Swiss-knife Security Kit for Implantable Medical Devices

Pedro Peris-Lopez

Madrid April, 2017

1. Security and Privacy issues in IMDs

2. Proposed Solutions

Security and Privacy issues in IMDs

Security and privacy issues in implantable medical devices: A comprehensive survey. Carmen Camara, Pedro Peris-Lopez, Juan E. Tapiador. Journal of Biomedical Informatics, 55: 272–289 (2015).

Motivation

©Homeland (TV series)

Motivation

What is an IMD?

Definition

Implantable Medical Devices (IMDs) are electronic devices implanted within the body to treat a medical condition, monitor the state or improve the functioning of some body part, or just to provide the patient with a capability that he did not possess before [HH10].

Chronology

Some examples...

Pacemaker

Neurostimulador

Insulin Pump

Access Modes

Past

Local Programming

New generations

Remote Programming & Monitoring

Usage Scenario

Security Analysis

Are the security threats against IMDs a real concern? Yes

Example 1. Disclosure of private information

Note: "Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses" (Halperin et al., 2008).

Example 2. Reprogram the device (I)

Note: "Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses" (Halperin et al. 2008).

Example 2. Reprogram the device (II)

Note: "Hacking Medical Devices for Fun and Insulin: Breaking the Human SCADA System" (J. Radcliffe, 2011).

Example 3. Drain the battery

Are you awake? Are you awake? Are you awake?

Note: "Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses" (Halperin et al., 2008).

Tensions and trade-offs

Security Solutions

Are the existing cryptographic solutions good for securing IMDs? NO

Operation Modes

Normal Mode

Emergency Mode

Limitations

- Limited Energy
 - 9 years (neurostimulators) / up to 10 years (pacemakers)
 - Battery replacement: it may require surgery
- Limited Storage
 - Events and episodes
 - E.g., Reveal DX 9528: 22.5 minutes of ECG signal
- Limited computing and communication capabilities
 - Communication is the most energetically expensive task for the IMD
 - Computations: tiny microcontroller

General Architecture

Protection Mechanisms

Protection Mechanisms (I)

No security

- Old generations without wireless connectivity
- \times New generation of IMDs
- Auditing
 - Register all accesses (authorized or not)
 - Detection (No protection / Deterrence)
 - E.g., RFID Guardian (Rieback et al., 2005)

Protection Mechanisms (II)

- External Devices
 - Not implanted in the patient's body
 - Assume part or all security functions
 - Security capabilities: auditing, key management and access control

Patient

External Device

Programmer

Protection Mechanisms (III)

- Physical solutions
 - Magnetic switch
 - Subcutaneous button

Protection Mechanisms (IV)

Authentication Protocols

Problema de distribución de claves

Protection Mechanisms (V)

- Non conventional channels
 - Acoustic waves

Note: "Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses" (Halperin et al. 2008).

Protection Mechanisms (VI)

- Distance Bounding
 - Upper bound distance between two entities
 - Based on speed light nothing propagates faster
 - First proposal: Beth and Desmedt [Crypto90]

Hancke and Kuhn's Protocol

Proximity-based Access Control for IMDs

© [RCHBC09]

Protection Mechanisms (VII)

- Biometric Measures
 - Biometric-based two-level secure access control for implantable medical devices during emergencies. (Hei and Du, 2011)

 IMDGuard: Securing Implantable Medical Devices with the External Wearable Guardian (Xu et al., 2011)

Protection Mechanisms (VIII)

- Measures against Resource Depletion Attacks
 - Notification measures
 - Alarm signal (sound or vibration)
 - Informative (attacks are not prevented)

Pattern based solutions

- External device (e.g.,. smartphone)
- Machine Learning (e.g., SVM)
- Patterns: frequency, location, patients conditions

Zero Power Defenses

Hei and Du, INFOCOM 2011

2. Proposed Solutions

- Human Identification: ECG-based solution
- Multi-modal Human Identification: ECG, GSR and Airflow
- Extracting randomness from ECG signals
 - Key generation
 - Random number generator

Human Identification

Human Identification Using Compressed ECG Signals. Carmen Camara, Pedro Peris-Lopez, Juan E. Tapiador. Journal Medical Systems, 39(11):148 (2015).

