
Design and Validation of Cloud Storage Systems
using Maude

Peter Csaba Ölveczky

University of Oslo
University of Illinois at Urbana-Champaign

Based on joint work with Jon Grov and members of UIUC’s Center for
Assured Cloud Computing

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 1 / 58



Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 2 / 58



Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 3 / 58



Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 4 / 58



Cloud Computing Data Stores

Cloud computing systems store/retrieve large amounts of data

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 5 / 58



Availability

Data should always be available
I network/site failures, network congestion, scheduled upgrades

−→ data must be replicated

Large and growing data
I Facebook (2014): 300 petabytes data; 350M photos uploaded every

day
−→ data must be partitioned

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 6 / 58



Availability

Data should always be available
I network/site failures, network congestion, scheduled upgrades

−→ data must be replicated

Large and growing data
I Facebook (2014): 300 petabytes data; 350M photos uploaded every

day
−→ data must be partitioned

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 6 / 58



Consistency in Replicated Systems

Figure by Jiaqing Du

Consistency: All replicas of a data item should have same value

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 7 / 58



“CAP Theorem”

Data consistency + partition tolerance + availability impossible

(Figure from http://flux7.com/blogs/nosql/cap-theorem-why-does-it-matter/)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 8 / 58

http://flux7.com/blogs/nosql/cap-theorem-why-does-it-matter/


Slightly Different View

Trade-off

consistency level ←→ latency

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 9 / 58



Eventual Consistency

Weak consistency OK for some applications

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 10 / 58



Eventual Consistency

Weak consistency OK for some applications
. . . but not others:

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 10 / 58



Designing Data Stores

Complex systems
I size
I replication
I concurrence
I fault tolerance

Many hours of “whiteboard analysis”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 11 / 58



Designing Data Stores

Complex systems
I size
I replication
I concurrence
I fault tolerance

Many hours of “whiteboard analysis”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 11 / 58



Validating Data Store Designs

Correctness: “hand proofs”
I error prone
I informal
I key assumptions implicit
I does not scale to nontrivial systems

Performance: simulation tools, real implementations
I additional artifact
I cannot be used to reason about correctness

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 12 / 58



Validating Data Store Designs

Correctness: “hand proofs”
I error prone
I informal
I key assumptions implicit
I does not scale to nontrivial systems

Performance: simulation tools, real implementations
I additional artifact
I cannot be used to reason about correctness

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 12 / 58



Our Approach: Formal Methods

Use formal methods to develop and validate designs

define mathematical model of system

use mathematical rules to analyze system

Find errors early!

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 13 / 58



Our Approach: Formal Methods

Use formal methods to develop and validate designs

define mathematical model of system

use mathematical rules to analyze system

Find errors early!

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 13 / 58



Using Formal Methods (I): Validation Perspective

Formal system model S
I precise mathematical model
I makes assumptions precise and explicit
I amenable to mathematical analysis

Formal property specification P
I precise description of consistency model
I can check whether S |= P

What about performance analysis?

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 14 / 58



Using Formal Methods (I): Validation Perspective

Formal system model S
I precise mathematical model
I makes assumptions precise and explicit
I amenable to mathematical analysis

Formal property specification P
I precise description of consistency model
I can check whether S |= P

What about performance analysis?

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 14 / 58



Using Formal Methods (I): Validation Perspective

Formal system model S
I precise mathematical model
I makes assumptions precise and explicit
I amenable to mathematical analysis

Formal property specification P
I precise description of consistency model
I can check whether S |= P

What about performance analysis?

