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Haskell 

Refinement Types 
=



take :: [a] -> Int -> [a]

 

 > take [1,2,3] 2
 > [1,2] 
 

Haskell 



 

 > take [1,2,3] 500
 > ???
 

take :: [a] -> Int -> [a]

Haskell 



Refinement Types

take :: xs:[a] -> {i:Int | i < len xs} -> [a]



 

 > take [1,2,3] 500
 > Refinement Type Error! 
 

take :: xs:[a] -> {i:Int | i < len xs} -> [a]
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I. Static Checks: Fast & Safe CodeStatic Checks



Buffer overread in OpenSSL. 2015

The Heartbleed Bug



in



 

 module Data.Text where 
 take :: t:Text -> i:Int -> Text
 

 > take "hat" 500
 > *** Exception: Out Of Bounds! 
 



 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.takeWord16 i t
 take i t
  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:Int -> Text
 take t i | i < len t 
  = Unsafe.take t i
 take t i
  = error “Out Of Bounds!” 

Runtime Checks

Safe, but slow!



 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.takeWord16 i t
 take i t
  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:Int -> Text
 take t i | i < len t 
  = Unsafe.take t i
 take t i
  = error “Out Of Bounds!” 

No Checks

Fast, but unsafe!



No Checks

 > take "hat" 500
 > “hat\58456\2594\SOH\NUL…
 

Overread

 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.takeWord16 i t
 take i t
  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:Int -> Text
 take t i | i < len t 
  = Unsafe.take t i
 take t i
  = error “Out Of Bounds!” 



 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.takeWord16 i t
 take i t
  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:Int -> Text
 take t i | i < len t
  = Unsafe.take t i
 take t i
  = error “Out Of Bounds!” 

i < len t

Static Checks



 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.takeWord16 i t
 take i t
  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:Int -> Text
 take t i | i < len t
  = Unsafe.take t i
 take t i
  = error “Out Of Bounds!” 

Static Checks

 take :: t:Text -> i:{i < len t} -> Texti < len t



 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.takeWord16 i t
 take i t
  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:Int -> Text
 take t i | i < len t
  = Unsafe.take t i
 take t i
  = error “Out Of Bounds!” 

Static Checks

 take :: t:Text -> i:{i < len t} -> Texti < len t



Static Checks

 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:{i < len t} -> Text
 take t i
  = Unsafe.take t i



 take :: t:Text -> i:Int -> Text
 take i t | i < len t 
  = Unsafe.  = error “Out Of Bounds!” 
   

 take :: t:Text -> i:{i < len t} -> Text
 take t i
  = Unsafe.take t i

Static Checks

   

 > take "hat" 500
 Type Error



OK

Error
Code 

Checks valid arguments, under facts.

Refinement Types



 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.

len x = 3 => v = 500 => v < len x



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.

SMT-
query



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.

SMT-
invalid



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.

Checker reports Error



len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.

Checker reports Error



Checker reports Error

len x = 3 => v = 500 => v < len x

 take :: t:Text -> {v | v < len t} -> Text
   

 heartbleed = let x = "hat" 
              in  take x 500
 

Checks valid arguments, under facts.

2

2

OK SMT-
valid



Checks valid arguments, under facts.

Static Checks

OK

Error
Code 



I. Static Checks: Fast & Safe Code

II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

Static Checks



II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving
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II. Application: Speed up ParsingApplication: Speed up Parsing

DEMO



Provably Correct & Faster Code!

Application: Speed up Parsing

SMT-Automatic Verification



SMT-Automatic Verification

How expressive can we get?



II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

I. Static Checks: Fast & Safe CodeStatic Checks
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III. Expressiveness: Theorem ProvingExpressiveness



Proof is in pen-and-paper :(

        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

Theorem: For any x,

Proof.

reverse [x] = [x]



        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

Proof is not machine checked.

Theorem: For any x, reverse [x] = [x]

Proof.



        reverse [x]

    —  obviously!

    =   [x]
        QED

Proof is not machine checked.

Theorem: For any x, reverse [x] = [x]

Proof.



Proof is not machine checked.

        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

Theorem: For any x, reverse [x] = [x]

Check it with Liquid Haskell!

Proof.



Theorems as Refinement Types

Theorem:  
For any x, reverse [x] = [x]

x:a ! { v:() | reverse [x] = [x] }
Refinement Type: 

SMT equality 



x:a ! { reverse [x] = [x] }

Theorems as Refinement Types

Theorem:  
For any x, reverse [x] = [x]

Refinement Type: 



Proof.
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

x:a ! { reverse [x] = [x] }

How to connect theorem with proof?



