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AI, ML, and Brain-Like
• Artificial Intelligence (AI): The science and engineering of creating 

intelligent machines. (John McCarthy, 1956)
• Machine Learning (ML): Field of study that gives computers the 

ability to learn without being explicitly programmed. (Arthur 
Samuel, 1959); requires large data sets
• Brain-Like: A machine that its operation and design are 

strongly inspired by how the human brain functions.
• Neural Networks
• Deep Learning: many layers used for data processing

• Spiking



Major Technologies Impacted 
by Machine Learning
• Data Centers

• Heterogenous 
• Power
• Thermal
• Machine Learning

• Autonomous Vehicles
• Reliability
• Cost
• Safety
• Machine Learning



Global Market Impact of AI

• The global market for memory and processing semiconductors used in 
artificial intelligence (AI) applications will soar to $128.9 billion in 
2025, three times the $42.8 billion total in 2019, according to IHS. 
• The AI hardware market will expand at a comparable rate, hitting 

$68.5 billion by the mid-2020s, IHS said.



Intuition vs. Computation
• “A self-driving car powered by one of the more popular 
artificial intelligence techniques may need to crash into 
a tree 50,000 times in virtual simulations before 
learning that it’s a bad idea. But baby wild goats
scrambling around on incredibly steep mountainsides do 
not have the luxury of living and dying millions of 
times before learning how to climb with sure footing 
without falling to their deaths.”

• “Will the Future of AI Learning Depend More on Nature or Nurture?”  IEEE Spectrum, October 2017



Data Quality Impacts ML Performance

• Garbage-in Garbage-out
• Data must be correct and properly labeled
• Data must be the “right” one;  unbiased over the input 
dynamic range

• Data is training a predictive model, and must meet 
certain requirements



Fun Facts about Your Brain
• 1.3 Kg neural tissue that consumes 20% of your body metabolism
• A supercomputer running at 20 Ws, instead of 20 MW for exascale
• Computation and storage is done together locally
• Network of 100 Billion neurons and 100 Trillion synapses 

(connections)
• Neurons accumulate charge like a capacitor (analog), but brain also uses 

spikes for communication (digital); brain is mixed signal computing
• There is no centralized clock for processing synchronization
• Simulating the brain is very time consuming and energy inefficient
• Direct implementation in electronics is more plausible:

• 10 femtojules for brain; CMOS gate 0.5 femtojules; synaptic transmission = 20 
transistors

• PIM is closer to the neuron; coexistence of data and computing 



Modeling Biological Neurons



Deep Learning Limitation and Advantages

• Better than K-means, liner regression, and others, 
because it does not require data scientists to identify 
the features in the data they want to model.

• Related features are identified by the deep learning 
model itself. 

• Deep learning is excellent for language translation but 
not good at the meaning of the translation.



Training and Inference

• Learning Step: Weights are produced by training, initially random, 
using successive approximation that includes backpropagation with 
gradient descent.  Mostly floating-point operations.  Time consuming.
• Inference Step: Recognition and classifications.  More frequently 

invoked step. Fixed point operation.
• Both steps are many dense matrix vector operations



ML Computation is Mostly Matrix Multiplications 

• M by N matrix of weights multiplied by N by 1 vector of inputs
• Need an activation function after this matrix operation: Rectifier, Sigmoid, 

and etc.
• Matrices are dense



Biological Neurons are not Multiplying and 
Adding
• We can model them by performing multiply and add operations
• Efficient direct implementation is not impossible but still far away
• Computer architecture in terms of development of accelerators and 

approximate computation are some of the current solutions
• We are far below in capability what neurons can do in terms of 

connectivity and the number of active neurons
• VLSI scaling is a limiting factor
• Computing with an accelerators is making a come back 



• Moore’s law:
• Doubling of the number of transistors 

every about 18 months is slowing down.
• Dennard’s law:

• Transistors shrink =>
• L, W are reduced.
• Delay is reduced (T=RC), frequency 

increased (1/f).
• I & V reduced since they are proportional to 

L, W.
• Power consumption  (P = C * V2* f) stays 

the same is no longer valid. 

VLSI Laws are not Scaling Anymore



Computer Architecture is Making a Come 
Back
• Past success stories:

• Clock speed
• Instruction Level Parallelism (ILP); spatial and temporal; branch prediction 
• Memory hierarchy; cache optimizations
• Multicores
• Reconfigurable computing

• Current efforts: TPU-1
• Accelerators; domain specific ASICs
• Exotic memories; STT-RAM, RRAM
• In memory processing
• Systolic resurrected; non-von Neuman memory access
• ML is not just algorithms; HW/SW innovations                



Computation 
Variety
• Graphics

• Vertex Processing; floating point; 
• Pixel processing and rasterization; 

integer

• ML
• Training; floating point
• Inference; integer



Coarse Grain Reconfigurable



The fundamental elements of neural network’s computation are 

multiply-and-accumulation (MAC) operations which can be easily 

parallelized. 