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 14 / 58



Using Formal Methods (II): Software Engineering
Perspective

Need:

expressive and intuitive modeling language

expressive and intuitive property specification language

automatically check whether design satisfies property
I quick and extensive feedback
I saves days of whiteboard analysis
I “extensive and automatic test suite”

design model also for performance analysis!
I no new artifact for performance analysis

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 15 / 58



Using Formal Methods (II): Software Engineering
Perspective

Need:

expressive and intuitive modeling language

expressive and intuitive property specification language

automatically check whether design satisfies property
I quick and extensive feedback
I saves days of whiteboard analysis
I “extensive and automatic test suite”

design model also for performance analysis!
I no new artifact for performance analysis

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 15 / 58



Using Formal Methods (II): Software Engineering
Perspective

Need:

expressive and intuitive modeling language

expressive and intuitive property specification language

automatically check whether design satisfies property
I quick and extensive feedback
I saves days of whiteboard analysis
I “extensive and automatic test suite”

design model also for performance analysis!
I no new artifact for performance analysis

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 15 / 58



Using Formal Methods (II): Software Engineering
Perspective

Need:

expressive and intuitive modeling language

expressive and intuitive property specification language

automatically check whether design satisfies property
I quick and extensive feedback
I saves days of whiteboard analysis
I “extensive and automatic test suite”

design model also for performance analysis!
I no new artifact for performance analysis

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 15 / 58



Which Formal Language/Tool?

Difficult challenges:

intuitive

expressive

useful automatic analyses

both correctness and performance analysis

complex properties to check

mature tool support

real-time and probabilistic features

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 16 / 58



Our Framework: Rewriting Logic

Rewriting logic: equations and rewrite rules
I expressive
I simple/intuitive
I object-oriented

Maude tool:
I simulation
I temporal logic model checking

F expressive property specification language

Extensions:
I real-time systems
I probabilistic systems

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 17 / 58



Our Framework: Rewriting Logic

Rewriting logic: equations and rewrite rules
I expressive
I simple/intuitive
I object-oriented

Maude tool:
I simulation
I temporal logic model checking

F expressive property specification language

Extensions:
I real-time systems
I probabilistic systems

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 17 / 58



Our Framework: Rewriting Logic

Rewriting logic: equations and rewrite rules
I expressive
I simple/intuitive
I object-oriented

Maude tool:
I simulation
I temporal logic model checking

F expressive property specification language

Extensions:
I real-time systems
I probabilistic systems

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 17 / 58



Maude: Software Engineering Perspective I

Models can be developed quickly

Simulation gives quick feedback (rapid prototyping)

Model checking: analyze all behaviors from one initial state

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php

I formal test-driven development: “test-driven development approach
where many complex scenarios can be quickly tested by model
checking”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 18 / 58

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php


Maude: Software Engineering Perspective I

Models can be developed quickly

Simulation gives quick feedback (rapid prototyping)

Model checking: analyze all behaviors from one initial state

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php

I formal test-driven development: “test-driven development approach
where many complex scenarios can be quickly tested by model
checking”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 18 / 58

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php


Maude: Software Engineering Perspective I

Models can be developed quickly

Simulation gives quick feedback (rapid prototyping)

Model checking: analyze all behaviors from one initial state

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php

I formal test-driven development: “test-driven development approach
where many complex scenarios can be quickly tested by model
checking”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 18 / 58

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php


Maude: Software Engineering Perspective (cont.)

What about performance analysis?

1 (Randomized) simulations
2 Probabilistic analysis (using PVeStA)

I statistical model checking

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 19 / 58



Maude: Software Engineering Perspective (cont.)

What about performance analysis?

1 (Randomized) simulations

2 Probabilistic analysis (using PVeStA)
I statistical model checking

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 19 / 58



Maude: Software Engineering Perspective (cont.)

What about performance analysis?

1 (Randomized) simulations
2 Probabilistic analysis (using PVeStA)

I statistical model checking

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 19 / 58



Maude: Software Engineering Perspective (cont.)

