////////

The Smart Contre)} ‘

Analysis of Smart
CERTORA ﬁg@

Accurate Static
Contracts

”MOOLY SAGIV

X7\
A /

And also..

Noam Rinetzky

000

TELAVIV NO'01IN
UNIVERSITY 2IN'TN

James Wilcox

W

UNIVERSITY of
WASHINGTON

Ittai Abraham

Guy Golan-Gueta

3R vmware

Yan Michalevsky
I

{

Yoni Zohar

Marcelo Taube

' CERTORA

CERTORA

Pain Point: Buggy & Untrusted Software Components

e Software is Eating the World

» Software applications are built of numerous disparate sources
* unknown
* untrusted
 constantly evolving

Correctness of code = safety, money, human life, ...

Even worse in blockchain
* Immutability: code is law
* Cryptocurrency: code is money

BN cErTORA

The Business C

* Problem: Automated financial contracts
* Bugs in contracts = money lost to adversaries for ever

* Pain: Very hard to find bugs in the contracts
* Lots of examples where people have lost large amounts of money
e Customers are willing to >= 6 figures for solutions

e Solution: Automatic Verification
 Find bugs, or prove the absence of bugs (one or the other!)

* Key enabler: higher level specifications that can be checked
* Developers are willing to do most of the work, for reward

e Standards ERC20, ERC721

EN CERTORA

Certora’s Mission

* Develop a library of reusable Vnggipcg:tion
correctness rules

e Community effort w7
+Code-isthelaw—> Specis the law

 No overdraft

Smart Contract

* If no transaction is executed then no cost

* No radical currency changes

Test cases

* Develop unique static analysis of code

l' CERTORA

Business Snaps

* Top-tier paying customers:
* Compound Finance

“We installed Certora's technology and it is used daily by our software engineers
to locate mind blowing bugs”
Geoff Hayes

CTO of Compound Finance
e Coinbase

“The Certora ASA surfaces problems before a contract is available on our platforms, to help
us better inform our customers of risk. The ASA has already surfaced significant problems
missed by expensive and unscalable manual audits."

Shamiq Islam

Head of Security at Coinbase Global

* |nvestors
 Scott Shenker, repeat unicorn founder (Nicira, Databricks, Nefali)
* Coinbase

EN CERTORA

Toy ERC20 toker

contract toyERC20 {
mapping (address => uint) balances;
constructor(address bank, uint initial amount) {

balances[bank] = initial amount;
}
function transfer(address to, uint amount) {

uint updatedFrom;

uint updatedTo;

address from = msg.sender;

if (balances[from] >= amount) {
updatedFrom = balances[from] - amount;

updatedTo = balances[to] + amount;
} else { revert(); }
balances[from] = updatedFrom;
balances[to] = updatedTo;

}

invariant 2. _44ressPalances[a]

l' CERTORA

Toy ERC20 toke

revert

from=msg.sender Alice

balances[from]>=
amount

to=Alice

True

!

updatedFrom=balances[from]-amount

v

updatedTo=balances[to]+amount

balances[from]=updatedFrom

v

balances[to]=updatedTo

invariant X

a: address

balances[a]

Alice

Bob

CERTORA
Il

Fixed Toy ERC20 toker

contract toyERC20 {
mapping (address => uint) balances;
constructor(address bank, uint initial amount)

balances[bank] = initial amount;
}
function transfer(address to, uint amount) {
uint updatedFrom;
uint updatedTo;
address from = msg.sender;
require from != to ;
if (balances[from] >= amount) {
updatedFrom = balances[from]-amount;
updatedTo = balances[to] + amount;
} else { revert(); }
balances[from] = updatedFrom;
balances[to] = updatedTo;

invariant X balances[a]

a: address

BN cErTORA

Reentrancy attack

& (&)

Reentrancy attacks

DAO_withdraw(to) {

if (shares[to] > @) {
to.send(shares[to0]);
shares[to] = 0 ;
}

}

11

LIOAR
DAO(x) .withdraw(me)

}

' CERTORA

Immune Reentrancy attacks(Atomicity)

DAO_withdraw(to) {
if (shares[to] > @) {
to.send(shares[to0]);
shares[to] = 0 ;
}
))
}

DAO_withdraw(to) {
if (shares[to] > @) {
shares[to] = 0 ;
to.send(shares[to]);

