);
...
symphony::range<1>(1024) r;
symphony::pfor_each(r, vadd_pk, buf_a, buf_b, buf_c,

symphony::pattern::tuner().set_cpu_load(10)
.set_gpu_load(50)
.set_dsp_load(40)

);

Executed across CPU(10%) + GPU(50%) + DSP(40%)
A kernel for

each device is
automatically

generated

Intel Concord

• C++ heterogeneous programming framework

• Papers:
– Rashid Kaleem et al. Adaptive heterogeneous scheduling on

integrated GPUs. PACT 2014.
• Intel Heterogeneous Research Compiler (iHRC) at

https://github.com/IntelLabs/iHRC/
– Naila Farooqui et al. Affinity-aware work-stealing for integrated

CPU-GPU processors. PPoPP ’16. PhD dissertation:
https://smartech.gatech.edu/bitstream/handle/1853/54915/FAROOQUI-DISSERTATION-2016.pdf

52

class Foo {
int *a, *b, *c;
void operator(int i) { c[i] = a[i]+b[i]; }

Foo *f = new Foo();

parallel_for(0, N, *f);
Executed across CPU+GPU,
dynamic partition

Xilinx SDSoC

• Without SDSoC:

53

FPGA

CPU

main(){

init(A,B,C);

mmult(A,B,D);

madd(C,D,E);

consume(E);

}

Courtesy: Xilix

mmult madd

ABC

D

E

Xilinx SDSoC

• With SDSoC:
– Eclipse-based SDK

54

FPGA

CPU

Refine Code:

• Re-factoring
code to be
more HLS-
friendly

• Adding code
annotations
(i.e., pragmas)

#pragma SDS data copy(Array)
#pragma SDS zero_copy(Array)
#pragma SDS data access_pattern
#pragma SDS data sys_port (...)
#pragma HLS PIPELINE II = 1
#pragma HLS unroll
#pragma HLS inline

Altera OpenCL

55

main() {
read_data(...);
manipulate(...);
clEnqueueWriteBuffer(...);
clEnqueueNDRange(...,sum,...);
clEnqueueReadBuffer(...);
display_result(...);

}

__kernel void
sum(__global float *a,

__global float *b,
__global float *y)

{
int i = get_global_id(0);
c[i] = a[i] + b[i];

}

Host Code

Kernel Code

Standard
C Compiler

OpenCL
aoc compiler

Verilog

.EXE

.OUT
.AOCX

bitstream

CPU FPGA

Altera OpenCL optimizations

• Locality:
– Shift-Register Pattern (SRP)
– Local Memory (LM)
– Constant Memory (CM)
– Load-Store Units Buffers (LSU)

• Loop Unrolling (LU)
– Deeper pipelines
– Optimized tree-like reductions

• Kernel vectorization (SIMD)
– Wider ALUs

• Compute Unit Replication (CUR)
– Replicate Pipelines
– Downsides: memory divergence ⬆, complexity ⬆, frequency ⬇

56

Shift Register Pattern

• Example: 1D stencil computation

57

x x x

+

NDRange
No SRP

SingleTask
SRP

x x x

+

shft_reg

64x faster than Naive (17 elem. filter)
“Tuning Stencil Codes in OpenCL for

FPGAs”, ICCD’16

Shift !!

Agenda

• Motivation

• Hardware: iGPUs and iFPGAs

• Software
– Programming models for chips with iGPUs and iFPGAs

• Our heterogeneous templates based on TBB
– parallel_for
– parallel pipeline

58

Our work: parallel_for

• Heterogeneous parallel for based on TBB
– Dynamic scheduling / Adaptive partitioning for irregular codes
– CPU and GPU chunk size re-computed every time

59

A15

GPU

A15

A15

A15

A7

A7

A7

Problem:
BarnesHut

Archit.:
Exynos 5

One A7
feeds
the GPU

Time

Time to execute
this chunk of

iterations on GPU

New scheduler and API

60

New API

61

Use the GPU

Exploit Zero-Copy-Buffer

Scheduler class

62

Related work: Qilin

63

• Static Approach: Bulk-Oracle
Offline search (11 executions)

– Work partitioning between CPU and GPU

– One big chunk with 70% of the iterations: on the GPU
– The remaining 30% processed on the cores

0"

50"

100"

150"

0%" 10%" 20%" 30%" 40%" 50%" 60%" 70%" 80%" 90%"100%"
Percentage)of)the)itera.on)space)offloaded)to)the)GPU)

Barnes)Hut:)Offline)search)for)sta.c)par..on)

Execu2on"2me"in"seconds"

Related work: Intel Concord

64

• Papers:
– Rashid Kaleem et al.

Adaptive heterogeneous
scheduling on integrated
GPUs. PACT 2014.