Same artifact for:

precise system description

rapid prototyping

extensive testing

correctness analysis

performance estimation

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 20 / 58



Case Study I

Modeling, Analyzing, and Extending Megastore

Joint work with Jon Grov (U. Oslo)
Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 21 / 58



Megastore

Megastore:

Google’s wide-area replicated data store

3 billion write and 20 billion read transactions daily (2011)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 22 / 58



Megastore: Key Ideas (I)

(Figure from http://cse708.blogspot.jp/2011/03/megastore-providing-scalable-highly.html)

Data divided into entity groups

Peter’s email

Books on rewriting logic

Narciso’s documents

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 23 / 58

http://cse708.blogspot.jp/2011/03/megastore-providing-scalable-highly.html


Megastore: Key Ideas (II)

Consistency for transactions accessing a single entity group
I no guarantee if transaction reads multiple entity groups

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 24 / 58



Our Work

[Developed and] formalized [our version of the] Megastore [approach]
in Maude

I first (public) formalization/detailed description of Megastore

56 rewrite rules (37 for fault tolerance features)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 25 / 58



Our Work

[Developed and] formalized [our version of the] Megastore [approach]
in Maude

I first (public) formalization/detailed description of Megastore

56 rewrite rules (37 for fault tolerance features)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 25 / 58



Our Work

[Developed and] formalized [our version of the] Megastore [approach]
in Maude

I first (public) formalization/detailed description of Megastore

56 rewrite rules (37 for fault tolerance features)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 25 / 58



Performance Estimation

Key performance measures:
I average transaction latency
I number of committed/aborted transactions

Randomly generated transactions (rate 2.5 TPS)

Network delays:

30% 30% 30% 10%

Madrid ↔ Paris 10 15 20 50
Madrid ↔ New York 30 35 40 100
Paris ↔ New York 30 35 40 100

Simulating for 200 seconds:

Avg. latency (ms) Commits Aborts

Madrid 218 109 38
New York 336 129 16
Paris 331 116 21

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 26 / 58



Performance Estimation

Key performance measures:
I average transaction latency
I number of committed/aborted transactions

Randomly generated transactions (rate 2.5 TPS)

Network delays:

30% 30% 30% 10%

Madrid ↔ Paris 10 15 20 50
Madrid ↔ New York 30 35 40 100
Paris ↔ New York 30 35 40 100

Simulating for 200 seconds:

Avg. latency (ms) Commits Aborts

Madrid 218 109 38
New York 336 129 16
Paris 331 116 21

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 26 / 58



Performance Estimation

Key performance measures:
I average transaction latency
I number of committed/aborted transactions

Randomly generated transactions (rate 2.5 TPS)

Network delays:

30% 30% 30% 10%

Madrid ↔ Paris 10 15 20 50
Madrid ↔ New York 30 35 40 100
Paris ↔ New York 30 35 40 100

Simulating for 200 seconds:

Avg. latency (ms) Commits Aborts

Madrid 218 109 38
New York 336 129 16
Paris 331 116 21

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 26 / 58



Megastore-CGC: extending Megastore

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 27 / 58



Motivation

Some transactions must access multiple entity groups

Our work: extend Megastore with consistency for transactions
accessing multiple entity groups

Megastore-CGC piggybacks ordering and validation onto Megastore’s
coordination protocol

I no additional messages for validation/commit!
I maintains Megastore’s performance and fault tolerance

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 28 / 58



Motivation

Some transactions must access multiple entity groups

Our work: extend Megastore with consistency for transactions
accessing multiple entity groups

Megastore-CGC piggybacks ordering and validation onto Megastore’s
coordination protocol

I no additional messages for validation/commit!
I maintains Megastore’s performance and fault tolerance

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 28 / 58



Motivation

Some transactions must access multiple entity groups

Our work: extend Megastore with consistency for transactions
accessing multiple entity groups

Megastore-CGC piggybacks ordering and validation onto Megastore’s
coordination protocol

I no additional messages for validation/commit!
I maintains Megastore’s performance and fault tolerance

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 28 / 58



Performance Comparison using Real-Time Maude

Simulating for 1000 seconds (no failures)

Megastore:

Commits Aborts Avg. latency (ms)

Madrid 652 152 126
Paris 704 100 118
New York 640 172 151

Megastore-CGC:

