A LiquidHaskell

Theorem Proving for All

Niki Vazou
| dea

Haskell
+

Refinement Types

A LiquicIHaskeII

Haskell

take :: [a] -> Int -> [a]

> take [1,2.,3] 2
> 1,2

Haskell

take :: [a] -> Int -> [a]

> take [1,2,3] 500
> 777

Refinement Types

take :: xs:[al -> {i1:Int|l1 < len xs}t -> [a]

A LiquidHaskell

take :: xs:[al -> {i1:Int|l1 < len xs}t -> [a]

> take [1,2,3] 500
> Refinement Type Error!

A LiquidHaskell

I. Static Checks: Fast & Safe Code
II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

I. Static Checks: Fast & Safe Code

The Heartbleed Bug

Buffer overread in OpenSSL. 2015

module Data.Text where
take :: t:Text -> 1:Int -> Text

> take "hat" 500
> *¥** Exception: Out Of Bounds!

Runtime Checks

take :: t:Text->1:Int->Text
take t 1 | 1 < len t

= Unsafe.take t 1

take t 1

= error “Out Of Bounds!”

Safe, but slow!

No Checks

take :: t:Text->1:Int->Text
take t 1 | =t~c=d-er—i-
Unsafe take t 1

Fast, but unsafe!

No Checks

take :: t:Text->1:Int->Text
take t 1 | ~t=—get-aig—de
Unsafe take t 1

> take "hat" 500
> “hat\58456\2594\SOH\NUL...

Static Checks

take :: t: > Text
take t 1 |f |

= Unsafe.ta'e't”1°“
take t 1

= error “Out Of Bounds!”

Static Checks

take :: t:Text->1i:{i }
take t 1 | 1 < 1en thw,_,\\

= Unsafe.take t 1
take t 1
= error “Out Of Bounds!”

Static Checks

take
take t 1

Unsafe take t 1

Static Checks

take :: t:Text->1:4{1 < len t}->Text
take t 1
= Unsafe.take t 1

Static Checks

take :: t:Text->1:{1 < len t}->Text
take t 1
= Unsafe.take t 1

> take hat 500

.>§LiquidHaskeI o

Refinement Types

\/OK

Code—i ‘%LiqUidHaSke“)\ Error

Checks valid arguments, under facts.

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hat"
1n take x 500

len Xx = 3 = v =500 => v < len Xx

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let|x = "hat"]
1n take x 500

Checks arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hat”
in |take x 500]

Checks arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hqtﬁ”v
in take x|500]

Checks arguments, under facts.

take :: t:Text->[{vIv < len t}!

heartbleed = let x = "hat"
1n take x 500

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hat"
1n take x 500

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hat"
1n take x 500

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

SMT-
invalid

heartbleed = let x = "hat"
1n take x 500

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hat"
in

Checker reports Error

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hqtf”'
in take x|500

Checker reports Error

Checks valid arguments, under facts.

take :: t:Text->{vIv < len t}->Text

heartbleed = let x = "hat"
in take x| 2 |

\/OK

Code—’\ ‘%LIqUIdHaSke“)\ Error

Checks valid arguments, under facts.

Static Checks

‘X LiquidHaskell

I. Static Checks: Fast & Safe Code

‘X LiquidHaskell

I. Static Checks: Fast & Safe Code
II. Application: Speed up Parsing

II. Application: Speed up Parsing

DEMO

Application: Speed up Parsing

Provably Correct & Faster Code!

SMT-Automatic Verification

SMT-Automatic Verification

How expressive can we get?

X LiquidHaskell

I.Static Checks : Fast & Safe Code
II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

III. Expressiveness: Theorem Proving

Theorem: For any X, reverse [x] = [x]

Proof.
reverse |[x]

— applying reverse on [Xx]
reverse [] ++ [Xx]

— applying reverse on []

[] ++ [x]

— applying ++ on [] and [Xx]
[x]

QED

Proof is in pen-and-paper :(

Theorem: For any X, reverse [x] = [x]

Proof.
reverse [x]

— applying reverse on [X]
reverse [] ++ [X]

— applying reverse on []

[] ++ [X]

— applying ++ on [] and [Xx]
[x]

QED

Proof is not machine checked.

Theorem: For any X, reverse [x] = [x]

Proof.
reverse [x]

— obviously!

[x]
QED

Proof is not machine checked.

