

Processing in Memory

Oscar Plata

oplata@uma.es

Dept. Arquitectura de Computadores Universidad de Málaga

HPACuma Research Group ALDEBARAN Research Group

UCM, May 26, 2021

Data is Key in Modern and Future Workloads

• Important workloads are all data intensive

- Artificial Intelligence, Machine Learning, Genomics, Time Series Analysis, In-Memory Databases, Graph/Tree Processing, Data Analytics, UHD Video Analysis...
- Such workloads require fast and efficient processing for large amounts of data
- Data is increasing...

Data overwhelms modern computers

Data \Rightarrow **Performance and energy bottleneck**

Computing Behaviour of Modern Workloads

• Frequent memory access patterns in modern workloads

- Streaming access (lack of data reuse)
- Strided access (with large strides)
- Non regular access (even random), specially when operating on sparse data structures

Graph processing

```
for (v:graph.vertices) {
   for (w:v.successors) {
     w.next_rank += weight*v.rank
   }
}
```

PageRank algorithm

Genome sequence alignment

```
sp = C[Q[m]]
ep = C[Q[m]+1]
for i from m-1 to 1 step -1{
    sp = LF(Q[i], sp)
    ep = LF(Q[i], ep)
}
```

Backward search exact matching

• Usually, little amount of computation (low operational intensity)

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing, ISCA 2015

Accelerating Sequence Alignments Based on FM-Index Using the Intel KNL Processor, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020

Oscar Plata

Conventional Computing System

• Four key components

- Computation
- Memory
- Input/Output
- Communication

John Louis von Newmann & UNIVAC

Processor-Centric Design

- All data is processes in the CPU
 - At great system cost
- Processors are heavily optimized and considered the master
- Data storage units are dumb

5

A great part of the processor is dedicated to **storing** and **moving** data

6

Main Memory Trends (I)

• Difficulty in scaling memory: capacity, bandwidth, latency (DRAM)

- Multi-core: increasing number of cores asking for data
- Data-intensive applications: increasing demand for data

Disaggregated Memory for Expansion and Sharing in Blade Servers, ISCA 2009

Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization, SIGMETRICS 2016

UNIVERSIDAD | UMALES

Main Memory Trends (II)

• Data movement dominates computation in term of energy/power

- Scientific apps: ~40% of the total energy is spent on data movement
- Mobile apps: ~35% of the total energy is spent on data movement
- Consumer apps: ~62% of the total energy is spent on data movement

Quantifying the Energy Cost of Data Movement in Scientific Applications, IISWC 2013

Quantifying the Energy Cost of Data Movement for Emerging Smart Phone Workloads on Mobile Platforms, IISWC 2014

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks, ASPLOS 2018 7

Main Memory Trends (III)

• DRAM scaling has become increasingly difficult

- Cell leakage current, cell reliability, manufacturing difficulties...
- Difficult to continue the improvements in capacity, energy and latency
- Emerging memory technologies are promising
 - **Reduced-latency DRAM**: RLDRAM, TL-DRAM...
 - Low-power DRAM: LPDDR4...
 - **3D-stacked RAM**: HBM, HMC...
 - Non-volatile memory (NVM): PCM, MRAM, STT-MRAM, ReRAM...

A Processor-Centric Design (II)

• The system is grossly imbalanced

- Processing is done only in one place (execution engines)
- The rest of the system just stores and moves data
- Modern workloads cause huge data movement

• The processor becomes overly complex

- Required to tolerate data accesses from memory
 - » Complex multi-level cache hierarchies
 - » Multiple complex hardware prefetching techniques
 - » High amounts of multithreading
 - » Complex out-of-order (0o0) execution mechanisms

Data movement causes energy waste and latency

Processor complex mechanisms to tolerate latency, that causes additional energy waste ... **and latency**

Data-intensive apps make many techniques **innefficient**

A Data-Centric Design

- Enable computation with minimal data movement
- Compute where data resides
- Make computing architectures more data-centric

Data-Centric Computing

PIM Processing-in-Memory

CIM Computation-in-Memory

- Memory technologies for PIM
- Approaches to implementing PIM

A Modern Primer on Processing in Memory, Springer 2021 11

uma.es

Oscar Plata

Memory Technologies for PIM

• 3D-stacked memory architectures

Segment	DRAM Standards & Architectures		
Commodity	DDR3, DDR4		
Low-Power	LPDDR3, LPDDR4		
Graphics	GDDR5, GDDR6		
Performance	eDRAM, RLDRAM		
3D-Stacked	MCDRAM, HBM, HMC		

