

Theorem Proving for All

Niki Vazou institute Magaa Software

Haskell ╋ **Refinement Types** LiquidHaskell

Haskell

take :: [a] -> Int -> [a]

> take [1,2,3] 2
> [1,2]

Haskell

take :: [a] -> Int -> [a]

> take [1,2,3] 500
> ???

Refinement Types

take :: xs:[a] -> {i:Int | i < len xs} -> [a]

take :: xs:[a] -> {i:Int | i < len xs} -> [a]

> take [1,2,3] 500
> Refinement Type Error!

I. Static Checks: Fast & Safe Code

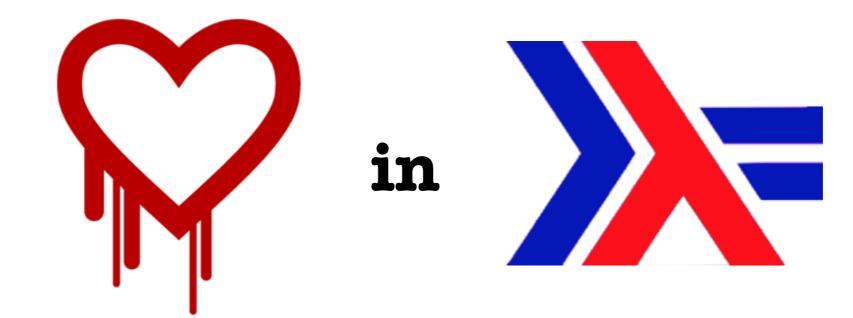
II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

I. Static Checks: Fast & Safe Code

The Heartbleed Bug

Buffer overread in OpenSSL. 2015



module Data.Text where take :: t:Text -> i:Int -> Text

> take "hat" 500 > *** Exception: Out Of Bounds!

Runtime Checks

```
take :: t:Text->i:Int->Text
take t i | i < len t
= Unsafe.take t i
take t i
= error "Out Of Bounds!"</pre>
```

Safe, but slow!

No Checks

take :: t:Text->i:Int->Text take t i | i < len t = Unsafe.take t i take an "Out Of Roundel"

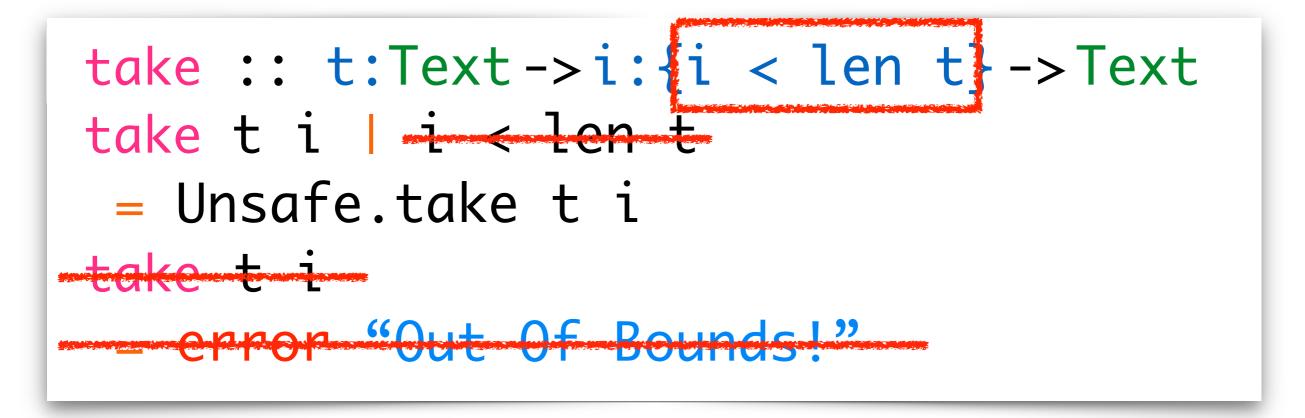
Fast, but unsafe!