12 ' CERTORA

Atomicity[POPL'18

e Contracts that are vulnerable to reentrancy attacks are dangerous to use

e Sensitive to changes in the EVM
* Constantinople fork postponement

* Most precise method

e Guarantee atomicity in presence of callbacks

13

BN cErTORA

Math is the law

Geoff Hayes | CTO Al Compound

e Goal: enable human mitigation of money theft

* Requirement: Price changes must be less than 10% every hour

(err, onePlusMaxSwing) = addExp(one, maxSwing):;
if (err != Error.NO ERROR} {
return (err, false, Exp({mantissa : 0}));

}

// max = anchorPrice * (1 + maxSwing)
(err, max) = mulExp(anchorPrice, onePlusMaxSwing);
if (err != Error.NO_ERRCR) {

return (err, false, Exp({mantissa : 0}));

}

// If price > anchorPrice * (1 + maxSwing)
// Set price = anchorPrice * (1 + maxSwing)
if (greaterThanExp (price, max)) {

return (Error.NO ERROR, true, max);

}

29. Jan 26. Mar 7. May 18. Jun 30. Jul 10. Sep 22, Oct 3. Dec 14. Jan

(err, oneMinusMaxSwing) = subExp(one, maxSwing);
if (err != Error.NO_ERRCR) {
return (err, false, Exp({mantissa : 0}));

}

// min = anchorPrice * (1 - maxSwing)

(err, min) = mulExp(anchorPrice, oneMinusMaxSwing),;
// We can't overflow here or we would have already overflowec
assert (err == Error.NO_ERROR) ;

// If price < anchorPrice * (1 - maxSwing)
// Set price = anchorPrice * (1 - maxSwing)
if (lessThanExp(price, min)) {

return (Error.NO _ERROR, true, min);

}

Mar "17 May 17 Jul 17 Sep'17 Nov'l7 Jan'18 Mar'18 May'18 Jul"18 Sep'18 Nov '18 Jan'19 FOP all tl,tz- |t2't1| < 1 hOUP, |p2'p1| < @.lpl

CERTORA

ASA via Constraint Solving

Code

&

[Z3] Microsoft Research, [CVC4] Stanford University, [Yices] Stanford Research Institude SMT*

15 . CERTORA

ASA via Constraint Solving

False True

16

X:=0 X:=1
False True
y:=0 y:=1

. CERTORA

PLDI

Philadelphia 2018

Modularity for decidability
of deductive verification with
applications to distributed systems

A

Mooly Sagiv

RO

A

L

], = g 0

e
Ta g TEL AUIV
Hte UNIUERSITY

Eurcgmear Rewearch Counai

Contributors

Marcelo Taube, Giuliano Losa, Kenneth McMillan, Oded Padon, Sharon Shoham

Al

http://microsoft.github.io/ivy/
B Microsoft

TEL AUIV
Bl Research UNIUERSITY UNIUERSITY

TeL AVIV
UNIVERSITY

James R. Wilcox, Doug Woos

UNIVERSITY of
WASHINGTON

http://microsoft.github.io/ivy/

And Also

Anindya Benerjee Yotam Feldman Neil Immerman Aurojit Panda

nstitute

SREHE Berkeley
S thwa re UNIVERSITY OF CALIFORNIA
Shachar Itzhaky Aleks Nanevsky Orr Tamir Robbert van Renesse
> ’ U 3 RS “

TeL AVIV
UNIVERSITY

19

software

Y

Why verity distributed protocols?

 Distributed systems are everywhere
 Safety-critical systems
* Cloud infrastructure

* Blockchain

 Distributed systems are notoriously hard to get right
* Even small protocols can be tricky
* Bugs occur on rare scenarios

 Testing is costly and not sufficient

Why verity distributed protocols?

e Distributed systems are everywhere
 Safety-critical systems
* Cloud infrastructure

e Blockchain

 Distributed systems are notoriously hard to get right

' e ' Using Lj - CCR'12
SIGCOMM’01 g Lightwej ,
Chord: A Scalable Peer-to-Ptf_f 9ht Modeling 15 |,

for Internet Appl’ -
. David Liben-Nowell, David R. Kar F‘j‘;g oraiﬁefi‘gis
fon Stoica, Robert MorTS. Har: Balakrishnan, Memb: 1de pamegéar';'sﬁi Jersey U
T the same rch.att.com

. [05} ¢

-d 1 1 0S¢

res of Chord include 14}, StCon s
provable performanc nott one of

.. ac

1s and departut€ g

Attractive featu

correctness. and _
current node arriva

con

Ramakris

nzo
na Kotla, Lore

-t Cl
RISk g Compute

University of

‘actical Byzantine ault Ty
Ittaj Abrah

lerance

am, Guy Gueta, D,
VMw.

are Resea,rch

hlia Malkhj

with:
Lorenz Alvisi (C’omell),
ama Kot (An

l1azon),
-Philippe Martin (Verily)

Jean
We now Proceed tq dmnonstmte that the View-
‘Mechanjsy, i, Zyzzyva does not guarantee safpt

change
Y.