Convolution alone accounts for more than 90% of CNNs’ computations.



High dimensional convolutions
in convolutional neural network

2-D convolution in
traditional image processing
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v A common machine learning algorithm or deep neural networks (DNNs) have two phases:

Weight updating

Training phase

• Training phase in neural networks is a one-time process based on two main functions: feedforward and 
back-propagation. The network goes through all instances of the training set and iteratively update the 
weights. At the end, this procedure yields a trained model.



• Inference phase uses the learned model to classify new data samples. In this phase 
only feed-forward path is performed on input data.

Max poolingconvolution

Fully connected 
layers

⋯

Bird

Dog

Butter
fly

cat

⋯

𝑃!

𝑃"

𝑃#

𝑃$

Classification



The accuracy of CNN models have been increased at the price of high computational cost, because in 
these networks, there are a huge number of parameters and computational operations (MACs).

In AlexNet:  !"#$ %"&'(")*(,-.)
!"#$ %"&'(")* ,-. 01. %"&'(")*(,-.)

= 222,
222,034.2,

×100 = 91%



• CPUs have a few but complex cores. They are fast on 
sequential processing.

• CPUs are good at fetching small amount of data quickly, 
but they are not suitable for big chunk of data.

Deep learning involves lots of matrix multiplications and 
convolutions, so it would take a long time to apply 
sequential computational approach on them.

We need to utilize architectures with high data bandwidth 
which can takes advantage of parallelism in DNNs. 

Thus the trend is toward other three devices rather than 
CPUs to accelerate the training and inferencing.

CPU



GPUs are designed for high parallel computations. They 
contain hundreds of cores that can handle many 
threads simultaneously. These threads execute in SIMD 
manner.

They have high memory bandwidth, and they can fetch 
a large amount of data.

They can fetch high dimensional matrices in 
DNNs and perform the calculations in parallel.

Designed for low-latency 
operation:

• Large caches
• Sophisticated control
• Powerful ALUs

Designed for high-
throughput:

• Small caches
• Simple control
• Energy efficient ALUs
• Latencies 

compensated by 
large number of 
threads



v FPGA are more power-efficient than GPUs. GPUs’ computing resources are more complicated than FPGAs’ to 
facilitate software programming. (programming a GPU is usually easier than developing a FPGA accelerator)

v According to flexibility of FPGAs, they can support various data type like binary or ternary data type.

v Datapath in GPUs is SIMD while in FPGA user can configure a specific data path.

Field Programmable Gate Arrays (FPGAs) are semiconductor devices 
consist of configurable logic blocks connected via programmable 
interconnects. Because of their high energy-efficiency, computing 
capabilities and reconfigurability they are becoming the platform of 
choice for DNNs accelerators.

GPU vs. FPGA :



• GPUs and FPGAs perform better than CPUs for DNNs’ applications, but more efficiency can still be gained via an 
Application-Specific Integrated Circuit (ASIC).

• ASICs are the least flexible but the most high-performance options. They can be designed for either training or 
inference.

• They are most efficient in terms of performance/dollar and performance/watt but require huge investment costs 
that make them cost-effective only in very high-volume designs.

• The first generation of Google’s Tensor Processing Unit (TPU) is a machine learning device which focuses on 8-bit 
integers for inference workloads. Tensor computations in TPU take advantage of  systolic array.

Tensor Processing Unit (TPU) CPU, GPU and TPU performance on six reference workloads



The principal for systolic array:

• Idea: Data flows from the computer memory, passing through many processing elements before it 
returns to memory.
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SRAM on chipHigh bandwidth memory on interposerDDR4 modules

320pJ/B

256GB @ 64GB/s

20W

64pJ/B
16GB @ 900GB/s

60W

1pJ/B
1000×256kB @60TB/s

60W

10pJ/B
256MB @ 6TB/s

60W

Memory power density is ~25% of logic power 
density

We need to feed these floating-point units from memory, and we have four choices for the memory architecture.



Memory Access is Energy Hog



• If we unroll a loop in a convolutional layer, we can accelerate the execution time at the expense of resource 
utilization (PEs).