No Checks

take :: t:Text -> i:Int -> Text take t i | i < len t = Unsafe.take t i take n "Out Of Poundel" verread

> take "hat" 500
> "hat\58456\2594\SOH\NUL...

take :: t:Text->i: i < len t ->Text
take t i | i < len t
= Unsafe.take t i
take t i
= error "Out Of Bounds!"</pre>



take :: t:Text->i:{i < len t}->Text
take t i
= Unsafe.take t i

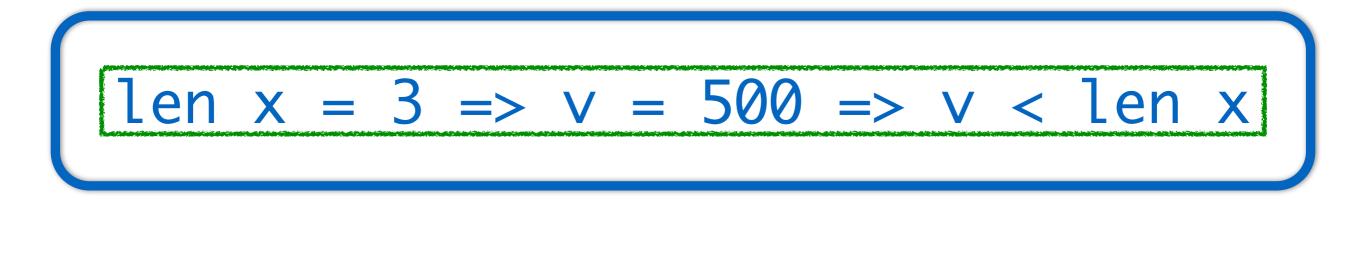
take :: t:Text->i:{i < len t}->Text
take t i
= Unsafe.take t i