Proofs are programs
Theorems are types

— Curry & Howard 



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

Proof as a Haskell function

singletonP :: x:a ! { reverse [x] = [x] }x:a ! { reverse [x] = [x] }
 singletonP x
     =   

  
     —  applying ++ on [] and [x]
    ==.  [x]
    ***  QED



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

 singletonP x
     =   reverse [x]
     —  applying reverse on [x]
    ==.  reverse [] ++ [x]
     —  applying reverse on []
    ==.  [] ++ [x]
     —  applying ++ on [] and [x]
    ==.  [x]
    ***  QED

Proof as a Haskell function

singletonP :: x:a ! { reverse [x] = [x] }x:a ! { reverse [x] = [x] }



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

 singletonP x
     =   reverse [x]
     —  applying reverse on [x]
    ==.  reverse [] ++ [x]
     —  applying reverse on []
    ==.  [] ++ [x]
     —  applying ++ on [] and [x]
    ==.  [x]
    ***  QED

singletonP :: x:a ! { reverse [x] = [x] }

How to encode equality?

x:a ! { reverse [x] = [x] }



Equational Operator in (Liquid) Haskell

(==.) :: x:a -> y:{ a | x = y } 
      -> {v:a | v = x && v = y }
x ==. y = y

checks both arguments are equal

returns 2nd argument,  
to continue the proof!



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

 singletonP x
     =   reverse [x]
     —  applying reverse on [x]
    ===.  reverse [] ++ [x]
     —  applying reverse on []
    ==.  [] ++ [x]
     —  applying ++ on [] and [x]
    ==.  [x]
    ***  QED

singletonP :: x:a ! { reverse [x] = [x] }x:a ! { reverse [x] = [x] }



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

 singletonP x
     =   reverse [x]
     —  applying reverse on [x]
    ===. reverse [] ++ [x]
     —  applying reverse on []
     ==. [] ++ [x]
     —  applying ++ on [] and [x]
     ==. [x]
    ***  QED

singletonP :: x:a ! { reverse [x] = [x] }x:a ! { reverse [x] = [x] }



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

 singletonP x
     =   reverse [x]
     —  applying reverse on [x]
    ===. reverse [] ++ [x]
     —  applying reverse on []
     ==. [] ++ [x]
     —  applying ++ on [] and [x]
     ==. [x]
    ***  QED

singletonP :: x:a ! { reverse [x] = [x] }

How to encode QED?

x:a ! { reverse [x] = [x] }



Define QED as data constuctor…

(***) :: a -> QED -> ()
_ *** QED = ()

data QED = QED

… that casts anything into a proof  
(i.e., a unit value).



 
        reverse [x]
    —  applying reverse on [x]
    =   reverse [] ++ [x]
    —  applying reverse on []
    =   [] ++ [x]
    —  applying ++ on [] and [x]
    =   [x]
        QED

 singletonP x
     =   reverse [x]
     —  applying reverse on [x]
    ===. reverse [] ++ [x]
     —  applying reverse on []
     ==. [] ++ [x]
     —  applying ++ on [] and [x]
     ==. [x]
     *** QED

singletonP :: x:a ! { reverse [x] = [x] }

Theorem Proving in Haskell

x:a ! { reverse [x] = [x] }



singletonP :: x:a ! { reverse [x] = [x] }

Theorems are Types

Theorem Application is Function Call

singletonP 1 :: { reverse [1] = [1] }

x:a ! { reverse [x] = [x] }



  singletonP1 :: { reverse [1] = [1] } 
  singletonP1
    =   reverse [1]
      ? singletonP 1 
    ==. [1]
    *** QED

Theorem Application is Function Call

(?) :: a -> () -> a 
x ? _ = x



Reasoning about Haskell Programs in Haskell!

Equational operators (==., ?, QED, ***)

Theorem Proving for All

let us encode proofs as Haskell functions
checked by Liquid Haskell.



How to encode inductive proofs?

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!



Theorem: For any list x, reverse (reverse x) = x. 
Proof.

involutionP []
=   reverse (reverse [])
    — applying inner reverse
=   reverse []
    — applying reverse
=   []
    QED

involutionP (x:xs)
=   reverse (reverse (x:xs))
   — applying inner reverse
=   reverse (reverse xs ++ [x])
   — distributivity on (reverse xs) [x]
=   reverse [x] ++ reverse (reverse xs)
   — involution on xs
=   reverse [x] ++ xs
   — singleton on x
=   [x] ++ xs
   — applying ++
=   x:([] ++ xs)
   — applying ++
=   (x:xs)
    QED

Base Case: Inductive Case:



Theorem: For any list x, reverse (reverse x) = x. 
Proof.

involutionP []
=   reverse (reverse [])
    — applying inner reverse
=   reverse []
    — applying reverse
=   []
    QED

involutionP (x:xs)
=   reverse (reverse (x:xs))
   — applying inner reverse
=   reverse (reverse xs ++ [x])
   — distributivity on (reverse xs) [x]
=   reverse [x] ++ reverse (reverse xs)
   — involution on xs
=   reverse [x] ++ xs
   — singleton on x
=   [x] ++ xs
   — applying ++
=   x:([] ++ xs)
   — applying ++
=   (x:xs)
    QED

Base Case: Inductive Case:

Step 1: Define a recursive function!