– Naila Farooqui et al.
Affinity-aware work-stealing
for integrated CPU-GPU
processors. PPoPP ’16
(poster).

assign chunk
size just for

GPU

compute
on CPU

compute
chunk on

GPU

when the GPU is done

according to
relative speeds:
partition the rest
of the iteration

space

Related Work: HDSS

65

• Belviranli et al, A Dynamic Self-Scheduling Scheme for
Heterogeneous Multiprocessor Architectures, TACO 2013

TACO0904-57 ACM-TRANSACTION December 22, 2012 2:21

57:8 M. E. Belviranli et al.

Fig. 6. An example showing block assignments by time for a two-threaded (1 GPU and 1 CPU thread) run of
Histogram application on CPU+GPU system. Figure (a), on the left, illustrates the assignments dispatched
during the adaptive phase. In this figure, block size axis is shown in logarithmic scale for a better separation
of block assignments in the chart. Figure (b), on the right, shows the two phases of the algorithm separated
with a clear jump in assigned block sizes just after computational weights are determined and stabilized.

a block size is retrieved, the programmer must call processor-specific implementations
(kernels) of her application on the determined data block.

3.2. The Algorithm
Overview. The HDSS algorithm determines the ideal block size per processor using
a two-phased approach. The initial phase, called the adaptive phase, is responsible
for accurately finding the computational weights which reflect the relative processor
speeds. This phase processes a relatively small amount of data whose upper bound is
set as a fixed percentage of the total data. The final phase, called completion phase,
processes the remainder of the data using the weights computed in the adaptive phase.
This phase starts with the largest possible blocks to optimize the execution time by
reducing the dispatching overhead. Block size decreases steadily as the computation
works towards end so that all units complete execution at nearly the same time. As
an example, the progression of block sizes during the adaptive phase is illustrated
in Figure 6(a). The experiment is for Histogram application on a CPU+GPU system
with 210M inputs. The overall process including completion phase is illustrated in
Figure 6(b) for the same experiment. The sudden increase in the curve is the moment
where HDSS assigns largest possible block for the very first block request of the second
phase.

A flow chart for our proposed self-scheduling algorithm, HDSS, is given in Figure 7.
Our algorithm stores the remaining number of iterations and total computational
weight as global variables. In addition, each processing element has the following
attributes:

—the initial block size (user-defined);
—computational weight in iterations per microsecond;
—block size factor (user-defined);
—dynamic list of blocks that have been assigned to the processor before. Each entry in

the list contains the size of the block as well as the execution start and end times of
the block.

For the first block assignment, the initial block size parameter for the requesting
processor is set as the block size. During subsequent block requests, HDSS decides
whether to continue with the adaptive phase or move to the next phase based on
dynamics of the execution. Once HDSS concludes that the adaptive phase should be
terminated, all subsequent block assignments by all processors are calculated by the
completion phase.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 57, Publication date: January 2013.

Fermi
Discrete

GPU

Debunking big chunks

• Example: irregular Barnes-Hut benchmark

66

Debunkign big chunks

A larger chunk causes more memory traffic

67

Updated
chunkArray of bodies:

Written	body

Read	body

Updated
chunkArray of bodies:

Written	body

Read	body

Debunking big chunks

• BarnesHut: GPU throughput along the iteration space
– For two different time-steps
– Different GPU chunk-sizes

68

0 2 4 6 8 10
x 104

20

40

60

80

100

120

140

160

Barnes−Hut: Throughput variation (time step=0)

Iteration Space

Th
ro

ug
hp

ut

chunk=320
chunk=640
chunk=1280
chunk=2560

0 2 4 6 8 10
x 104

20

40

60

80

100

120

140

160

Barnes−Hut: Throughput variation (time step=5)

Iteration Space

Th
ro

ug
hp

ut

chunk=320
chunk=640
chunk=1280
chunk=2560

640

2560

1280

640

2560

Time step=0 Time step=5

LogFit main idea

70

Time

GPU

Core1

Core2

Core3

Core4

Time to execute
this	chunk	of	

iterations	on	GPU

Exp
Phs

Stable	Phase F
P

Intel	Core	i7
Haswell

GPU

Core

Core

Core
Core

Sh
ar
ed

	L
3

Parallel_for: Performance per joule

• Static: Oracle-Like static partition of the work based on profiling
• Concord: Intel approach: GPU size provided by user once
• HDSS: Belviranli et al. approach: GPU size computed once

• LogFit: our work

72

GPU

GPU+1Core

GPU+2Cores

GPU+4Cores

GPU+3Cores

Antonio Vilches et al. Adaptive
Partitioning for Irregular

Applications on Heterogeneous
CPU-GPU Chips, Procedia
Computer Science, 2015.