HI: Feature Extraction

HI: Feature Extraction

HI: Settings

Features:

- OP1: 24 lower Hadamard sequencing coefficients x 2 leads
- OP2: OP1 + Shannon and Log-Energy entropy

Classifier:

- K-NN
 - ► *K* = 1, 3, 5, 9
 - Euclidean distance (d_E) and Manhattan distance (d_M)
- 10-fold cross validation

Human Identification: Results

Overall Performance: FNR, FPRm TPR, TNR

Config	uration	FNR	FPR	TPR	TNR
	d _E	0.0580	0.0582	0.9418	0.9420
	d _M	0.0570	0.0566	0.9434	0.9430
	d _E	0.0390	0.0386	0.9614	0.9610
06-2	d _M	0.0340	0.0341	0.9659	0.9660

OP1: 24 lower Hadamard sequencing coefficients x 2 leads OP2: OP1 + Shannon and Log-Energy entropy

Biosignal-based authentication proposals

System	Correctly Classified Instances
Our system	94 % (OP-1) – 97 % (OP-2) %
ECG [OPHK+12]	86 % – 100 % (single day data acquisition)
EEG [SSR12]	72% - 80% (4-40 individuals)
EEG and ECG [RDCR08]	97.9 % (linear boundary)
Pulse-Response [RRMT14]	88 % –100 % (small data set)
Finger-vein [YSY11]	98 % (70 individuals)
Iris and Fingerprint [MRG06]	96 % (small dataset)
Face & Iris [SAHO14]	99% (UBIRIS v.2 and ORL)

Multi-modal Human Identification

Non-invasive Multi-modal Human Identification System Combining ECG, GSR, and Airflow Biosignals. C. Camara, P. Peris-Lopez, J. E. Tapiador, G. Suarez-Tangil. Journal of Medical and Biological Engineering, 35(6):735-748, (2015).

Multi-modal Human Identification

Multi-modal HI: Settings

Features (time-domain):

- ECG: Amplitudes ({Λ_P, Λ_Q, Λ_R, Λ_S, Λ_T}), relative amplitudes ({Θ_{RP}, Θ_{RQ}, Θ_{RS}, Θ_{RT}, Θ_{PQ}, Θ_{QS}, Θ_{TS}}), time-intervals (Δ_{PQ}, Δ_{PR}, Δ_{QR}, Δ_{QS}, Δ_{QT}, Δ_{RS}, Δ_{RT}, Δ_{ST}), and angles ({∠_Q, ∠_R, ∠_S}).
- ► GSR and Airflow: Average value (PQRST complex; Ψ_{Avg} , Υ_{Avg}), instantaneous value (at R-peak; Ψ_R , Υ_R).

Classifier:

- Rotation Forest
 - Attribute selection: PCA
 - Classifier: C4.5

Multi-modal HI: Results

System	Correctly Classified Instances
Our system	97.4 %
ECG [OPHK ⁺ 12]	86 % – 100 % (single day data acquisition)
EEG [SSR12]	72 % - 80 %
Pulse-Response [RRMT14]	88 % –100 % (small data set)
EEG and ECG [RDCR08]	97.9 % (linear boundary)

Extracting randomness from ECG signals: Key generation

IPIs: Randomness Analysis

IPIs: Randomness Analysis

IPIs: Monitorization

Electrical Heart Signals can be Monitored from the Moon: Security Implications for IPI-Based Protocols. Alejandro Calleja, Pedro Peris-Lopez, Juan E. Tapiador. Information Security Theory and Practice, vol. 9311 of LNCS, pp. 36-51, 2015.