Step 1: Define a recursive function!

Proof.

involutionP []
==  reverse (reverse [])
    — applying inner reverse
=   reverse []
    — applying reverse
=   []
    QED

involutionP (x:xs)
==  reverse (reverse (x:xs))
   — applying inner reverse
=   reverse (reverse xs ++ [x])
   — distributivity on (reverse xs) [x]
=   reverse [x] ++ reverse (reverse xs)
   — involution on xs
=   reverse [x] ++ xs
   — singleton on x
=   [x] ++ xs
   — applying ++
=   x:([] ++ xs)
   — applying ++
=   (x:xs)
    QED

Step 2: Use equational operators

Theorem: For any list x, reverse (reverse x) = x. 



Proof.

involutionP []
==.=reverse (reverse [])
    — applying inner reverse
==. reverse []
    — applying reverse
==. []
*** QED

involutionP (x:xs)
==. reverse (reverse (x:xs))
   — applying inner reverse
==. reverse (reverse xs ++ [x])
   — distributivity on (reverse xs) [x]
==. reverse [x] ++ reverse (reverse xs)
   — involution on xs
==. reverse [x] ++ xs
   — singleton on x
==. [x] ++ xs
   — applying ++
==. x:([] ++ xs)
   — applying ++
==. (x:xs)
*** QED

Step 3: Lemmata are function calls!Step 2: Use equational operators

Theorem: For any list x, reverse (reverse x) = x. 



Proof.

Step 3: Lemmata are function calls!

involutionP []
==.=reverse (reverse [])
    — applying inner reverse
==. reverse []
    — applying reverse
==. []
*** QED

involutionP (x:xs)
==. reverse (reverse (x:xs))
   — applying inner reverse
==. reverse (reverse xs ++ [x])
   ? distributivityP (reverse xs) [x]
==. reverse [x] ++ reverse (reverse xs)
   ? involutionP xs
==. reverse [x] ++ xs
   ? singletonP x
==. [x] ++ xs
   — applying ++
==. x:([] ++ xs)
   — applying ++
==. (x:xs)
*** QED

Theorem: For any list x, reverse (reverse x) = x. 



Proof.

involutionP []
==.=reverse (reverse [])
    — applying inner reverse
==. reverse []
    — applying reverse
==. []
*** QED

involutionP (x:xs)
==. reverse (reverse (x:xs))
   — applying inner reverse
==. reverse (reverse xs ++ [x])
   ? distributivityP (reverse xs) [x]
==. reverse [x] ++ reverse (reverse xs)
   ? involutionP xs
==. reverse [x] ++ xs
   ? singletonP x
==. [x] ++ xs
   — applying ++
==. x:([] ++ xs)
   — applying ++
==. (x:xs)
*** QED

Note: Inductive hypothesis is recursive call!

Theorem: For any list x, reverse (reverse x) = x. 



Proof.

involutionP []
==.=reverse (reverse [])
    — applying inner reverse
==. reverse []
    — applying reverse
==. []
*** QED

involutionP (x:xs)
==. reverse (reverse (x:xs))
   — applying inner reverse
==. reverse (reverse xs ++ [x])
   ? distributivityP (reverse xs) [x]
==. reverse [x] ++ reverse (reverse xs)
   ? involutionP xs
==. reverse [x] ++ xs
   ? singletonP x
==. [x] ++ xs
   — applying ++
==. x:([] ++ xs)
   — applying ++
==. (x:xs)
*** QED

Question: Is the proof well founded?

Theorem: For any list x, reverse (reverse x) = x. 



Used to encode pen-and-pencil proofs

https://bit.ly/2yjvJo3

“Theorem Proving for All”, Haskell’18

and function optimizations.

https://bit.ly/2yjvJo3


“LWeb: Information Flow Security for  
Multi-Tier Web Applications”, POPL’19

https://bit.ly/2EcyDAh

Used to encode pen-and-pencil proofs
or even sophisticated security proofs. 

https://bit.ly/2EcyDAh


“Liquidate your assets”
https://bit.ly/2Ht3uIG

Used to encode pen-and-pencil proofs
or encode resource analysis. 

To be presented at IMDEA:  
by Martin Handley 

Tue March 19 @10.45

https://bit.ly/2Ht3uIG


Used to encode pen-and-pencil proofs

But, proof interaction is missing.



II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

I. Static Checks: Fast & Safe Code

Thanks!

Theorem Proving for All

@nikivazou