• Non-volatile random-access memories (NVRAM)

Technology	NVRAM Architectures
Resistive-Phase	PCM (Phase-Change Memory)
Resistive-Magnetic	MRAM (magnetoresistive RAM) STT-MRAM (Spin-Transfer Torque MRAM)
Resistive-Memristor	ReRAM (Resistive RAM)

3D-Stacked Memory Architectures

• Multiple layers of DRAM memory are stacked

- The layers are partitioned into banks
- Same banks in different layers are connected using TSVs (Through-Silicon Vias)
- Thousands of TSVs provides internal ultra high memory bandwidth
- Examples: HMC (Hybrid Memory Cube), HBM (High Bandwidth Memory), MCDRAM (Multi-Channel DRAM)

Oscar Plata

Multi-Channel DRAM (MCDRAM) - 2013/18

• 3D-stacked DRAM used in Intel Xeon Phi processor (Knights Landing)

- Variant of HMC developed with Micron
- Ultra high bandwidth: ~400 GB/s (DDR4 bandwidth: ~90 GB/s)
- Similar latency than DRAM DIMMs

KNL Overview

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. "Other names and brands may be claimed as the property of others.

Hybrid Memory Cube (HMC) - 2011/18

• 3D-stacked DRAM developed by Micron and Samsung

- HMC uses standard DRAM cells
- HMC interface is non-compatible with DDRx
- Serial link: 8/16 SerDes @ 10-15 Gbps (half- or full-duplex)
 - » 4-link@15Gbps fd HMC \Rightarrow 240 GB/s bandwidth
 - » 8-link@10Gbps fd HMC \Rightarrow 320 GB/s bandwidth

High Bandwidth Memory (HBM) - 2013

• 3D-stacked DRAM developed by Samsung, AMD and SK Hynix

- HBM uses standard DRAM cells (up to 8)
- HMC interface is compatible with DDR4 or GDDR5
- Ultra wide memory bus
 - » A 4-DRAM HBM stack has 128-bit 8 channels (=1024-bit bus)
 - » Overall package bandwidth: 128 GB/s
- HBM2 doubles the package bandwidth of HBM (256 GB/s)

uma.es

Oscar Plata

Memory Technologies for PIM

3D-stacked memory architectures

Segment	DRAM Standards & Architectures		
Commodity	DDR3, DDR4		
Low-Power	LPDDR3, LPDDR4		
Graphics	GDDR5, GDDR6		
Performance	eDRAM, RLDRAM		
3D-Stacked	MCDRAM, HBM, HMC		

• Non-volatile random-access memories (NVRAM)

Technology	NVRAM Architectures
Resistive-Phase	PCM (Phase-Change Memory)
Resistive-Magnetic	MRAM (magnetoresistive RAM) STT-MRAM (Spin-Transfer Torque MRAM)
Resistive-Memristor	ReRAM (Resistive RAM)

Non-Volatile RAM (NVRAM)

• Byte-addressable resistive non-volatile random-access memory

Emerging technologies

uma.es

Oscar Plata

- » Phase-change memory (PCM)
- » Magnetoresistive RAM (MRAM) and Spin-Transfer Torque MRAM (STT-MRAM)
- » Metal-oxide resistive RAM (RRAM or ReRAM) or memristors

	PCM	STT-MRAM	RRAM	DRAM	SRAM
Density (F ²)	4-30	6-50	<4	6-10	>100
W energy /bit (pJ)	~10	~0.1	~0.1	~0.01	~0.001
Read time (ns)	<10	<10	<10	~10	0.1-0.3
Write time (ns)	~50	<10	<10	~10	0.1-0.3
Retention	Years	Years	Years	10-20 ms	As V applied
Endurance (cyc.)	$10^8 - 10^{15}$	>10 ¹⁵	$10^8 - 10^{12}$	>10 ¹⁶	>10 ¹⁶

An Overview of In-memory Processing with Emerging Non-volatile Memory for Data-intensive Applications, arXiv 2019

19

Non-Volatile RAM (NVRAM)