Commits Aborts Val. aborts Avg.latency (ms)

Madrid 660 144 0 123
Paris 674 115 15 118
New York 631 171 10 150

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 29 / 58



Model Checking Megastore-CGC

Model checking scenarios

5 transactions , no failures, message delay 30 ms or 80 ms
−→ 108,279 reachable states, 124 seconds

3 transactions, one site failure and fixed message delay
−→ 1,874,946 reachable states, 6,311 seconds

3 transactions, fixed message delay and one message failure
−→ 265,410 reachable states, 858 seconds

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 30 / 58



Case Study II

Work by Si Liu, Muntasir Raihan Rahman, Stephen Skeirik, Indranil
Gupta, José Meseguer, Son Nguyen, Jatin Ganhotra (ICFEM’14,
QEST’15)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 31 / 58



Apache Cassandra

Key-value data store originally developed at Facebook

Used by Amadeus, Apple, CERN, IBM, Netflix, Facebook/Instagram,
Twitter, . . .

Open source

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 32 / 58



Cassandra Overview

Read consistency either one, quorum, or all

Write consistency either zero, one, quorum, or all

[Figures from http://www.slideshare.net/nuboat/cassandra-distributed-data-store]

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 33 / 58



Cassandra Overview

Read consistency either one, quorum, or all

Write consistency either zero, one, quorum, or all

[Figures from http://www.slideshare.net/nuboat/cassandra-distributed-data-store]
Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 33 / 58



Motivation

1 Formal model from 345K LOC
I allows experimenting with different optimizations/variations

2 Analyze basic property: eventual consistency
3 When/how often does Cassandra give stronger guarantees?

I strong consistency
I read-your-writes

4 Performance evaluation:
I compare PVeStA analyses with real implementations

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 34 / 58



Formal Analysis with Multiple Clients

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 35 / 58



Performance Estimation

Formal model + PVeStA vs. actual implementation

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 36 / 58



P-Store

P-Store [N. Schiper, P. Sutra, and F. Pedone; IEEE SRDS’10]

Replicated and partitioned data store

Serializability

Atomic multicast orders concurrent transactions

Group commitment for atomic commit

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 37 / 58



P-Store

P-Store [N. Schiper, P. Sutra, and F. Pedone; IEEE SRDS’10]

Replicated and partitioned data store

Serializability

Atomic multicast orders concurrent transactions

Group commitment for atomic commit

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 37 / 58



P-Store

P-Store [N. Schiper, P. Sutra, and F. Pedone; IEEE SRDS’10]

Replicated and partitioned data store

Serializability

Atomic multicast orders concurrent transactions

Group commitment for atomic commit

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 37 / 58



Atomic Multicast

Definition

Atomic Multicast: Consistent reception order of messages

(a): any pair of nodes receive the same atomic-multicast messages in
the same order

(b): induced “global read order” must be acyclic

Example

A reads m1 < m2

B reads m2 < m3

C reads m3 < m1

satisfies (a) but not (b)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 38 / 58



Atomic Multicast

Definition

Atomic Multicast: Consistent reception order of messages

(a): any pair of nodes receive the same atomic-multicast messages in
the same order

(b): induced “global read order” must be acyclic

Example

A reads m1 < m2

B reads m2 < m3

C reads m3 < m1

satisfies (a) but not (b)

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 38 / 58



Atomic Multicast in Maude (I)

Fundamental problem in distributed systems

Impose order on conflicting concurrent transactions

Many algorithms for atomic multicast

Define generic atomic multicast primitive in Maude
I abstract
I covers all possible receiving orders

Infrastructure stores (un)read AM messages

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 39 / 58



Atomic Multicast in Maude (I)

Fundamental problem in distributed systems

Impose order on conflicting concurrent transactions

Many algorithms for atomic multicast

Define generic atomic multicast primitive in Maude
I abstract
I covers all possible receiving orders