On Intel Haswell
Core i7-4770

LogFit: better for irregular benchmarks

73

LogFit working on FPGA

• Energy probe: AccelPower Cap (Luis Piñuel, U. Complut.)

74

DE1-SoC

Altera
Cyclone V

AccelPower Cap
+ BeagelBone

Shunt resistor
(power flow)

LogFit working on FPGA

75

LogFit
2C+FPGA

Static

• Terasic DE1: Altera Cyclone V (FPGA+2 Cortex A9)
• Energy probe: AccelPower Cap (Luis Piñuel, U. Complut.)

Our work: pipeline
• ViVid, an object detection application
• Contains three main kernels that form a pipeline

• Would like to answer the following questions:
– Granularity: coarse or fine grained parallelism?
– Mapping of stages: where do we run them (CPU/GPU)?
– Number of cores: how many of them when running on CPU?
– Optimum: what metric do we optimize (time, energy, both)?

76

St
ag

e
1

St
ag

e
2

St
ag

e
3

Input
frame Filter Histogram Classifier

Output

response mtx.

index mtx.

histograms
detect. response

Granularity

• Coarse grain:
– CG

• Medium grain:
– MG

• Fine grain:

– Fine grain also in the CPU via AVX intrinsics

77

Input Stage Output Stage

CPU

C
item

CPU

C
item

CPU

Stage 1

C
item

CPU

Stage 2

C
item

CPU

Stage 3

C
item

C =core

Input Stage

CPU

C
item

Output Stage

CPU

C
item

CPU

Stage 1

C
item

C
C C

CPU

Stage 2

C
item

C
C C

CPU

Stage 3

C
item

C
C C

Input Stage Output Stage

GPU
C C C
C C C

item
CPU

C
item

CPU

C
item

GPU
C C C
C C C

item
GPU
C C C
C C C

item

Stage 1 Stage 2 Stage 3

Our work: pipeline

78

Input Stage Output Stage

GPU
C C C
C C C

item
CPU

C
item

CPU

C
item

CPU

Stage 2

C
item

C
C C

CPU

Stage 3

C
item

C
C C

Stage 1

CPU

GPU

CPU

GPU

CPU

GPU

CPU CPU CPU

GPU

CPU CPU CPU CPU

CPU CPU

GPU

CPU

GPU

CPU CPU CPU

GPU

CPU CPU

GPU

CPU CPU

CPU CPU CPU CPU CPU

CPU CPU

GPU

CPU

GPU

CPU CPU

GPU

CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU

GPU

111 100

010 001

110 101

011 000

Accounting for all alternatives

• In general: nC CPU cores, 1 GPU and p pipeline stages

alternatives = 2p x (nC +2)

• For Rodinia’s SRAD benchmark (p=6,nC=4) à 384 alternatives

79

Input Stage

GPU
C C C
C C C

item

CPU

C
item

Output Stage

CPU

C
item

GPU
C C C
C C C

item
GPU
C C C
C C C

item

CPU

Stage 1

item
CPU

Stage 2

item
CPU

Stage p

item
C C

nC cores
C C

nC cores
C C

nC cores

Mapping streaming applications on commodity multi-CPU and GPU on-
chip processors, IEEE Tran. Parallel and Distributed Systems, 2016.

Framework and Model

• Key idea:
1. Run only on GPU
2. Run only on CPU
3. Analytically extrapolate for heterogeneous execution
4. Find out the best configuration à RUN

80

Input Stage

GPU
C C C
C C C

item

CPU

C
item

Output Stage

CPU

C
item

GPU
C C C
C C C

item
GPU
C C C
C C C

item

CPU

Stage 1

C
item

C
C C

CPU

Stage 2

C
item

C
C C

CPU

Stage 3

C
item

C
C C

DP-MG

collect λ and E (homogeneous values)

Environmental Setup: Benchmarks

• Four Benchmarks
– ViVid (Low and High Definition inputs)

– SRAD

– Tracking

– Scene Recognition

81

Inpt
Filter Histogram Classifier

St 1 St 2 St 3 Out

Inpt
Extrac. Prep. Reduct.

St 1 St 2 St 3 St 4
Comp.1 Comp. 2

St 5 St 6 Out
Statist.

Inpt
Track.

St 1 Out

Inpt
Feature. SVM

St 1 St 2 Out

Does Higher Throughput imply Lower Energy?