For (int i=0; i<N; i+=2){
a[i]=b[i]+c[i];
a[i+1]=b[i+1]+c[i+1];

}

Unrolled factor =2
Latency= N/2 cycles (N/2 

iterations)

With loop unrollingWithout loop unrolling

For (int i=0; i<N; i++){
a[i]=b[i]+c[i];

}

Latency= N cycles (N iterations)

• loop tiling is used to divide the input data into multiple blocks, which can be accommodated in the on-chip 
buffers. It exploits the data locality which results in reducing DRAM accesses, latency and power consumption.

• Loop unrolling exploit parallelism 
between loop iterations by 
utilizing FPGA resources. (multiple 
iteration can be executed 
simultaneously)



Original matrix multiplication:

Input matrix A Input matrix B Output matrix C

…

…

…

⋱⋮ ⋮ ⋮

…

…

…

⋱⋮ ⋮ ⋮

…

…

…

⋱⋮ ⋮ ⋮

Tiled Matrix Multiplication:



C = A . B

int i, j, k;

for (i = 0; i < N; ++i)
{

for (j = 0; j < N; ++j)
{

C[i][j] = 0;

for (k = 0; k < N; ++k)
C[i][j] += A[i][k] * B[k][j];

}
}

for (i = 0; i < N; i += 2)
{

for (j = 0; j < N; j += 2)
{

acc00 = acc01 = acc10 = acc11 = 0;
for (k = 0; k < N; k++)
{

acc00 += B[k][j + 0] * A[i + 0][k];
acc01 += B[k][j + 1] * A[i + 0][k];
acc10 += B[k][j + 0] * A[i + 1][k];
acc11 += B[k][j + 1] * A[i + 1][k];

}
C[i + 0][j + 0] = acc00;
C[i + 0][j + 1] = acc01;
C[i + 1][j + 0] = acc10;
C[i + 1][j + 1] = acc11;

}
}

With tiling

Without tiling



• How can we have energy efficient device?

• DNNs have lots of parameters and MAC operations. The parameters

have to be stored in external memory (DRAM).

• Each MAC operation requires three memory accesses to be performed.

• DRAM accesses require up to several orders of magnitude higher energy

consumption than MAC computation.

• Thus, If all accesses go to the DRAM, the latency and energy

consumption of the data transfer may exceed the computation itself.

energy cost of data movement in different level of
memory hierarchy.



1.Convolutional reuse:

The same input feature map activations 

and filter weights are used within a given 

channel, just in different combinations 

for different weighted sums.

v To reduce energy consumption of data movement, every time a piece of data is moved from 
an expensive level to a lower cost memory level , the system should reuse the data as much as 
possible.

v In convolutional neural network, we can consider three forms of data reuse:

Reuse: ) 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝐹𝑖𝑙𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑠



2.Feature map reuse
When multiple filters are applied to the 

same feature map, the input feature map 

activations are used multiple times across 

filters.

3.Filter reuse
When the same filter weights are used multiple times across input 
features maps. 

Multiple input frames/images can be simultaneously processed.

Reuse: 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠

Reuse: 𝐹𝑖𝑙𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑠



• There are various related works in the literature that take advantage of different data reuse and dataflow approaches.

Weight Stationary dataflow (WS):
• The main idea is to minimize the energy consumption of 

reading weights.
• The weights store in register file, input pixels and partial sum 

move through network.

Output Stationary (OS):
• It keeps the partial sum locally in PE register file and access 

input pixels and weights through global buffer.
• For every partial sum, we need two memory accesses (R/W).

No Local Reuse (NLR): 
Instead of register file it uses a large global buffer, so it 
does not keep data locally in RF and access them 
through global buffer. 



Row stationary data flow:
• Row stationary dataflow maximizes the reuse and accumulation at the RF level for all types of data for the 

overall energy efficiency.
• It keeps a row of filter weights stationary inside the RF of a PE and then streams the input activations into the PE. 

Since  there are overlaps of input activations between different sliding windows the input activations can then 
be kept in the RF and get reused.



Energy consumption across memory hierarchy Energy comparison for different data types



v Compression methods try to reduce the number of weights or reduce the number of  bits used for 
each activation or weight. This technique lowers down the computation and storage requirements.

Quantization Quantization or reduced precision approach allocates the smaller number of bits for 
representing weight and activations.

Ø Uniformed quantization:
It uses a mapping function with uniform 
distance between each quantization level.

Ø Nonuniformed quantization: The distribution of the weights and 
activations are not uniform so nonuniform quantization, where the 
spacing between the quantization levels vary, can improve accuracy in 
comparison to uniformed quantization.