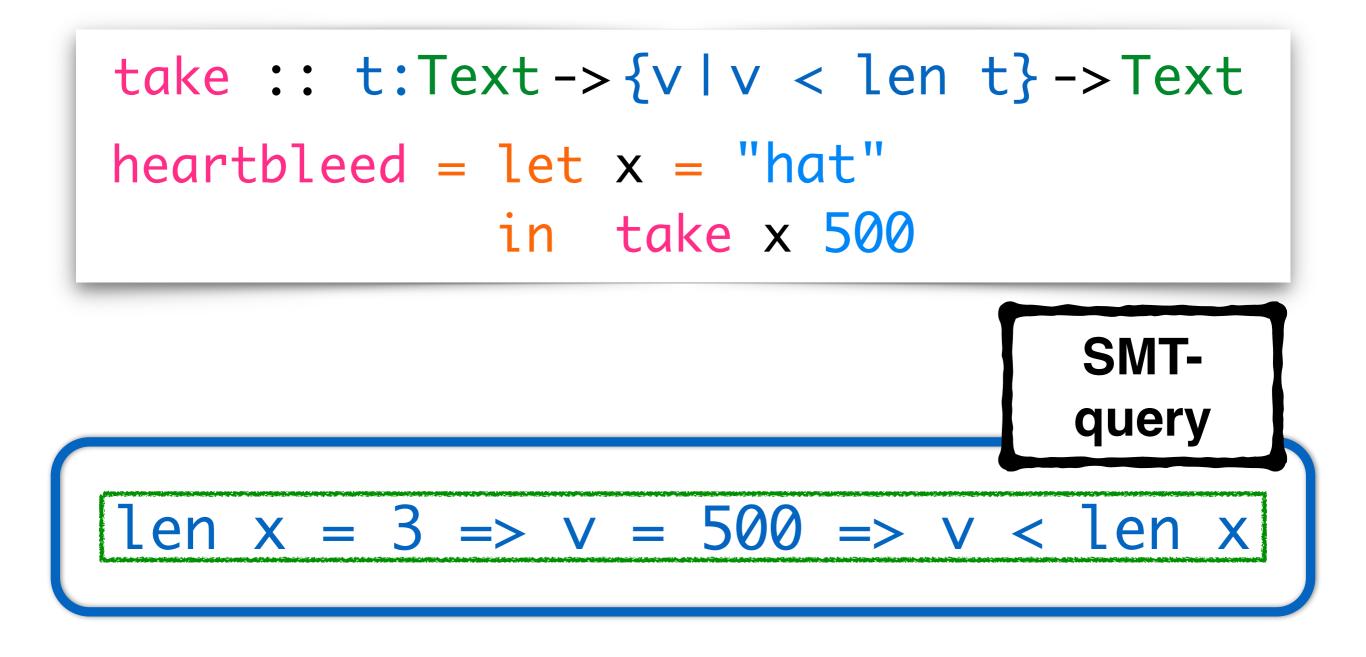
LiquidHaskell

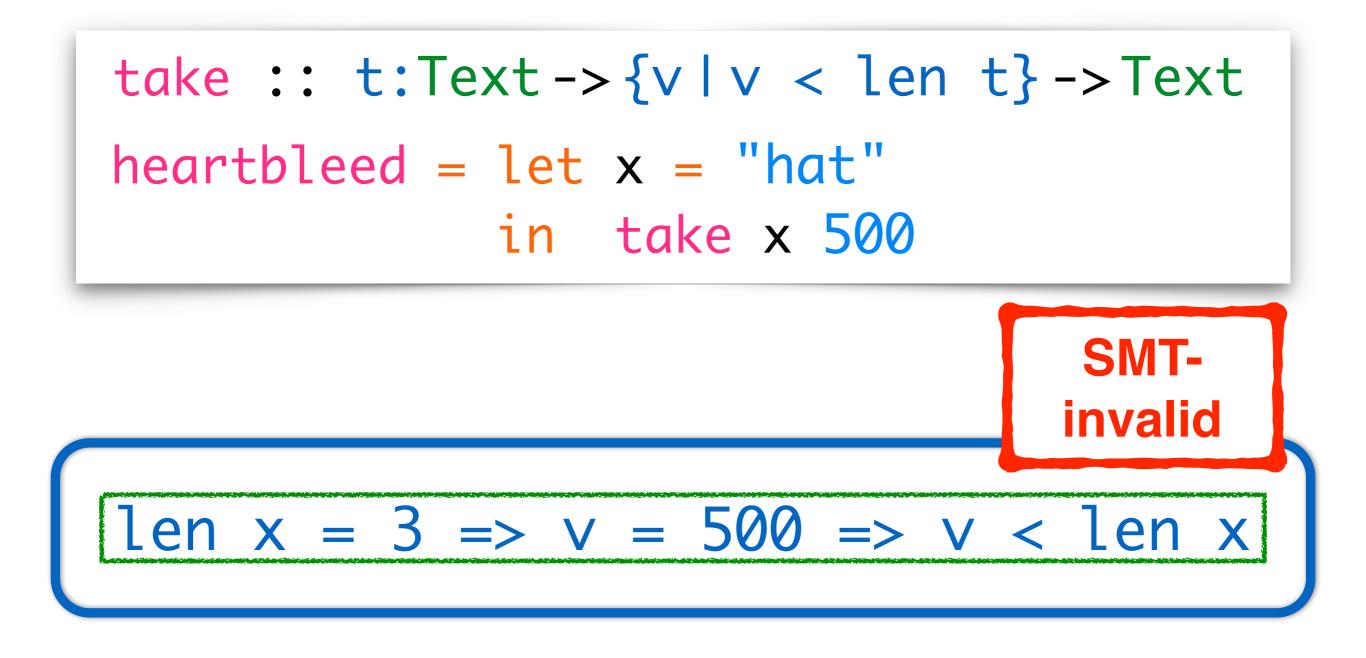
take :: t:Text-> {v | v < len t} -> Text
heartbleed = let
$$x =$$
 "hat"
in take x 500

$$len x = 3 => v = 500 => v < len x$$

take :: t:Text->{v|v < len t}->Text
heartbleed = let x = "hat"
in take x
$$500$$







Checker reports Error

len x = 3 => v = 500 => v < len x

Checker reports Error

take :: t:Text-> {v | v < len t} -> Text
heartbleed = let x = "hat"
in take x 2
Checker reports **OK** SMT-
valid
len x = 3 => v =
$$2$$
 => v < len x

Static Checks

I. Static Checks: Fast & Safe Code II. Application: Speed up Parsing III. Expressiveness: Theorem Proving

I. Static Checks: Fast & Safe CodeII. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

II. Application: Speed up Parsing

DEMO

Application: Speed up Parsing

Provably Correct & Faster Code! SMT-Automatic Verification

SMT-Automatic Verification

How expressive can we get?