82

1.0E-03
2.0E-03
3.0E-03
4.0E-03
5.0E-03
6.0E-03
7.0E-03
8.0E-03
9.0E-03

Num-Threads	(CG)

6.0

8.0

10.0

12.0

14.0

16.0

Num-Threads	(CG)

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

Num-Threads	(CG)

Haswell
HD

1.0E-01

3.0E-01

5.0E-01

7.0E-01

9.0E-01

1.1E+00

Num-Threads	(CG)

SRAD on Haswell

84

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

Num-Threads	(CG)

0.0E+00
2.0E-02
4.0E-02
6.0E-02
8.0E-02
1.0E-01
1.2E-01
1.4E-01
1.6E-01
1.8E-01

Num-Threads	(CG)

Input Stage

GPU
C C C

C C C

item

CPU

C
item

CPU

Stage 1

C
item

GPU
C C C

C C C

item

CPU

Stage 2

C
item

Output Stage

CPU

C
item

GPU
C C C

C C C

item

CPU

Stage 6

C
item

DP-CG
GPU
C C C

C C C

item

CPU

Stage 3

C
item

GPU
C C C

C C C

item

CPU

Stage 4

C
item

GPU
C C C

C C C

item

CPU

Stage 5

C
item

Results on big.LITTLE architecture

85

• On Odroid XU3: 4 Cortex A15 + 4 Cortex A7 + GPU Mali

Input Stage Output Stage

CPU

C
item

CPU

C
item

CPU

Stage 1

C
item

CPU

Stage 2

C
item

CPU

Stage 3

C
item

C =core

5 thr (GPU+4A15)

1thr (A15)

2thr (2 A15)
4thr (4 A15)

5thr (4 A15+1 A7)

9thr (4 A15+ 4 A7)

1 thr
(GPU) 9 thr (GPU+4A15+4A7)

Pipeline on CPU-FPGAs

• Change the GPU by a FPGA
– Core i7 4770k 3.5 GHz Haswell quad-core CPU
– Altera DE5-Net FPGA from Terasic
– Intel HD6000 embedded GPU
– Nvidia Quadro K600 discrete GPU (192 cuda cores)

• Homogeneous results:

86

Device Time
(sec.)

Throughput
(fps)

Power
(watts)

Energy
(Jules)

CPU (1 core) 167.610 0.596& 37& 6201&
CPU (4 cores) 50.310& 1.987& 92& 4628&

FPGA 13.480& 7.418& 5" 67"
On-chip GPU 7.855" 12.730" 16& 125&
Discrete GPU 13.941& 7.173& 47& 655&

Pipeline on CPU-FPGA

• Heterogeneous results based on our TBB scheduler:
- Accelerator + CPU
- Mapping 001

87

onGPU+CPU ~ FPGA+CPU

Conclusions
• Plenty of heterogeneous on-chip architectures out there

• Why not use all devices?
– Need to find the best mapping/distribution/scheduling out of the

many possible alternatives.

• Programming models and runtimes aimed at this goal are in
their infancy: striving to solve this.

• Challenges:
– Hide HW complexity providing a productive programming model
– Consider energy in the partition/scheduling decisions
– Minimize overhead of adaptation policies

88

Future Work

• Exploit	CPU-GPU-FPGA	chips	and	coherency
• Predict	energy	consumption	on	heterogeneous	CPU-

GPU-FPGA	chips

• Consider	energy	consumption	in	the	partitioning	
heuristic

• Rebuild	the	scheduler	engine	on	top	of	the	new TBB	
library	(OpenCL	node)

• Tackle	other	irregular	codes

89

Future Work: TBB OpenCL node

buffer

get_next_image preprocess

detect_with_A

detect_with_B

make_decision

Can express pipelining, task parallelism and data parallelism

OpenCL node

Future Work: other irregular codes

91

1

2 3 4

11 12 13 14

5 6 7 8 9 10

15 16 17

1918

Bottom
-U
p

a) Selective

1

2 3 4

11 12 13 14

5 6 7 8 9 10

15 16 17

1918

b) Concurrent

Top-D
ow

n

1

2 3 4

11 12 13 14

5 6 7 8 9 10

15 16 17

1918

c) Asynchronous

5

1 CPU

GPU

19 Both

Node computed on:

CPU

GPU

Both

Frontier computed on:

C.H.G Vázquez, PhD, Library based solutions for algorithms with complex patterns, 2015

Collaborators

• Mª Ángeles González Navarro (UMA, Spain)
• Andrés Rodríguez (UMA, Spain)
• Francisco Corbera (UMA, Spain)
• Jose Luis Nunez-Yanez (University of Bristol)
• Antonio Vilches (UMA, Spain)
• Alejandro Villegas (UMA, Spain)
• Juan Gómez Luna (U. Cordoba, Spain)
• Rubén Gran (U. Zaragoza, Spain)
• Darío Suárez (U. Zaragoza, Spain)
• Maria Jesús Garzarán (Intel and UIUC, USA)
• Mert Dikmen (UIUC, USA)
• Kurt Fellows (UIUC, USA)
• Ehsan Totoni (UIUC, USA)
• Luis Remis (Intel, USA)

92

Questions

asenjo@uma.es

93