• Promising resistive memory technologies

Random access, resistive, non volatile, no erase before write

PCM: Phase Change Memory (I)

• Inject current to change phase of chalcogenide glass by heat

- Amorphous: Low optical reflexivity and high electrical resistivity
- Crystalline: High optical reflexivity and low electrical resistivity
- PCM cell can be switched between states reliably and quickly

PCM: Phase Change Memory (II)

Write operation

- SET: sustained current to heat cell above crystalline temperature (*T_{crys}*)
- **RESET**: cell heated above **melt temperature** (*T_{melt}*) and quenched

Read operation

umales

Oscar Plata

Detect phase (amorphous/crystalline) via material resistance (high/low)

Phase Change Memory: From Devices to Systems, Morgan & Claypool Pub. 2011

Oscar Plata

STT-MRAM: Spin-Transfer Torque MRAM(I)

- Inject current to change magnetic polarity
- Based on a MTJ (Magnetic Tunnel Junction) device
 - Reference (fixed) layer (RL): with a fixed magnetic orientation
 - Free layer (FL): with a variable magnetic orientation
- Magnetic orientation of the free layer determines logical state
 - FL parallel to RL: MTJ with **low resistance**
 - FL anti-parallel to RL: MTJ with high resistance

May 2021

23

STT-MRAM: Spin-Transfer Torque MRAM(II)

Write operation

Push large current through MTJ to change orientation of free layer

Read operation

Sense current flow

Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative, ISPASS 2013

RRAM/ReRAM: Resistive RAM(I)

- Inject current to change atomic structure
- Based on a memristor device
 - Memristor: solid-state device with two resistive states (low/high resistance)

RRAM/ReRAM: Memristor (I)

- Passive electronic element that change resistance depending on the electrical field applied
 - Unipolar memristor: the polarity of the operating voltage IS NOT relevant
 - **Bipolar memristor**: the polarity of the operating voltage **IS** relevant

LRS: Low Resistance State HRS: High Resistance State

umales

Oscar Plata

Bipolar Memristor

RRAM/ReRAM: Memristor (II)

- Passive electronic element that change resistance depending on the electrical field applied
 - Digital memristor: exhibits two neat resistance states: LRS and HRS
 - » Codifies 1 bit per memristor
 - Analog memristor: exhibits multiple resistance windows between LRS and HRS
 - » Codifies several bits (small number) per memristor

27

RRAM/ReRAM: Memristor Crossbar

• Memristor cells in a RRAM are usually arranged as a crossbar

Oscar Plata

RRAM/ReRAM: Memristor Read/Write

• Read/Write operations in a RRAM

Data-Centric Computing

PIM Processing-in-Memory

CIM Computation-in-Memory

- Memory technologies for PIM
- Approaches to implementing PIM

A Modern Primer on Processing in Memory, Springer 2021 29

Approaches to Implementing PIM

• PNM: Processing Near Memory

- Logic layer in 3D-stacked memory
- Function-specific logic connected to 3D-stacked memory (via logic interface)
- Silicon interposers (connected directly to TSVs)
- Logic in memory controllers

• PIM/PUM: Processing In/Using Memory

- Logic inside SRAM
- Logic inside DRAM
- PCM with logic (in cells and/or periphery)
- STT-MRAM with logic (in cells and/or periphery)
- RRAM with logic (in cells and/or periphery)

Processing Near Memory (PNM)

• Logic layer in 3D-stacked memory

Processing Near Memory (PNM)

Silicon interposer

SOC connected directly to the TSVs in HBM

Processing Near Memory (PNM)

• Function-specific logic connected to 3D-stacked memory

Processing logic connected HBM channel interface via an HBM controller

May 2021

Approaches to Implementing PIM

• PNM: Processing Near Memory

- Logic layer in 3D-stacked memory
- Function-specific logic connected to 3D-stacked memory (via logic interface)
- Silicon interposers (connected directly to TSVs)
- Logic in memory controllers

• PIM/PUM: Processing In/Using Memory

- Logic inside DRAM
- PCM with logic (in cells and/or periphery)
- STT-MRAM with logic (in cells and/or periphery)
- RRAM with logic (in cells and/or periphery)

Processing In/Using Memory (PIM/PUM)

- Exploits the memory architecture to enable operations with minimal changes
 - Makes use of memory cells or cell arrays to perform useful computation

• A wide range of different functions are enabled

- Fully parallel bulk or fine-grained operations
 - » Data copy/initialization
 - » Bulk bitwise operations
 - » Simple arithmetic operations (addition, multiplication, comparison, majority...)