Infrastructure stores (un)read AM messages

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 39 / 58



Atomic Multicast in Maude (I)

Fundamental problem in distributed systems

Impose order on conflicting concurrent transactions

Many algorithms for atomic multicast

Define generic atomic multicast primitive in Maude
I abstract
I covers all possible receiving orders

Infrastructure stores (un)read AM messages

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 39 / 58



Atomic Multicast in Maude (I)

Fundamental problem in distributed systems

Impose order on conflicting concurrent transactions

Many algorithms for atomic multicast

Define generic atomic multicast primitive in Maude
I abstract
I covers all possible receiving orders

Infrastructure stores (un)read AM messages

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 39 / 58



My Work: Atomic Multicast in Maude (II)

Atomic-multicast message M:

rl [atomic-multicast] :

< O : Node | msgToSend : M, receivers : OS >

=>

< O : Node | ... >

(atomic-multicast M from O to OS) .

Read:

crl [receiveAtomicMulticast] :

(msg M from O2 to O)

< O : Node | ... >

AM-TABLE

=>

< O : Node | ... >

updateAM(MC, O, AM-TABLE)

if okToRead(MC, O, AM-TABLE) .

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 40 / 58



My Work: Atomic Multicast in Maude (II)

Atomic-multicast message M:

rl [atomic-multicast] :

< O : Node | msgToSend : M, receivers : OS >

=>

< O : Node | ... >

(atomic-multicast M from O to OS) .

Read:

crl [receiveAtomicMulticast] :

(msg M from O2 to O)

< O : Node | ... >

AM-TABLE

=>

< O : Node | ... >

updateAM(MC, O, AM-TABLE)

if okToRead(MC, O, AM-TABLE) .

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 40 / 58



Analyzing P-Store

Find all reachable final states from init3:

Maude> (search init3 =>! C:Configuration .)

Solution 1

C:Configuration --> ...

< c1 : Client | pendingTrans : t1, txns : emptyTransList >

< c2 : Client | pendingTrans : t2, txns : emptyTransList >

< r1 : PStoreReplica | aborted : none,

committed : < t1 : Transaction | ... >

< r2 : PStoreReplica | aborted : none,

committed : < t2 : Transaction | ... >

...

sites validate transactions

but client never gets result

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 41 / 58



Analyzing P-Store

Find all reachable final states from init3:

Maude> (search init3 =>! C:Configuration .)

Solution 1

C:Configuration --> ...

< c1 : Client | pendingTrans : t1, txns : emptyTransList >

< c2 : Client | pendingTrans : t2, txns : emptyTransList >

< r1 : PStoreReplica | aborted : none,

committed : < t1 : Transaction | ... >

< r2 : PStoreReplica | aborted : none,

committed : < t2 : Transaction | ... >

...

sites validate transactions

but client never gets result

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 41 / 58



Analyzing P-Store (cont.)

Solution 5

...

< r1 : PStoreReplica | aborted : none, committed : none,

submitted : < t1 : Transaction | ... >, ... >

< r2 : PStoreReplica | aborted : none,

committed : < t2 : Transaction| ... > ... >

Host does not validate t1 even when needed info known

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 42 / 58



Analyzing P-Store (cont.)

Solution 5

...

< r1 : PStoreReplica | aborted : none, committed : none,

submitted : < t1 : Transaction | ... >, ... >

< r2 : PStoreReplica | aborted : none,

committed : < t2 : Transaction| ... > ... >

Host does not validate t1 even when needed info known

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 42 / 58



Fixing P-Store

Found the source of the errors
I all replicas must be involved in voting and notification

F not just write replicas

Modeled and analyzed proposed corrected version

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 43 / 58



P-Store Summary

“P-Store verified”

3 significant errors found

one confusing definition

key assumption missing

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 44 / 58



Our Conclusions

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 45 / 58



Our Conclusions I

Developed formal models of large industrial data stores
I Google’s Megastore (from brief description)
I Apache Cassandra (from 345K LOC and description)
I P-Store (academic)