Theorem: For any X, reverse [x] = [x]

Proof.
reverse |[x]

— applying reverse on [X]
reverse [] ++ [X]

— applying reverse on []

[] ++ [x]

— applying ++ on [] and [Xx]
[x]

QED

Proof is not machine checked.
Check it with Liquid Haskell!

Theorems as Refinement Types

Theorem.:
For any X, reverse [X]| = [X]

Refinement Type:
x:a > 1 v:0) | reverse [x] = [x] %

ST equality

Theorems as Refinement Types

Theorem:
For any X, reverse [xX] = [X]

Refinement Type:
x:a » { reverse [x] = [x] }

X:a » { reverse [x] = [x] }

Proof.
reverse [x]

— applying reverse on [X]
reverse [] ++ [Xx]

— applying reverse on []

[] ++ [X]

— applying ++ on [] and [Xx]
[x]

QED

How to connect theorem with proof?

Theorems are types
Proofs are programs

— Curry & Howard

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]

reverse [] ++ [X]

L1 ++ [X]

[X
QED

Proof as a Haskell function

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]
— applying reverse on [Xx]
= reverse [] ++ [X]

L1 ++ [X]

[X
QED

Proof as a Haskell function

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]
— _applying reverse on [X]
reverse [] ++ [X]

L1 ++ [X]

[X
QED

How to encode equality?

Equational Operator in (Liquid) Haskell

checks both arguments are equal
(==.) :: x:a -> y: { al x=y }
-> {v a | v = x && v = y }
X=.Yy=Y
WMZMMW,

to conlinue the frood!

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]
— applying reverse on [X]
==, reverse []| ++ [X]

L1 ++ [X]

[X
QED

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]
— applying reverse on [X]
==. reverse [] ++ [Xx]
— applying reverse on []
==. [] ++ [x]
— applying ++ on [] and [Xx]
==. [x]
QED

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]
— applying reverse on [X]
==. reverse [] ++ [Xx]
— applying reverse on []
==. [] ++ [x]
— applying ++ on [] and [Xx]

'

How to encode QED?

Define QED as data constuctor...
data QED = QED

... that casts anything into a proof
(i.e., a unit value).

(¥**) :: a -> QeED -> ()
_ **x QED = O

singletonP :: x:a » { reverse [x] = [x] }

singletonP x
= reverse [x]
— applying reverse on [X]
==, reverse [] ++ [x]
— applying reverse on []
==. [] ++ [X]
— applying ++ on [] and [Xx]
==. [X]
*** OED

Theorem Proving in Haskell

Theorems are Types

singletonP :: x:a » { reverse [x] = [x] }

Theorem Application is Function Call

singletonP 1 :: { reverse [1] = [1] }

Theorem Application is Function Call

singletonPl :: { reverse [1] = [1] }
singletonPl
= reverse [1]
? singletonP 1

——. [1]

(?) ::a >0 ->a
X 72 _ =X

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!

Equational operators (==., 7, QED, **%*)
let us encode proofs as Haskell functions
checked by Liquid Haskell.

Theorem Proving for All

Reasoning about Haskell Programs in Haskell!

How to encode inductive proofs<

Theorem: For any list X, reverse (reverse x) = X.
Proof.

Base Case: Inductive Case:
reverse (reverse []) reverse (reverse (X:Xs))
— applylng inner reverse — applying inner reverse
- reverse [] = reverse (reverse xs ++ [x])
— applying reverse — distributivity on (reverse xs) [x]
- [= reverse [x] ++ reverse (reverse Xxs)
QED — 1nvolution on xs

= reverse [x] ++ XS
— singleton on Xx
[x] ++ XS
— applying ++
x:([] ++ xs)
— applying ++
(x:Xxs)
QED

Theorem: For any list X, reverse (reverse x) = X.
Proof.

reverse (reverse []) reverse (reverse (X:xs))
— applying inner reverse - applying inner reverse
- reverse [] = reverse (reverse xs ++ [x])
— applying reverse — distributivity on (reverse xs) [x]
_ [] = reverse [x] ++ reverse (reverse Xxs)
QED — 1nvolution on xs

= reverse [x] ++ XS
— singleton on Xx
[X] ++ XS
— applylng ++
x:([] ++ xs)
— applylng ++
(Xx:xs)
QED

Step 1: Define a recursive function!