PIM/PUM on RRAM: Computation

• Single or multiple functions

Low Power Memristor-based Computing for Edge-AI Applications, ISCAS 2021 36
PIM/PUM on RRAM: Analog Computation

Analog memristor operations

- The analog nature of memristors is used to codify data as resistance value
- Example: vector-matrix operations

Using a bitline to perform analog "sum of products" (Multiplyaccumulate) operation

Memristor crossbar for vector-matrix multiplier

PIM/PUM on RRAM: Digital Computation (I)

• Digital memristor operations

- Data is codified as resistance values: $LRS \rightarrow 1$, $HRS \rightarrow 0$
- Example: boolean NOR using unipolar memristors

UPIM : Unipolar Switching Logic for High Density Processing-in-Memory Applications, GLSVLSI 2019

38

Oscar Plata

PIM/PUM on RRAM: Digital Computation (II)

• Digital memristor operations

• Data is codified as resistance values: LRS \rightarrow 1, HRS \rightarrow 0

• Example: boolean NOR using bipolar memristors

- Step 1: set 'out' to 1 (LRS)
- Step 2: apply V_0 to 'in' and GND to 'out' (being $V_0/2 > V_{RESET}$)

Logic Design Within Memristive Memories Using Memristor-Aided IoGIC (MAGIC), IEEE Transactions on Nanotechnology 2016

40

PIM/PUM on RRAM: Digital Computation (III) Processing in/using memory: SIMD parallelism OUT IN₂ A memristor memory cell NOR logic Gate (MAGIC) **Crossbar Compatible mMPU CONTROLLER** Opcode CPU In Instruction Memristive CPU Rea memory Block CPU Out Data Out Write Block Data from Memory **Control & Data** SIMD computing in memory True Processing in Memory

May 2021

PIM/PUM on RRAM: Digital Computation (IV)

Example: N-bit fixed-point multiplication

Possible high latency but massive parallelism

UNIVERSIDAD

Data-Centric Computing

Own Research PNM Solutions

• NATSA: PNM accelerator for time series analysis

• FM-Index: PNM accelerator for genome sequence alignment

A Modern Primer on Processing in Memory, Springer 2021 42

NATSA: PNM Accelerator for Time Series Analysis

2020 IEEE 38th International Conference on Computer Design (ICCD)

NATSA: A Near-Data Processing Accelerator for Time Series Analysis

Ivan FernandezRicardo QuislantChristina GiannoulaMohammed AlserJuan Gómez-LunaEladio GutiérrezOscar PlataOnur Mutlu§University of Malaga†National Technical University of Athens‡ETH Zürich

UNIVERSIDAD

Oscar Plata

umales

NATSA: Motivation

• Time series analysis has many applications

5 mm

Climate change

Medicine

Signal processing

NATSA: Motifs and Discords

Given a sliced time series into subsequences

- Motif discovery focuses on finding similarities
- Discord discovery focuses on finding anomalies
- Naive example of anomaly detection

45

NATSA: Matrix Profile (MP)

- MP: Algorithm and open source tool for motif and anomaly discovery
- A single input parameter: subsequence length

L _{i,m} L _{j,m}								P	
D_1	d _{1,1}	d _{1,2}	d _{1,3}	d _{1,4}		d _{1,n-m+1}	>	$min(D_1)$	j d _{1,j} = P ₁
D_2	d _{2,1}	d _{2,2}		d _{i,j}			>	min(D ₂)	j d _{2,j} = P ₂
D_3	d _{3,1}		d _{3,3}				>		
D_4	d _{4,1}			d _{4,4}			>		
D _{n-m+1}	d _{n-m+1,1}					$d_{\stackrel{n-m+1}{n-m+1'}}$		min(D _{n-m+1})	$ \stackrel{j \mid d_{n-m+1,j}}{= P_{n-m+1}} $

UNIVERSIDAD

Oscar Plata

NATSA: Matrix Profile (MP) - SCRIMP

- SCRIMP: state-of-the-art CPU matrix profile implementation
- SCRIMP on Intel Xeon Phi KNL
 - SCRIMP is heavily bottlenecked by data movement