Automatic model checking analysis of consistency properties

Designed own transactional data stores
I Megastore-CGC
I variation of Cassandra

Errors, ambiguities, missing assumptions found in “verified” P-Store

Maude/PVeStA performance estimation close to real implementations

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 46 / 58



Our Conclusions I

Developed formal models of large industrial data stores
I Google’s Megastore (from brief description)
I Apache Cassandra (from 345K LOC and description)
I P-Store (academic)

Automatic model checking analysis of consistency properties

Designed own transactional data stores
I Megastore-CGC
I variation of Cassandra

Errors, ambiguities, missing assumptions found in “verified” P-Store

Maude/PVeStA performance estimation close to real implementations

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 46 / 58



Our Conclusions I

Developed formal models of large industrial data stores
I Google’s Megastore (from brief description)
I Apache Cassandra (from 345K LOC and description)
I P-Store (academic)

Automatic model checking analysis of consistency properties

Designed own transactional data stores
I Megastore-CGC
I variation of Cassandra

Errors, ambiguities, missing assumptions found in “verified” P-Store

Maude/PVeStA performance estimation close to real implementations

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 46 / 58



Our Conclusions I

Developed formal models of large industrial data stores
I Google’s Megastore (from brief description)
I Apache Cassandra (from 345K LOC and description)
I P-Store (academic)

Automatic model checking analysis of consistency properties

Designed own transactional data stores
I Megastore-CGC
I variation of Cassandra

Errors, ambiguities, missing assumptions found in “verified” P-Store

Maude/PVeStA performance estimation close to real implementations

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 46 / 58



Our Conclusions I

Developed formal models of large industrial data stores
I Google’s Megastore (from brief description)
I Apache Cassandra (from 345K LOC and description)
I P-Store (academic)

Automatic model checking analysis of consistency properties

Designed own transactional data stores
I Megastore-CGC
I variation of Cassandra

Errors, ambiguities, missing assumptions found in “verified” P-Store

Maude/PVeStA performance estimation close to real implementations

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 46 / 58



Our “Software Engineering” Conclusions

Quickly develop formal models/prototypes of complex systems
I experiment with different design choices

Simulation and model checking throughout design phase
I model-checking-based-testing for subtle “corner cases”
I replaces days of whiteboard analysis
I too many scenarios for standard test-based development
I catch bugs early!

Single artifact for
I system description
I rapid prototyping
I model checking
I performance estimation

Megastore and Megastore-CGC modeler had no formal methods
experience

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 47 / 58



Our “Software Engineering” Conclusions

Quickly develop formal models/prototypes of complex systems
I experiment with different design choices

Simulation and model checking throughout design phase
I model-checking-based-testing for subtle “corner cases”
I replaces days of whiteboard analysis
I too many scenarios for standard test-based development
I catch bugs early!

Single artifact for
I system description
I rapid prototyping
I model checking
I performance estimation

Megastore and Megastore-CGC modeler had no formal methods
experience

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 47 / 58



Our “Software Engineering” Conclusions

Quickly develop formal models/prototypes of complex systems
I experiment with different design choices

Simulation and model checking throughout design phase
I model-checking-based-testing for subtle “corner cases”
I replaces days of whiteboard analysis
I too many scenarios for standard test-based development
I catch bugs early!

Single artifact for
I system description
I rapid prototyping
I model checking
I performance estimation

Megastore and Megastore-CGC modeler had no formal methods
experience

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 47 / 58



Our “Software Engineering” Conclusions

Quickly develop formal models/prototypes of complex systems
I experiment with different design choices

Simulation and model checking throughout design phase
I model-checking-based-testing for subtle “corner cases”
I replaces days of whiteboard analysis
I too many scenarios for standard test-based development
I catch bugs early!