I.Static Checks : Fast & Safe Code

II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

III. Expressiveness: Theorem Proving

Theorem: For any X, reverse [x] = [x]

Proof.

reverse [x] applying reverse on [x]

= reverse [] ++ [x]

Proof is in pen-and-paper : (

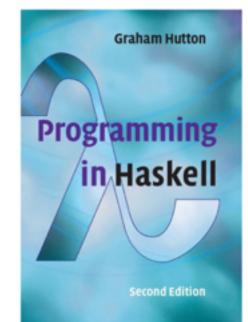
- applying reverse on [] —
- = [] ++ [X]

[x]

QED

=

- applying ++ on [] and [x]
- —



Theorem: For any x, reverse [x] = [x]

Proof.

reverse [x]
applying reverse on [x]
reverse [] ++ [x]
applying reverse on []
= [] ++ [x]

- applying ++ on [] and [x]
- = [x] QED

Proof is not machine checked.

Theorem: For any X, reverse [X] = [X]

Proof.

reverse [x]

- obviously!

= [x] QED

Proof is not machine checked.

Theorem: For any X, reverse [X] = [X]

Proof.

reverse [x]
applying reverse on [x]
reverse [] ++ [x]
applying reverse on []
[] ++ [x]
applying ++ on [] and [x]

= [x] QED

Proof is not machine checked. Check it with Liquid Haskell!

Theorems as Refinement Types

Theorem:

For any X, reverse [x] = [x]

Refinement Type:

 $x:a \rightarrow \{ v:() \mid reverse [x] = [x] \}$ f SM7 equality

Theorems as Refinement Types

Theorem:

For any X, reverse [x] = [x]

Refinement Type: x:a → { reverse [x] = [x] }

$x:a \rightarrow \{ reverse [x] = [x] \}$

Proof.

- reverse [x] applying reverse on [x] reverse [] ++ [x] = – applying reverse on []
 - = [] ++ [X]
 - applying ++ on [] and [x]

 - ____
 - = [x]

 - QED

How to connect theorem with proof?

Theorems are types Proofs are programs - Curry & Howard singletonP :: x:a → { reverse [x] = [x] }
singletonP x

- = reverse [x]
- applying reverse on [x]
- = reverse [] ++ [x]
- applying reverse on []
- = [] ++ [X]
- applying ++ on [] and [x]
- = [x]
 - QED
 - **Proof as a Haskell function**

singletonP :: x:a \rightarrow { reverse [x] = [x] } singletonP x

- = reverse [x]
- applying reverse on [x]
- = reverse [] ++ [x]
- applying reverse on []
- = [] ++ [X]
- applying ++ on [] and [x]
- = [x]
 - QED

Proof as a Haskell function

singletonP :: x:a \rightarrow { reverse [x] = [x] } singletonP x

- reverse [x] applying reverse on [x] reverse [] ++ [x]
- applying reverse on [7]
- [] ++ [X]
- applying ++ on [] and [x] ____
- =

- - **OED**

How to encode equality?

Equational Operator in (Liquid) Haskell

checks both arguments are equal
(==.) :: x:a -> y:{ a | x = y }
 -> {v:a | v = x && v = y }
x ==. y = y
returns Znd argument,
 to continue the proof!

singletonP :: x:a \rightarrow { reverse [x] = [x] } singletonP x

- = reverse [x]
- applying reverse on [x]
- ==. reverse [] ++ [x]
- applying reverse on []
- = [] ++ [X]
- applying ++ on [] and [x]
- = [x]
 - QED

singletonP :: x:a \rightarrow { reverse [x] = [x] } singletonP x

- = reverse [x]
 applying reverse on [x]
 ==. reverse [] ++ [x]
 applying reverse on []
 ==. [] ++ [x]
 applying ++ on [] and [x]
- ==. [x] OED

How to encode QED?