I
orrectness o e low level implementation?
t correctness of the | |v||p
What abou

Decidab

|_

e Reasoning for Verification:
ow Far Can You EPR?

Oded Padon
PhD Thesis
http://www.cs.tau.ac.il/~odedp

http://microsoft.github.io/ivy/

23

http://www.cs.tau.ac.il/~msagiv/odedp
http://microsoft.github.io/ivy/

Deductive Verification in First-Order Logic
[CAV’13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, MS:

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
lvy: Safety Verification by Interactive Generalization

[POPL'16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[OOPSLA’17] Oded Padon, Giuliano Losa, MS, Sharon Shoham
Paxos made EPR: Decidable Reasoning about Distributed Protocols

[POPL'18] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, MS, Sharon Shoham
Reducing liveness to safety in first-order logic. PACMPL 2(POPL): 26:1-26:33 (2018)

[PLDI’18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, MS, Sharon Shoham, James R.
Wilcox, Doug Woos: Modularity for Decidability of Deductive Verification with Applications to Distributed
Systems

[FMCAD’18] Oded Padon, Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, MS, Sharon Shoham:

Temporal Prophecy for Proving Temporal Properties of Infinite-State Systems. FMCAD 2018: 1-11

Automatic verification of infinite-state systems

@ Property ¢

Verification
Is there a behavior
of S that violates ¢?

l l

Counterexample Proof

([I1

Nalve period In

orogram verification 70’s

ROBERT W. FLOYD N . A
An Axiomatic Basis for

ASSIGNING MEANINGS TO PROGRAMS! Computer Programming Programming T.A. Standish
Languages Editor
INTRODUCTION C. A R. Hoars Guarded Commands,
The Queen’s University of Belfast,* Northern Ireland .
This paper attempts to provide an adequate basis for formal definitions 4 NOIldeteI' HllI’laCY aﬂd
of the meanings of programs in appropriately defined programming ” 1
languages, in such a way that a rigorous ?taﬂdafd is established for In this paper an attempt is made to explore the logical founda- Formal Derlvatlon
proofs about computer programs, including proofs of correctness, tions of computer programming by use of techniques which Of Programs
equivalence, and termination. The basis of our approach is the notion were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in- Edsger W. Dijkstra

Burroughs Corporation

“Program testing can be used to show the presence of bugs, but never to show their absence!” Dijkstra (1970)

Disillusionment in program verification 80’s

Property o

Rice’s Theorem =>»

Verification
Is there a behavior
hat violates @?

l

Counterexample Unknown

[POPL'78, CACM’79] R.A. DeMillo, R.J. Lipton, A. J. Perlis:
Social Processes and Proofs of Theorems and Programs

Challenges in program verification

 Specifying program behavior

e Asymptotic complexity of program verification
* The halting problem

* Rice theorem
* The ability of simple programs to represent complex behaviors

* The complexity of realistic systems

* Huge code
* Heterogeneous code
* Missing code

EX CERTORA

Mathematical Induction

* P(n) is a property of natural number n

* To show that P(n) holds for every n, it suffices
to show that:
— P(0) is true

— If P(m) is true then P(m+1) is true for every
number m

* |n logic
— (P(0) AVm eN. P(m)= P(m+1)) =
vn eN. P(n)

P(0) P(m) P(m+1)

0 m m+l

Induction on a ball game

* Four players pass a ball:

—A will passto C ®
—B will pasto D
—Cwill passto A

—D will passto B
* The ball starts at player A
* Can the ball get to D?

Induction on a ball game

* Four players pass a ball:

—A will passto C
—B will pasto D
—Cwill passto A @

—D will passto B
* The ball starts at player A
* Can the ball get to D?

Formalizing with induction

* xy =4
(r _
Cif x,=A4
. X =4 Difx, =B
UV Aifx, =C
\B ifx, =D
* Prove by induction Vn.x,, # D
—Xg+D 7?