Single artifact for
I system description
I rapid prototyping
I model checking
I performance estimation

Megastore and Megastore-CGC modeler had no formal methods
experience

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 47 / 58



Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 48 / 58



Amazon Web Services

Amazon Web Services (AWS):
I world’s largest cloud computing service provider
I more profitable than Amazon’s retail business

Amazon Simple Storage Service (S3)
I stores > 3 trillion objects
I 99.99% availability of objects
I > 1 million requests per second

DynamoDB data store

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 49 / 58



Amazon Web Services

Amazon Web Services (AWS):
I world’s largest cloud computing service provider
I more profitable than Amazon’s retail business

Amazon Simple Storage Service (S3)
I stores > 3 trillion objects
I 99.99% availability of objects
I > 1 million requests per second

DynamoDB data store

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 49 / 58



Amazon Web Services and Formal Methods

Formal methods used extensively at AWS during design of S3,
DynamoDB, . . .

Used Lamports TLA+
I model checking

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 50 / 58



Experiences at Amazon WS

Model checking finds “corner case” bugs that would be hard to find with
standard industrial methods:

“We have found that standard verification techniques in industry are
necessary but not sufficient. We routinely use deep design reviews,
static code analysis, stress testing, and fault-injection testing but still
find that subtle bugs can hide in complex fault-tolerant systems.”

“the model checker found a bug that could lead to losing data [...].
This was a very subtle bug; the shortest error trace exhibiting the bug
included 35 high-level steps. [...] The bug had passed unnoticed
through extensive design reviews, code reviews, and testing.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 51 / 58



Experiences at Amazon WS

Model checking finds “corner case” bugs that would be hard to find with
standard industrial methods:

“We have found that standard verification techniques in industry are
necessary but not sufficient. We routinely use deep design reviews,
static code analysis, stress testing, and fault-injection testing but still
find that subtle bugs can hide in complex fault-tolerant systems.”

“the model checker found a bug that could lead to losing data [...].
This was a very subtle bug; the shortest error trace exhibiting the bug
included 35 high-level steps. [...] The bug had passed unnoticed
through extensive design reviews, code reviews, and testing.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 51 / 58



Experiences at Amazon WS

Model checking finds “corner case” bugs that would be hard to find with
standard industrial methods:

“We have found that standard verification techniques in industry are
necessary but not sufficient. We routinely use deep design reviews,
static code analysis, stress testing, and fault-injection testing but still
find that subtle bugs can hide in complex fault-tolerant systems.”

“the model checker found a bug that could lead to losing data [...].
This was a very subtle bug; the shortest error trace exhibiting the bug
included 35 high-level steps. [...] The bug had passed unnoticed
through extensive design reviews, code reviews, and testing.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 51 / 58



Experiences at Amazon WS II

A formal specification is a valuable precise description of an algorithm:

“the author is forced to think more clearly, helping eliminating “hand
waving,” and tools can be applied to check for errors in the design,
even while it is being written. In contrast, conventional design
documents consist of prose, static diagrams, and perhaps
psuedo-code in an ad hoc untestable language.”

“Talk and design documents can be ambiguous or incomplete, and
the executable code is much too large to absorb quickly and might
not precisely reflect the intended design. In contrast, a formal
specification is precise, short, and can be explored and experimented
on with tools.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 52 / 58



Experiences at Amazon WS II

A formal specification is a valuable precise description of an algorithm:

“the author is forced to think more clearly, helping eliminating “hand
waving,” and tools can be applied to check for errors in the design,
even while it is being written. In contrast, conventional design
documents consist of prose, static diagrams, and perhaps
psuedo-code in an ad hoc untestable language.”

“Talk and design documents can be ambiguous or incomplete, and
the executable code is much too large to absorb quickly and might
not precisely reflect the intended design. In contrast, a formal
specification is precise, short, and can be explored and experimented
on with tools.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 52 / 58



Experiences at Amazon WS II

A formal specification is a valuable precise description of an algorithm:

“the author is forced to think more clearly, helping eliminating “hand
waving,” and tools can be applied to check for errors in the design,
even while it is being written. In contrast, conventional design
documents consist of prose, static diagrams, and perhaps
psuedo-code in an ad hoc untestable language.”