- applying reverse on [] ==. [] ++ [X] - applying ++ on [] and [x] ==. [x]
- ==. reverse [] ++ [x]
- applying reverse on [x]
- singletonP x reverse [x] =

singletonP :: x:a \rightarrow { reverse [x] = [x] }

Define QED as data constuctor... data QED = QED

... that casts anything into a proof (i.e., a unit value).

singletonP :: x:a \rightarrow { reverse [x] = [x] } singletonP x

= reverse [x]
- applying reverse on [x]
==. reverse [] ++ [x]
- applying reverse on []
==. [] ++ [x]
- applying ++ on [] and [x]
==. [x]
*** OED

Theorem Proving in Haskell

Theorems are Types

singletonP :: x:a \rightarrow { reverse [x] = [x] }

Theorem Application is Function Call
singletonP 1 :: { reverse [1] = [1] }

Theorem Application is Function Call

- singletonP1 :: { reverse [1] = [1] }
 singletonP1
 = reverse [1]
 ? singletonP 1
 - ==. [1]
 - *** QED

(?) :: a -> () -> a x ? _ = x

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!

Equational operators (==., ?, QED, ***) let us encode proofs as Haskell functions checked by Liquid Haskell.

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!

How to encode inductive proofs?

Theorem: For any list x, reverse (reverse x) = x. **Proof.**

Base Case:

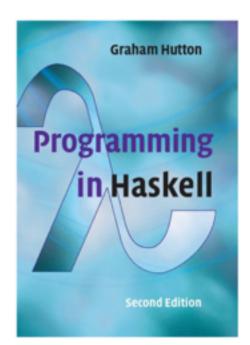
reverse (reverse [])

- applying inner reverse
- reverse []
 - applying reverse
- = QED

Inductive Case:

reverse (reverse (x:xs))

- applying inner reverse
- = reverse (reverse xs ++ [x])
 - distributivity on (reverse xs) [x]
- reverse [x] ++ reverse (reverse xs) =
 - involution on xs
- = reverse [x] ++ xs
 - singleton on x
- = [x] ++ xs
 - applying ++
- = x:([] ++ xs)
 - applying ++
- = (x:xs) QED



Theorem: For any list x, reverse (reverse x) = x. **Proof.**

Base Case:

reverse (reverse [])

- applying inner reverse
- reverse [] =
 - applying reverse
- = QED

Inductive Case:

reverse (reverse (x:xs))

- applying inner reverse
- = reverse (reverse xs ++ [x])
 - distributivity on (reverse xs) [x]
- reverse [x] ++ reverse (reverse xs) =
 - involution on xs
- = reverse [x] ++ xs
 - singleton on x
- = [x] ++ xs
 - applying ++
- = x:([] ++ xs)
 - applying ++
- = (x:xs) QED

Step 1: Define a recursive function!