R-Peaks (heart-beats) detected

Sample	Beats Webcam Signal	Beats Sensor Signal	Error
sample 1	62	64	2
sample 2	68	71	3
sample 3	59	59	0
sample 4	63	60	3
sample 5	60	62	2
sample 6	60	59	1
sample 7	66	65	1
sample 8	69	69	0
sample 9	62	60	2
sample 10	85	81	4
sample 11	61	65	4
sample 12	69	70	1
sample 13	68	69	1
Mean Error	-	-	1.69

IPIs: Similarity Analysis

Scalar Quantizer

		Entropy	
Bit	Hit Probability (%)	Sensor	Webcam
1 (MSB)	70.095	0.714	0.868
2	61.483	0.941	0.689
3	61.004	0.898	0.762
4	62.918	0.929	0.709
5	58.688	0.959	0.816
6	94.976	0.143	0.228
7	82.775	0.0.266	0.593
8 (LSB)	70.095	0.719	0.764
Last 4 bits	76.883	0.718	0.657
Overall	70.37	0.782	0.708

Dynamic Quantizer

		Entropy	
Bit	Hit Probability (%)	Sensor	Webcam
1 (MSB)	62.157	0.979	0.946
2	65.071	0.947	0.959
3	49.88	0.991	0.951
4	55.741	0.781	0.959
5	47.010	0.905	0.977
6	49.880	0.997	0.961
7	51.555	0.657	0.983
8 (LSB)	52.990	0.9290	0.999
Last 4 bits	50.358	0.959	0.999
Overall	54.41	0.990	0.999

Conclusions

- New generations of IMDs are already on the market
- Important security issues (no fiction!)
- Special requirements for this technology
- New solutions are demanding

Questions?

Thank you very much for your attention pperis@inf.uc3m.es http://www.lightweightcryptography.com

References

- J. A. Hansen and N. M. Hansen, *A taxonomy of vulnerabilities in implantable medical devices*, Proc. of the second annual workshop on Security and privacy in medical and home-care systems (New York, USA), SPIMACS '10, ACM, 2010, pp. 13–20.
- H. Mehrotra, A. Rattani, and P. Gupta, Fusion of iris and fingerprint biometric for recognition, Proceedings of the International Conference on Signal and Image Processing, 2006, pp. 1–6.

References (cont.)

- I. Odinaka, L. Po-Hsiang, A .D. Kaplan, J. A. O'Sullivan, E. J. Sirevaag, and J. W. Rohrbaugh, *Ecg biometric recognition: A comparative analysis*, IEEE Transactions on Information Forensics and Security **7** (2012), no. 6, 1812–1824.
- K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun, *Proximity-based access control for implantable medical devices*, Proceedings of the 16th ACM Conference on Computer and Communications Security, ACM, 2009, pp. 410–419.

References (cont.)

- A. Riera, S. Dunne, I. Cester, and G. Ruffini, *STARFAST: a wireless wearable eeg/ecg biometric system based on the ENOBIO sensor*, International Workshop on Wearable Micro and Nanosystems for Personalised Health, 2008, pp. 1–4.
- K. B. Rasmussen, M. Roeschlin, I. Martinovic, and G. Tsudik, *Authentication using pulse-response biometrics*, The Network and Distributed System Security Symposium (NDSS), 2014.
- H. M. Sim, H. Asmuni, R. Hassan, and R. M. Othman, Multimodal biometrics: Weighted score level fusion based on non-ideal iris and face images, Expert Systems with Applications 41 (2014), no. 11, 5390 – 5404.

References (cont.)

- Y. N. and. Singh, S. K. Singh, and A. K. Ray, *Bioelectrical signals as emerging biometrics: Issues and challenges*, ISRN Signal Processing **2012** (2012), 1–13.
- J. Yang, Y. Shi, and J. Yang, *Personal identification based* on finger-vein features, Computers in Human Behavior **27** (2011), no. 5, 1565 – 1570.