NATSA: PNM Accelerator for SCRIMP

• NATSA: fully exploit HBM

memory bandwidth

- NATSA consists of multiple processing units (PUs)
- PUs compute batches of diagonals of the distance matrix in a vectorized way

• Hardware components

- DPU: dot product unit
- **DCU**: distance compute unit
- DPUU: dot product update unit
- **PUU**: profile update unit

NATSA: Evaluation

Simulated platforms

ZSIM + Ramulator, McPAT, Aladdin + gem5, Micron power calculator

Hardware	Co	ores / PUs	Caches (L1 / L2 / L3)	Memory		
DDR4-OoO	8 000	@ 3.75 GHz	32KB / 256KB / 8MB	16 GB DDR4-2400		
DDR4-inOrder	64 in-order	⁻ @ 2.5 GHz	32KB / - / -	16 GB DDR4-2400		
HBM-OoO	8 000	@ 3.75 GHz	32KB / 256KB / 8MB	4 GB HBM2		
HBM-inOrder	64 in-order	[•] @ 2.5 GHz	32KB / - / -	4 GB HBM2		
NATSA	48 PUs	@ 1 GHz	48KB (Scratchpad)	4 GB HBM2		

• Real hardware platforms

Intel Xeon Phi KNL, NVIDIA Tesla K40c, NVIDIA GTX 1050

May 2021

NATSA: Evaluation: Performance and Area

• Performance

• Area

UNIVERSIDAD

Oscar Plata

UNIVERSIDAD

Oscar Plata

NATSA: Evaluation: Performance and Area

Power consumption

• Energy consumption

umales

Oscar Plata

TraTSA: Transprecise Accelerator for Time Series Analysis

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, MONTH YEAR

TraTSA: A Transprecision Framework for Efficient Time Series Analysis

Ivan Fernandez, Ricardo Quislant, Sonia González-Navarro, Eladio Gutierrez and Oscar Plata

FM-Index: PNM Accelerator for Genome Sequence Alignment

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 17, NO. 4, JULY/AUGUST 2020

Accelerating Sequence Alignments Based on FM-Index Using the Intel KNL Processor

Jose M. Herruzo, Sonia González-Navarro[®], Pablo Ibáñez-Marín[®], Víctor Viñals-Yúfera[®], Jesús Alastruey-Benedé[®], and Oscar Plata[®]

The Journal of Supercomputing https://doi.org/10.1007/s11227-021-03661-3

Enabling fast and energy-efficient FM-index exact matching using processing-near-memory

Jose M. Herruzo¹ · Ivan Fernandez¹ · Sonia González-Navarro¹ · Oscar Plata¹

• There is a variety of sequence alignment tools

- Bowtie, Bowtie2, BWA, HiSAT2, SOAP, CUS...
- Modern sequencing tools generate a lot of data
- Many sequence aligners are based on the FM-index data structure

FM-Index: Data Structure

• FM-index data structure

FM-Index: Algorithm

FM-index exact matching algorithm (backward search)

Oscar Plata

FM-Index: Algorithm Optimizations

• FM-index exact matching algorithm (backward search)

FM-Index: Split Bit-Vector Sampled

Minimizing memory bandwidth consumption

FM-Index: Evaluation

• Experimental setup

- 20M 200-symbol queries generated by Mason simulation tool
- GRCh38 (3 Gbases) human genome reference

FM-Index: Evaluation

• KNL roofline

FM-Index: PNM Accelerator

• Logic layer in 3D-stacked memory (HMC)

	PIM Setup				
Cores	64 In Order @ 1.5 GHz				
Architecture	ARM-Like				
Cache block	32/64B				
L1 Cache	8K/8K, 3 cycles Latency				

FM-Index: PNM Accelerator

• Performance

FM-Index: PNM Accelerator

Power consumption

64

1

FM-Index: Architecture Exploration

TRANSACTIONS ON COMPUTERS, VOL. 14, NO. 8, FEB 2020

Genome Sequence Alignment - Design Space Exploration for Optimal Performance and Energy Architectures