Theorem: For any list x, **reverse (reverse x) = x**. **Proof.**

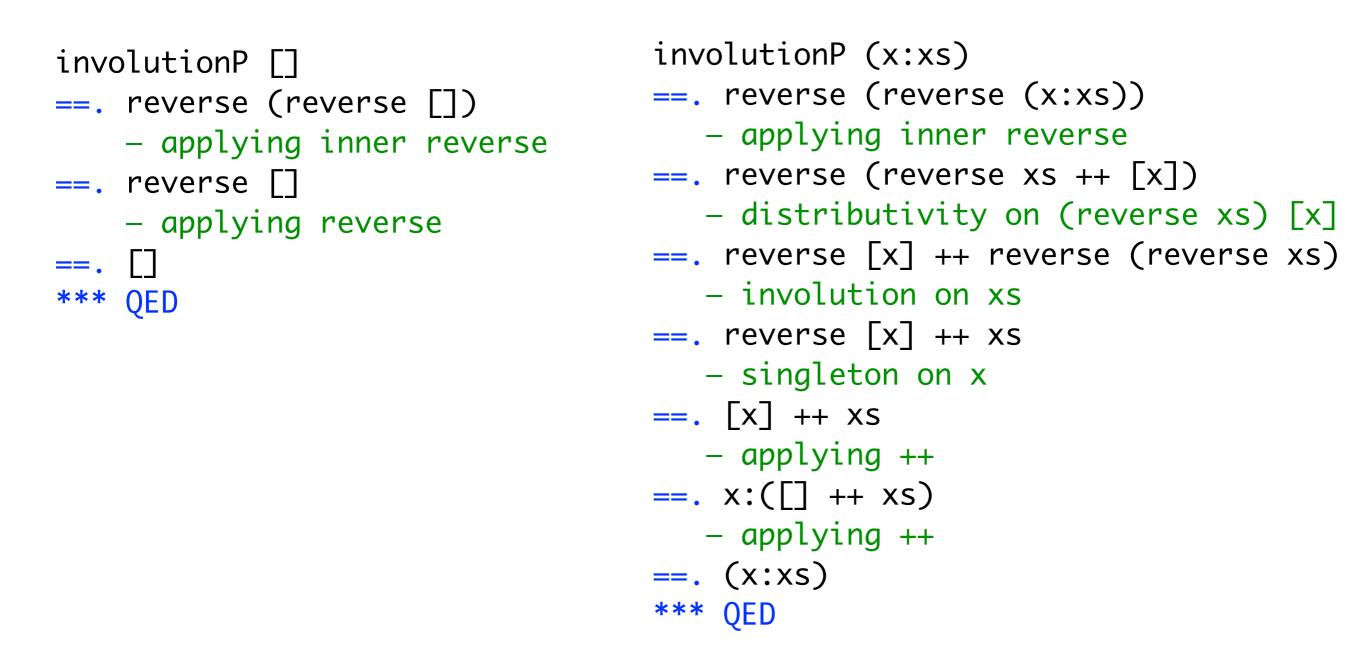
- involutionP []
- = reverse (reverse [])
 - applying inner reverse
- = reverse []
 - applying reverse
- = []

QED

- involutionP (x:xs)
- = reverse (reverse (x:xs))
 - applying inner reverse
- = reverse (reverse xs ++ [x])
 - distributivity on (reverse xs) [x]
- = reverse [x] ++ reverse (reverse xs)
 - involution on xs
- = reverse [x] ++ xs
 - singleton on x
- = [x] ++ xs
 - applying ++
- = x:([] ++ xs)
 - applying ++
- = (x:xs) QED

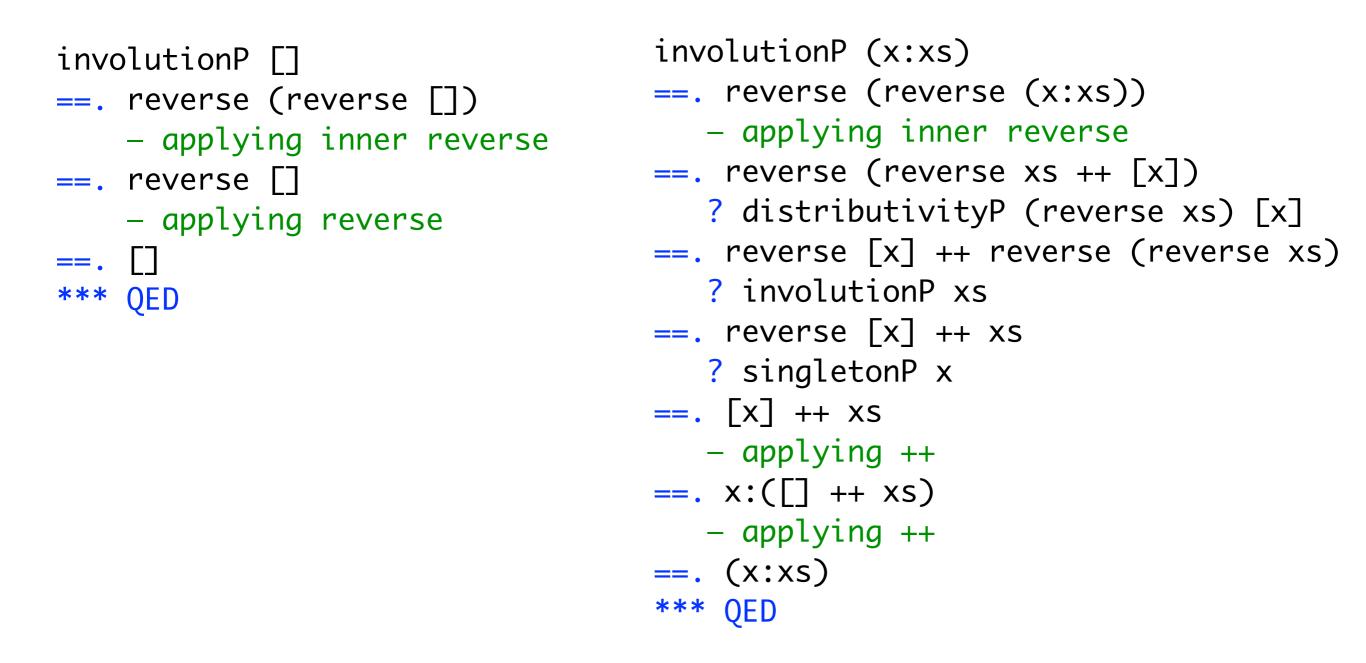
S Step 1 2 D Use equations ilvertions !