Theorem: For any list X, reverse (reverse x) = X.
Proof.

involutionP [] involutionP (x:xs)
- reverse (reverse []) = reverse (reverse (X:Xs))
— applying inner reverse - applying inner reverse
- reverse [] = reverse (reverse xs ++ [x])
— applying reverse — distributivity on (reverse xs) [x]
_ [] = reverse [x] ++ reverse (reverse Xxs)
QED — 1nvolution on xs

= reverse [x] ++ XS
— singleton on Xx
[X] ++ XS
— applylng ++
x:([] ++ xs)
— applylng ++
(Xx:xs)
QED

S el 2D EEn equshiungiveferattes !

Theorem: For any list X, reverse (reverse x) = X.
Proof.

involutionP [] itnvolutionP (Xx:xs)
——. reverse (reverse []) ==. reverse (reverse (X:Xs))

— applying inner reverse - applying inner reverse
——. reverse [] ==. reverse (reverse xs ++ [x])

— applying reverse — distributivity on (reverse xs) [x]
——. [] ==. reverse [x] ++ reverse (reverse Xxs)
x*x% QED — 1nvolution on xs

==. reverse [x] ++ Xs
— singleton on Xx
==. [x] ++ XS
— applylng ++
==. X:([] ++ xs)
— applylng ++
==, (X:XS)
¥x* (OED

Stehe B 2k éTnersiiasdirerfainchenm Gantss |

Theorem: For any list X, reverse (reverse x) = X.
Proof.

involutionP [] itnvolutionP (Xx:xs)
——. reverse (reverse []) ==. reverse (reverse (X:Xs))

— applying inner reverse - applying inner reverse
——. reverse [] ==. reverse (reverse xs ++ [x])

— applying reverse ? distributivityP (reverse xs) [x]
——. [] ==. reverse [x] ++ reverse (reverse Xxs)
x*x% QED ? 1nvolutionP xs

==. reverse [x] ++ Xs
? singletonP x

==. [x] ++ XS
— applylng ++

==. X:([] ++ xs)
— applylng ++

==, (X:XS)

¥x* (OED

Step 3: Lemmata are function calls!

Theorem: For any list X, reverse (reverse x) = X.

Proof.

involutionP []
==. reverse (reverse [])
— applylng inner reverse
==. reverse []
— applylng reverse
==. []

involutionP (x:xs)
==, reverse (reverse (Xx:Xs))
— applylng inner reverse
==. reverse (reverse xs ++ [x])
? distributivityP (reverse xs) [x]

—=_ reverse [x everse (reverse xs)
? 1nvolutionP xs

==. reverse [x] ++ Xs
? singletonP x

==. [x] ++ XS
— applylng ++

==. X:([] ++ xs)
— applylng ++

==, (X:XS)

¥x* (OED

Note: Inductive hypothesis is recursive call!

Theorem: For any list X, reverse (reverse x) = X.

Proof.

involutionP []
==. reverse (reverse [])
— applylng inner reverse
==. reverse []
— applylng reverse
==. []
%k %k %k QED

involutionP (x:xs)
==, reverse (reverse (Xx:Xs))
— applylng inner reverse
==. reverse (reverse xs ++ [x])
? distributivityP (reverse xs) [x]

—=_ reverse [x everse (reverse xs)
? 1nvolutionP xs

==. reverse [x] ++ Xs
? singletonP x

==. [x] ++ Xs
— applying ++

==. X:([] ++ xs)
— applying ++

==, (X:XS)

% 3k 3k QED

Question: Is the proof well founded?

A LiquidHaskell

Used to encode pen-and-pencil proofs
and function optimizations.

“Theorem Proving for All”, Haskell’1l8
https://bit.ly/2yjvJo3

https://bit.ly/2yjvJo3

X LiquidHaskell

Used to encode pen-and-pencil proofs
or even sophisticated security proofs.

“LWeb: Information Flow Security for
Multi-Tier Web Applications”, POPL’19

https://bit.ly/2EcyDAR

https://bit.ly/2EcyDAh

A LiquidHaskell

Used to encode pen-and-pencil proofs
Oor encode resource analysis.

“Liquidate your assets”
https://bit.ly/2Ht3ulG

To be presented at IMDEA:
by Martin Handley
Tue March 19 @10.45

https://bit.ly/2Ht3uIG

A LiquidHaskell

Used to encode pen-and-pencil proofs

But, proof interaction is missing.

X LiquidHaskell

Theorem Proving for All

I. Static Checks: Fast & Safe Code
II. Application: Speed up Parsing

III. Expressiveness: Theorem Proving

Y enikivazou