Formalizing with induction

(CifxnzA
_)Difx, =B
anrl_<Aifxn=C

* Prove a stronger claim by inductionVn.x,, # BAx,, # D

— Xg #FBAxg#D
— Xy FBAXy, D > xXp01 FBAXp1 FD

Inductive Invariants

Transition System

. Bad

Initial

The program is safe if all the reachable states satisfy the property
The program is safe with respect Bad iff there exists an

inductive invariant Inv satisfying:

Inv "Bad = &(Safety) Bad = —Safety
Init < Inv (Initiation)
If o elnvand o T o’then o’ € Inv (Consecution)

Deductive verification

Property ¢

Deductive Verification
Is Inv an inductive invariant for P that proves ¢ ?
—> Are the logical verification conditions valid ?

1 l l

Counter-model Proof

Simple Example: inductive Invariants
odd[x]

whlle * do {
3: assert odd[x];
4. X:=X+Y,
5.y =y+2

}
6:

Simple Example: inductive Invariants
Inv = odd[x] A=odd[y]

1: x:=1;

2.y = 2;

while * do {
3: assert odd[x];
4. X:=X+Y,
5.y =y+2

ap €U
g@@;
<> :

(@)
(04
Q,
: > ke
6:

Dafny [Leino’17]

Deductive Verification
Is Inv an inductive invariant for S that proves ¢ ?
—> Are the logical verification conditions valid ?

/GMT Formula

\ UNSAT
?

K. Rustan M. Leino: Accessible Software Verification with Dafny. IEEE Software 34(6): 94-97 (2017)

Deductive verification

Deductive Verification
Is Inv an inductive invariant for S that proves ¢ ?
—> Are the logical verification conditions valid ?

1 v l

Counter-model Unknown / Diverge Proof

=)

_—-,

: —\
D 7

Effects of undecidahility(SMT)

e

opiht: Michael Hanke

Challenges in deductive verification

1. Formal specification: formalizing infinite-state systems and their properties

2. Deduction: checking inductiveness

— Undecidability of implication checking

* Unbounded state (threads, messages), arithmetic, quantifier alternation
3. Inference: finding inductive invariants (Inv)
— Hard to specify
— Hard to maintain

— Hard to infer

e Undecidable even when deduction is decidable

Expressiveness

State of the art in formal verification

Proof Assistants

Ultimately limited by human

proof/code:
Verdi: ~10

IronFleet: ~4 IVy

Decidable deduction
Finite counterexamples
proof/code: ~0.2

Ultimately limited by undecidability

Decidable Models
Model Checking
Static Analysis

Automation

Effectively Propositional Logic — EPR
a.k.a. Bernays-Schonfinkel-Ramsey class

* Limited fragment of first-order logic without theories
* No function symbols
* Restricted quantifier prefix: 3"V ¢
* No V-

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

EPR Satisfiability

m =gaT VZ.7(c1,2) ©1(2,03)
3 =sar (r(cy,¢) © 1(c1,€)) A (r(ey,) © 1z, ¢2)

=sat (P11 © P12) A (P12 © D22)

Ax,y.Vz. 7(x,z) © r(z,y)

Effectively Propositional Logic — EPR
a.k.a. Bernays-Schonfinkel-Ramsey class

* Limited fragment of first-order logic without theories
* No function symbols
* Restricted quantifier prefix: 3"V ¢

* Finite model property
* A formula is satisfiable iff it has a model of size:
constant symbols + # existential variables
* Complexity:
* NEXPTIME-complete
- %% if relation arities are bounded by a constant

* NP if quantifier prefix is also bounded by a constant

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

EPR++

 EPR++ allow function and quantifier alternations
*E.g., f:A—> Bwithoutg:B - A
* Maintains small model property of EPR
* Finite complete instantiations

* Transtive closure over deterministic paths
* Set cardinalities

* Avoiding quantifier alternations

* Encoding liveness and LTL [POPL'18]

Key idea: representing deterministic paths
[Shachar ltzhaky PhD, SIGPLAN Dissertation Award 2016]

220N

Alternative 1: maintain n Alternative 2: maintain n”
* n” defined by transitive closure of n * n defined by transitive reduction of n”
* not definable in first-order logic * Unique due to outdegree <1

 Definable in first order logic
n,y)=n"(x,y) Ax #y A
Vz.n*(x,z) > z=yVz=x

h t
Not first order expressible
Nt B
First order expressible

lvy’s principles

 Modularity
— The user breaks the verification system into small problems expressed in decidable logics
— The system explores circular assume/guarantee reasoning to prove correctness