Theorem: For any list x, reverse (reverse x) = x. **Proof.**



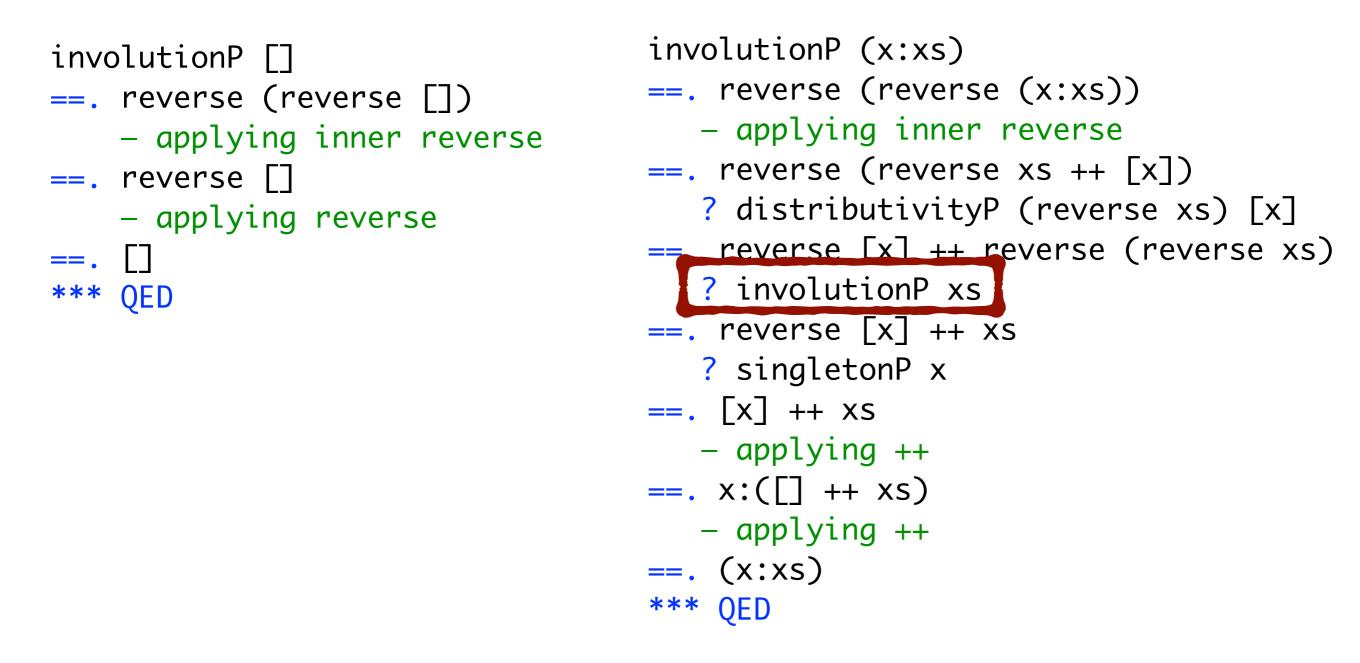
State 7 21: el senerta et i en fai norpiena trants !