Yasir Mahmood Qureshi[®], Jose Manuel Herruzo[®], Marina Zapater[®], *Member, IEEE*, Katzalin Olcoz[®], *Member, IEEE*, Sonia Gonzalez-Navarro[®], Oscar Plata[®], and David Atienza[®], *Fellow, IEEE*,

Data-Centric Computing

Commercial PNM Solutions

• UPMEM

• Samsung FIMDRAM

May 2021

UPMEM: DRAM PIM Accelerator

up

Processing in DRAM Engine

Standard DIMM modules

• Key features:

- Relies on mature 2D DRAM fabrication process
- DPUs support a wide variety of computations and data types
- Threads in DPUs are independent
- Complete software stack (C language)

- PIM chip: 64MB + 8 DPUs @400-500MHz
- PIM DIMM: 16 PIM chips (8GB + 128 DPUs @ 400-500MHz)
- Server: up to 20 PIM DIMMS (160GB + 2560 DPUs)

https://www.upmem.com

UPMEM PIM System Organization mem PIM DIMM: 8GB DRAM DDR4 2400 + 256 DPUs @ 400-500MHz **PIM Chip** Main Memory **Control/Status Interface DDR4** Interface DRAM DRA DRAM DRAM DRAM Chip Chip Chip Chip Chip Chip Chip Chip DRAM DRAM DRAM DRAM DRAM DRAM DRAM DISPATCH FETCH1 24-KB Host FETCH2 IRAM FETCH3 Engin **CPU** 64-MB 64 bits DRAM READOP FORMAT Bank PIM Chip ALU1 (MRAM) 64-KB ALU2 peline 4> PIM Chip PIM Chip PIM Chip PIM Chip PIM Chip ALU3 PIM Chip PIM PIM WRAM Chip Chip ALU4 MERGE1 MERGE2 **PIM-enabled Memory** Instruction Main RAM **DPUs** Copying data from Main Mem to DPU MRAM RAM Retrieving results from DPU MRAM to Main Mem Working RAM (scratchpad) **NO direct communication DPU – DPU!**

UPMEM PIM White Paper, 2018 67

UPMEM PIM DPU Architecture

• PIM DIMM: 8GB DRAM DDR4 2400 + 256 DPUs @ 400-500MHz

- DPU: Multithreaded in-order 32-bit RISC core with NO cache hierarchy
- 24 hardware contexts (threads), each with 24 32-bit GP registers 6
- Hardware threads share IRAM and WRAM (for operands)
- 14-stage pipeline 7

Instruction

UPMEM PIM White Paper, 2018 68

men

Dept. Arquitectura de Computadores, Univ. de Málaga

UPMEM PIM Data Throughput

• PIM DIMM: 8GB DRAM DDR4 2400 + 256 DPUs @ 400-500MHz

- DPU max. frequency: 400 MHz
- MRAM-WRAM bandwidth per DPU: 800 MB/s
- MRAM-WRAM bandwidth per DIMM: 102 GB/s
- Max. aggregated MRAM-WRAM bandwidth (20 DIMMS): ~2 TB/s

men

Dept. Arquitectura de Computadores, Univ. de Málaga

UPMEM PIM Programming

• SPMD programming model

- A software thread is called tasklet
 - » (1) All tasklets execute the same code on different data pieces
 - » (2) Tasklets can execute different control-flow paths at runtime
- Up to 24 tasklets can run in parallel in a single DPU
- Tasklets are statically assigned to each DPU
- Intra-DPU tasklets can share data in MRAM and WRAM, and can synchronize
- Inter-DPU tasklets **do not** share memory or any direct communication channel
- Programs are written in C with library calls (UPMEM SDK)
- UPMEM runtime library
 - Calls to move instructions from MRAM to IRAM
 - Calls to move data between MRAM and WRAM
 - Calls to move data between Main Memory and DPU MRAM
 - Calls for locks, barriers, handshaking, semaphores...