* Inductive invariants and transition systems are expressed in decidable logics
— Turing complete imperative programs over unbounded relations
— Allows quantifiers to reason about unbounded sets

* But no arbitrary quantifier alternations and theories
— Checking inductiveness is decidable
— Display CTls as graphs (similar to Alloy)

Languages and verification

Language Executable Expressiveness Inductiveness

C, Java, Python... Turing-Complete Undecidable

SMV Finite-state Temporal Properties

TLA+ Turing-Complete Manual

Coq, Isabelle/HOL M Expressive Manual with tactics

Dafny M Turing-Complete Undecidable with
lemmas

lvy M Turing-Complete Decidable(EPR)

Example: Leader election in a ring

next
* Unidirectional ring of nodes, unique numeric ids next
* Protocol:
* Each node sends its id to the next next

e Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

A node that receives its own id becomes a leader
f 'u

 Theorem: The protocol selects at most one leader
* Inductive? NO

N

NG,

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

Example: Leader election in a ring

next
* Unidirectional ring of nodes, unigue numeric ids next next
* Protocol:
* Each node sends its id to the next next next
* Upon receiving a message, a node passes it (to the next) if AR,

theic Proposition: This algorithm detects one and only one
e A nochighest number.

Argument: By the circular nature of the configuration
and the consistent direction of messages, any message
must meet all other processes before it comes back to its
initiator. Only one message, that with the highest num-
ber, will not encounter a higher number on its way
around. Thus, the only process getting its own message
back is the one with the highest number.

e Theorem

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

Leader election protocol — first-order logic

* < (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology Axiomatized in first-order logic
id: Node = ID —relate a node to its unique id

pending(ID, Node) — pending messages

leader(Node) — leader(n) means n is the leader

protocol state first-order structure
next
3=p §
next \next
ok thex
6 €= 4
next .-
I <nc, ny, N> € [(btw)

Leader election protocol — first-order logic

< (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology } Axiomatized in first-order logic
id: Node = ID —relate a node to its unique id

pending(ID, Node) — pending messages

leader(Node) — leader(n) means n is the leader

protocol state first-order structure

Specify and verify the protocol for any number of nodes in the ring

v.c;s.QQ...

Leader election protocol — first-order logic

* < (ID, ID) — total order on node id’s

btw (Node, Node, Node) — the ring topology action receive(n: Node, m: ID) = {
id: Node - ID —relate a node to its unique id requires pending(m, n);
if id(n) = m then

// found Lleader

pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

leader(n) := true
else if id(n) < m then
action send(n: Node) = { // pass message
“s := next(n)”; “s := next(n)”;
pending(id(n),s) := true } pending(m, s) := true
}

TR (send):
dn,s: Node. “s = next(n)” A Vx:ID,y:Node. pending'(x,y)< (pending(x,y)V(x=1id(n)Ay=s))

Bad:
assert I0 = V Xx,y: Node. leader(x)sleader(y) » x =y

Representing Sets of States with First Order
-ormulas

e Configurations with at least two leaders
* 3 X,Y: Node. leader(X)aleader(Y) AX# Y

Representing Sets of States with First Order
-ormulas

e Configurations with at least two leaders
« 3 X,Y: Node. leader(X)Aleader(Y) A X = Y

< <
id id id id
a b 0 - e
next e next
>
<

»

<

OESE®

— e
next

Leader election protocol —in

Safety property: I,
I, = VX, y: Node. leader(x) A leader(y) » x =y

ductive invariant

Inductive invariant: Inv = I, AI, AI, AL

I, = Vng,n,: Node. leader(n,) -» id[n;] < id[n,]

The leader has the highest ID

I, = Vng,n,: Node. pending(id[n,],n,) -» id[n;] <

I, =Vns,n,,n;: Node. btw(ng,n,,n;) A pending(id[n

EARBY) A —=Inv(V)

id[n,]

Only the leader can be self-pending

2], Np) 2 Ld[n,]

| can decide EPR!
amtiot bypass higher nodes

Proof

< (ID, ID) — total order o
k

tvcBederited eno (11§ NITERAPIAIOZN —Inv (V')

EPR Solver >

id: Node = ID — relate de kni(dUnaBadd V)
pending(ID, Node) — pending messages
leader(Node) — leader(n) means n is the leader

lvy: check inductiveness

Leader Protocol @v =TI, Al /\D

Check Inductiveness

= > L > < <
pnd —P —P
i id id nd\ 4 ,
: d PN\ Tid d
1 X 2 G 3 rev(l, Id(2)> 1| next 2| next 3|

lvy: check inductiveness

Qader Protocol @= I, AT, /\IZD (Bad = — D

VC Generator

¥

Init(V) A =lnv(V)
ITLU(V) N TR(V, V’) N\ ﬁITlU(V’) | can decide EPR!