Theorem: For any list x, **reverse (reverse x) = x**. **Proof.**



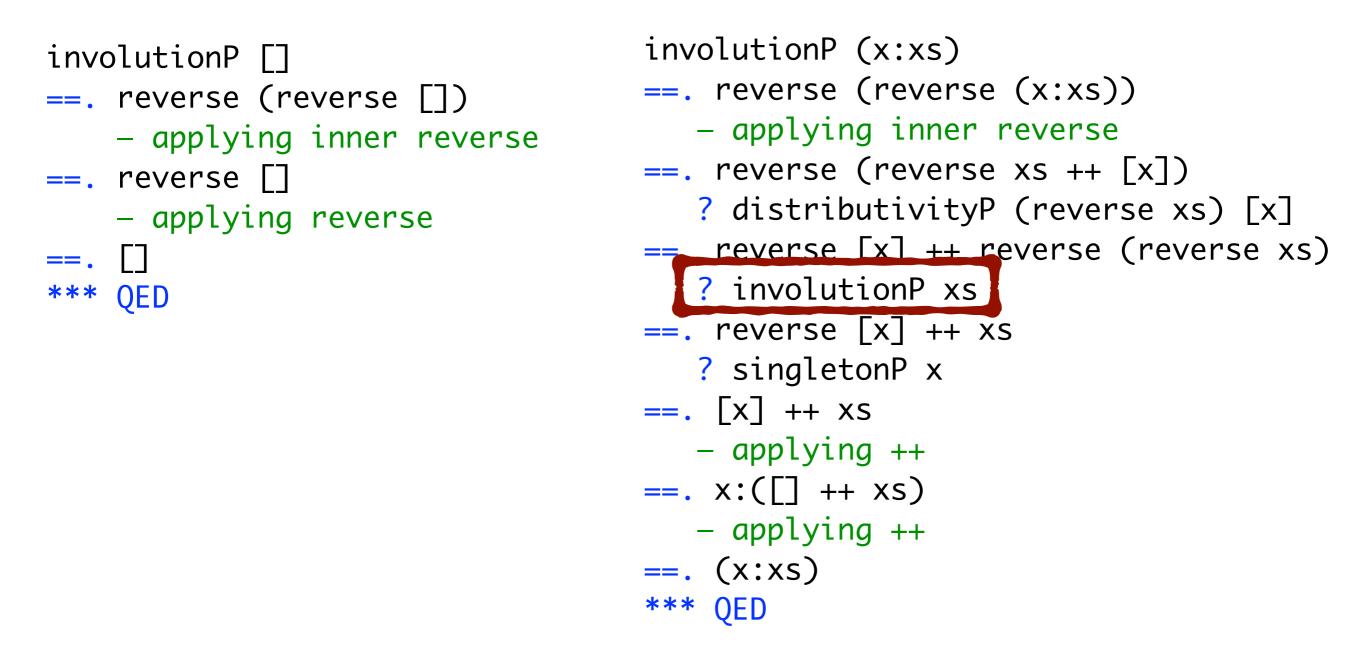
Step 3: Lemmata are function calls!

Theorem: For any list x, **reverse (reverse x) = x**. **Proof.**



Note: Inductive hypothesis is recursive call!

Theorem: For any list x, reverse (reverse x) = x. **Proof.**



Question: Is the proof well founded?

Used to encode pen-and-pencil proofs and function optimizations.

"Theorem Proving for All", Haskell'18

https://bit.ly/2yjvJo3

Used to encode pen-and-pencil proofs or even sophisticated security proofs.

"LWeb: Information Flow Security for Multi-Tier Web Applications", POPL'19

https://bit.ly/2EcyDAh

Used to encode pen-and-pencil proofs or encode resource analysis.

"Liquidate your assets" https://bit.ly/2Ht3ulG

> To be presented at IMDEA: by Martin Handley Tue March 19 @10.45

Used to encode pen-and-pencil proofs

But, proof interaction is missing.

I. Static Checks: Fast & Safe Code
II. Application: Speed up Parsing
III. Expressiveness: Theorem Proving