“Talk and design documents can be ambiguous or incomplete, and
the executable code is much too large to absorb quickly and might
not precisely reflect the intended design. In contrast, a formal
specification is precise, short, and can be explored and experimented
on with tools.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 52 / 58



Experiences at Amazon WS III

Formal methods are surprisingly feasible for mainstream software
development and give good return on investment:

“In industry, formal methods have a reputation for requiring a huge
amount of training and effort to verify a tiny piece of relatively
straightforward code. Our experience with TLA+ shows this
perception to be wrong. [...] Amazon engineers have used TLA+ on
10 large complex real-world systems. In each, TLA+ has added
significant value. [...] Engineers have been able to learn TLA+ from
scratch and get useful results in two to three weeks.”

“Using TLA+ in place of traditional proof writing would thus likely
have improved time to market, in addition to achieving greater
confidence in the system’s correctness.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 53 / 58



Experiences at Amazon WS III

Formal methods are surprisingly feasible for mainstream software
development and give good return on investment:

“In industry, formal methods have a reputation for requiring a huge
amount of training and effort to verify a tiny piece of relatively
straightforward code. Our experience with TLA+ shows this
perception to be wrong. [...] Amazon engineers have used TLA+ on
10 large complex real-world systems. In each, TLA+ has added
significant value. [...] Engineers have been able to learn TLA+ from
scratch and get useful results in two to three weeks.”

“Using TLA+ in place of traditional proof writing would thus likely
have improved time to market, in addition to achieving greater
confidence in the system’s correctness.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 53 / 58



Experiences at Amazon WS III

Formal methods are surprisingly feasible for mainstream software
development and give good return on investment:

“In industry, formal methods have a reputation for requiring a huge
amount of training and effort to verify a tiny piece of relatively
straightforward code. Our experience with TLA+ shows this
perception to be wrong. [...] Amazon engineers have used TLA+ on
10 large complex real-world systems. In each, TLA+ has added
significant value. [...] Engineers have been able to learn TLA+ from
scratch and get useful results in two to three weeks.”

“Using TLA+ in place of traditional proof writing would thus likely
have improved time to market, in addition to achieving greater
confidence in the system’s correctness.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 53 / 58



Experiences at Amazon WS III

Quick and easy to experiment with different design choices:

“We have been able to make innovative performance optimizations
[...] we would not have dared to do without having model-checked
those changes. A precise, testable description of a system becomes a
what-if tool for designs.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 54 / 58



Experiences at Amazon WS III

Quick and easy to experiment with different design choices:

“We have been able to make innovative performance optimizations
[...] we would not have dared to do without having model-checked
those changes. A precise, testable description of a system becomes a
what-if tool for designs.”

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 54 / 58



Experiences at Amazon WS: Limitations

TLA+ did/could not analyze performance degradation

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 55 / 58



Maude vs TLA+

Maude should be better suited!

more intuitive and expressive specification language
I OO
I hierarchical states
I dynamic object/message creation/deletion
I . . .

Support for real-time and probabilistic systems

Also for performance estimation!

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 56 / 58



Conclusions at Amazon

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 57 / 58



Take Away from Talk

Formal methods can be an efficient way to
I design
I test
I describe
I validate correctness and performance
I experiment with different design choices

industrial state-of-the-art fault-tolerant distributed systems also for
non-experts

Maude suitable modeling language and analysis toolset

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 58 / 58



Take Away from Talk

Formal methods can be an efficient way to
I design
I test
I describe
I validate correctness and performance
I experiment with different design choices

industrial state-of-the-art fault-tolerant distributed systems also for
non-experts

Maude suitable modeling language and analysis toolset

Peter Csaba Ölveczky (U. Oslo/UIUC) Cloud Storage Systems in Maude UCM, February 20, 2017 58 / 58