Inv(V) A Bad(V)

v

EPR Solver
v
Proof

I, AI; AI, AI; is an inductive invariant for the leader protocol, proving its safety

V™ invariant — excluded substructures

l

substructure

-------- Init € Inv (Initiation)

il if o € Invand o > ¢ then o' € [nv (Consecution)

\:: /nv N Bad = @ (Safety)

Modularity

Original system Original inductive argument

Original property

Separate Verification of each module

Correct

Findgroof

An ADT for pid sets

datatype set(pid) = {
relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)
specification {
procedure empty ensures Vp. —=member(p, s)
procedure add ensures Vp. member(p,r) < (member(p,s) Vp = e)
property [maj] Vs, t. majority(s) Amajority(t) — Ip. member(p,s) A member(p,t)
}
}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj

Implementation of the set ADT

e Standard approach

* Implement operations sets using array representation
member(p, s)= 3i. repr(s)[i] = p
» Define cardinality of sets as a recursive function | |: set 2int
* majority(s)=|s| + |s| > |all|
* Prove lemma by induction on |all|

Vs, t.|s| + |t| > |all] = Ip.member(p,s) A member(p,t)

* The lemma implies property maj

e All the verification conditions are in EPR+++|imited
arithmetic (FAU)

Quantifier alternation cycles

* Protocol state

voters: pid =2 set
* Property maj

Vs, t: set. Ap: pid. majority(s) Amajority(t)=
member(p, s)Amember(p, t) Quantifier

Alternation Cycle

* Solution: Harness modularity
* Create an abstract protocol model that doesn’t use voters

* Prove an invariant using maj, then use this as a lemma to prove the concrete
protocol implementation

Abstract protocol model

relation voted(pid, pid)
relation isleader(pid)
var quorum: set

procedure vote(v : pid, n : pid) = { procedure makg_lgader(n : pid, s : set) ={
require V m. —voted (v, m); require majority(s);
voted(v,n) := true: require Vm. member(m,s) — voted(m, n);
) isleader(n) := true;
quorum :=s;
}
Invariant:
* one leader: vn, m.isleader(n) Aisleader(m) » n =m
e voted is a partial function: Vp,n,m. voted(p,n) A voted(p,m)—->n=m
* |eader has a quorum: vn, m.isleader(n) A member(m, quorum)

— voted(m,n) ,
Provable in EPR++

Implementation

* Uses real network vote messages
* Decorated with ghost calls to abstract model
* Uses abstract mode invariant in proof

relation already_voted(pid)
handle req(p:pid, n:pid) {
if malready_voted(p) {
already_voted(p) := true;

send vote(p,n);
ghost abs.vote(p,n); call to abstract model must satisfy precondition

}
}

In place of property maj, we use the one leader invariant of the abstract model
Vp,n.abs.voted(p,n) — already_voted(p)
Vp, n.network.vote(p,n) < abs.voted(p,n)
vn.leader(n) < abs.isleader(n)

Proof using Ivy/Z3

* For each module, we provide suitable inductive invariants
* Reduces the verification to EPR++ verification conditions
* the sub verification problems

* Each module’s VC’s in decidable fragment
e Support from Z3

* If not, Ivy gives us an explanation, for example a function cycle
e 73 can quickly and reliably prove all the VC’s

Proof Length

manual
proof

Coq/Verdi 50,000
RAFT
vy 560 200 0.36
Dafny/IronFleet 3000 12,000 4
MULTIPAXQOS

lvy 330 266 0.8

Verification Effort

V f

Coqg/Verdi 3.7 years
RAFT 3 months
lvy (from ground Few min
up)
Dafny/IronFleet Several years 6hr in cloud
MULTIPAXOS ! mon'tlj few minutes on
lvy (pre-verified

model) laptop

IVY summary

* A system with the following properties
— Proof Automation
e Can be used by non-experts
— Transparency

* The user either get CTl or an error message that the verification condition
falls outside the decidable fragments

* Used to verify small but intricate distributed protocols all the
way from the design to the implementation

* Publically available https://github.com/Microsoft/ivy

https://github.com/Microsoft/ivy