1. Log domain quantization : 
quantization levels are 
assigned based on logarithmic 
distribution.

2. Learned quantization or 
weight sharing



Ø Learned quantization or weight sharing: weight sharing forces several weights to share a single 
value so it will reduce the number of unique weights that we need to store. Weights can be 
grouped together using a k-means algorithm, and  one value assigned to each group.

2.09

0.05

-0.91

1.87

-0.98

-0.14

1.92

0

1.48

-1.08

0

1.53

0.09

2.12

-1.03

1.49

0.00

2.00

1.50

-1.000:

1:

2:

3:

weights (32-bit float) cluster index (2-bit float)

0

3

1

3

3

0

1

1

1

2

0

2

0

1

3

2

clustering

Bitwidth of the group index = 𝑙𝑜𝑔" (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
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What is neural network pruning?

Procedure of pruning

Consider a network 
and train it

Prune Connections

Train the remaining 
weights 

Synapses and neurons before and after pruning

v Pruning algorithms reduce the size of the neural networks by removing unnecessary weights and activations.
v It can make neural network more power and memory efficient, and faster at inference with minimum loss in accuracy.

It gives smaller model without losing accuracy

Repeat this 
step iteratively



Comparing l1 and l2 regularization with and without retraining.

Network pruning can reduce parameters without drop in 
performance.



Pruning and Trained Quantization



• Positron Emission Tomography (PET) is an emerging imaging technology that can
reveal metabolic activities of a tissue or an organ. Unlike other imaging technologies
like CT and MRI that capture anatomical changes. PET scans detect biochemical and
physiological changes.

• PET has a wide range of clinical applications, such as cancer diagnosis, tumor detection
and early diagnosis of neuro diseases.

PET Images 

3D PET Image from ADNI dataset,  (a) standard dose (b) low dose

(a) (b)



PET  Denoising

• The noise in PET images is caused by the low coincident photon counts detected
during a given scan time and various physical degradation factors.

• In order to acquire high quality PET image for diagnostic purpose, a standard dose
of radioactive tracer should be injected to the subject which will lead to higher risk
of radiation exposure damage. So, to address this problem, many DL algorithms
and networks were proposed to improve the image quality.

• Some of the denoising conventional methods like Gaussian filter smooths out
important image structures during the denoising process.



• Supervised: Machine learning methods utilize paired low-dose and standard-dose images to train
models that can predicts standard-dose images from low-dose inputs.

• Unsupervised: DNNs can learn intrinsic structures from corrupted images without pre-training.
No prior training pairs are needed, and random noise can be employed as the network input to generate
clean images.

• Deep Image Prior (DIP): This is an unsupervised learning approach, which has no
requirement for large data sets and high-quality label images. The original DIP approach learns using a
single pair of random-noise input and noisy image.

PET Denoising Methods



Denoising Autoencoder

§ One of the important denoising architecture is autoencoder. Autoencoders are Neural
Networks which are commonly used for feature selection and extraction. It has two
steps: encode for extracting most important image features and decoder for
constructing denoised image based on those features.



Simulation Results
Results of applying denoising autoencoder to PET images.



PET Classification

PET imaging together with Convolutional Neural Networks helps in the early detection and
automated classification of Alzheimer’s disease.

PET scans from two representative subjects: 
a) normal subject, and 
b) AD subject.



Academia Plays a Key Role to Address AI 

• Revisit degree required courses, not just offering AI related electives 
• Introduce specializations in AI for undergraduates.  A sequence of 

courses that cover all subject areas: relevant mathematics, hardware 
techniques, tools and modeling environments, and capstone projects in 
collaboration with local industry.
• At the research and graduate studies level establish centers focused on 

specific topics of AI research:
• Medical Imaging 
• Tools and modeling of low power high performance AI platforms
• AI broad domain project development ( social sciences, humanities, Arts, etc.)



Conclusions
• New applications related to Machine Learning are having a major 

impact on the design of future computer systems
• Industry is heavily invested in ALL aspects of ML, prominently in 

medical applications.  MSF acquired Nuance ($20B)
• Universities have integrated ML into curriculum and continue do so; 

including specializations in ML
• It is a very crowded field with many players: startups, major 

corporations, government agencies, and academia.
• Government agencies are actively seeking ideas beyond Deep 

Neural Networks, such as the DARPA Next AI initiative.
• QC is following ML but has far more challenges and as yet to make 

it to the main stream, but that is potential next horizon for novel and 
exotic computing that is totally different from classical computers 
based on binary switches 