71

UPMEM PIM Evaluation (I)

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland

ACM SIGMETRICS (Fall Edition) 2021

UPMEM PIM Evaluation (II)

• PrIM Benchmarks

Domain	Banchmark	Short name	Memory access pattern			Computation pattern		Communication/synchronization	
Domani	Deneminark	Short name	Sequential	Strided	Random	Operations	Datatype	Intra-DPU	Inter-DPU
Danca linear algebra	Vector Addition	VA	Yes			add	int32_t		
Delise illear aigeora	Matrix-Vector Multiply	GEMV	Yes			add, mul	uint32_t		
Sparse linear algebra Sparse Matrix-Vector Multip		SpMV	Yes		Yes	add, mul	float		
Databasas	Select	SEL	Yes			add, compare	int64_t	handshake, barrier	Yes
Databases	Unique	UNI	Yes			add, compare	int64_t	handshake, barrier	Yes
Data analytica	Binary Search	BS	Yes		Yes	compare	int64_t		
Data analytics	Time Series Analysis	TS	Yes			add, sub, mul, div	int32_t		
Graph processing	Breadth-First Search	BFS	Yes		Yes	bitwise logic	uint64_t	barrier, mutex	Yes
Neural networks	Multilayer Perceptron	MLP	Yes			add, mul, compare	int32_t		
Bioinformatics	Needleman-Wunsch	NW	Yes	Yes		add, sub, compare	int32_t	barrier	Yes
Image processing	Image histogram (short)	HST-S	Yes		Yes	add	int32_t	barrier	Yes
mage processing	Image histogram (long)	HST-L	Yes		Yes	add	int32_t	barrier, mutex	Yes
Parallel primitives	Reduction	RED	Yes	Yes		add	int64_t	barrier	Yes
	Prefix sum (scan-scan-add)	SCAN-SSA	Yes			add	int64_t	handshake, barrier	Yes
	Prefix sum (reduce-scan-scan)	SCAN-RSS	Yes			add	int64_t	handshake, barrier	Yes
	Matrix transposition	TRNS	Yes		Yes	add, sub, mul	int64_t	mutex	Yes

UPMEM PIM Evaluation (III)

Key takeaways

Takeaway 1

- » The UPMEM PIM architecture is fundamentally compute bound
- » As a result, the most suitable workloads are memory-bound

Takeaway 2

» The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction)

Takeaway 3

» The most well-suited workloads for the UPMEM PIM architecture require little or no communication across DRAM Processing Units (inter-DPU communication).

Takeaway 4

- » UPMEM PIM systems outperform state-of-the-art CPUs in terms of performance and energy efficiency on most of PrIM benchmarks
- » UPMEM PIM systems outperform state-of-the-art GPUs on a majority of PrIM benchmarks, and the outlook is even more positive for future PIM systems
- » UPMEM PIM systems are more energy-efficient than state-of-the-art CPUs and GPUs on workloads that they provide performance improvements over the CPUs and the GPUs

SAMSUNG

Samsung FIMDRAM: PIM AI Accelerator

Processing in DRAM Engine

- Function-in-Memory DRAM based on HBM2 (HBM-PIM)
 - HBM2-based memory with integrated AI processors
 - FIMDRAM based on HBM2

ISSCC 2021

74

umales

Oscar Plata

Samsung FIMDRAM: PCU

• Programmable Computing Unit (PCU)

- Interface unit to control data flow
- Execution unit to perform operations

Type	CMD	Description	
Floating Point	ADD	FP16 addition	
	MUL	FP16 multiplication	
	MAC	FP16 multiply-accumulate	
	MAD	FP16 multiply and add	
Data Path	MOVE	Load or store data	
	FILL	Copy data from bank to GRFs	
Control Path	NOP	Do nothing	
	JUMP	Jump instruction	
	EXIT	Exit instruction	

Samsung FIMDRAM: Chip Implementation

Mixed design methodology

Full-custom + digital RTL for PCU block

SAMSUNG

ISSCC 2021

76

Samsung FIMDRAM: Experimental Results

• Performance and energy efficiency

	HBM2	FIMDRAM
Type of DRAM	HBM2	HBM2
Process	20 nm	20 nm
Memory density	8GB / cube	6GB / cube
Data rate	2.4Gbps	2.4Gbps
Bandwidth	307GB/s per cube	307GB/s per cube
# channels	8 per cube	8 per cube
# processing units	No	128 per cube
Processing operation speed	-	300MHz
Peak throughput	-	1.2 TFLOPS per cube
Operation precision	-	FP16

ISSCC 2021 77

Processing in Memory

Oscar Plata

oplata@uma.es

Dept. Arquitectura de Computadores Universidad de Málaga

HPACuma Research Group ALDEBARAN Research Group

UCM, May 27, 2021