
Modularity for
Accurate Static
Analysis of Smart
Contracts

The Smart Contract Spechub

M O O LY S A G I V

Noam Rinetzky

James Wilcox

Ittai Abraham

Guy Golan-Gueta

David Dill

Yan Michalevsky

Yoni Zohar

Shelly Grossman

Marcelo Taube

• Software is Eating the World

• Software applications are built of numerous disparate sources
• unknown

• untrusted

• constantly evolving

• Correctness of code = safety, money, human life, …

• Even worse in blockchain
• Immutability: code is law

• Cryptocurrency: code is money

• Problem: Automated financial contracts
• Bugs in contracts = money lost to adversaries for ever

• Pain: Very hard to find bugs in the contracts
• Lots of examples where people have lost large amounts of money

• Customers are willing to >= 6 figures for solutions

• Solution: Automatic Verification
• Find bugs, or prove the absence of bugs (one or the other!)

• Key enabler: higher level specifications that can be checked
• Developers are willing to do most of the work, for reward

• Standards ERC20, ERC721

• Develop a library of reusable
correctness rules

• Community effort

• Code is the law  Spec is the law

• No overdraft

• If no transaction is executed then no cost

• No radical currency changes

• Develop unique static analysis of code

Verification
Report

Test cases

Smart Contract CERTORA
ASA

Rules

• Top-tier paying customers:
• Compound Finance

“We installed Certora's technology and it is used daily by our software engineers
to locate mind blowing bugs”

Geoff Hayes

CTO of Compound Finance

• Coinbase
“The Certora ASA surfaces problems before a contract is available on our platforms, to help
us better inform our customers of risk. The ASA has already surfaced significant problems
missed by expensive and unscalable manual audits."

Shamiq Islam

Head of Security at Coinbase Global

• Investors
• Scott Shenker, repeat unicorn founder (Nicira, Databricks, Nefali)

• Coinbase

contract toyERC20 {
mapping (address => uint) balances;
constructor(address bank, uint initial_amount) {

balances[bank] = initial_amount;
}
function transfer(address to, uint amount) {

uint updatedFrom;
uint updatedTo;
address from = msg.sender;
if (balances[from] >= amount) {

updatedFrom = balances[from] - amount;
updatedTo = balances[to] + amount;

} else { revert(); }
balances[from] = updatedFrom;
balances[to] = updatedTo;

}
}

invariant  a: address balances[a]

balances[from]>=
amount

updatedFrom=balances[from]-amount

revert

TrueFalse

from=msg.sender

updatedTo=balances[to]+amount

balances[from]=updatedFrom

balances[to]=updatedTo

50

Alice Bob

70Alice to=Alice

0

100

70100

invariant  a: address balances[a]

g

contract toyERC20 {
mapping (address => uint) balances;
constructor(address bank, uint initial_amount)

{
balances[bank] = initial_amount;

}
function transfer(address to, uint amount) {

uint updatedFrom;
uint updatedTo;
address from = msg.sender;
require from != to ;
if (balances[from] >= amount) {

updatedFrom = balances[from]-amount;
updatedTo = balances[to] + amount;

} else { revert(); }
balances[from] = updatedFrom;
balances[to] = updatedTo;

}
}

invariant  a: address balances[a]

DAO Contract

DAO_withdraw(to) {
if (shares[to] > 0) {
to.send(shares[to]);
shares[to] = 0 ;
}
}

f () {
DAO(x).withdraw(me)

}

DAO_withdraw(to) {
if (shares[to] > 0) {
to.send(shares[to]);
shares[to] = 0 ;
}
}

DAO_withdraw(to) {
if (shares[to] > 0) {
shares[to] = 0 ;
to.send(shares[to]);

}
}

• Contracts that are vulnerable to reentrancy attacks are dangerous to use
• Sensitive to changes in the EVM
• Constantinople fork postponement

• Most precise method

• Guarantee atomicity in presence of callbacks

• Goal: enable human mitigation of money theft

• Requirement: Price changes must be less than 10% every hour

For all t1,t2. |t2-t1| < 1 hour, |p2-p1| < 0.1p1

Geoff Hayes | CTO

Verification
Condition

Code

Solution:
Bug

No Solution:
Proof

Front End Constraint
Solver

[Z3] Microsoft Research, [CVC4] Stanford University, [Yices] Stanford Research Institude SMT*

z>0

t>z

x:=1x:=0

y:=1y:=0

t=4 z=0

)z>0x=1 ()z0 x=0(
(t>zy=1 ()z0 y=0)

x y

Front End Constraint
Solver

z>0

t>z

x:=1x:=0

y:=1y:=0

TrueFalse

TrueFalse

False

x==y

TrueFalse

TrueFalse

x==y
False

Modularity for decidability
of deductive verification with

applications to distributed systems

Mooly Sagiv

Contributors
Marcelo Taube, Giuliano Losa, Kenneth McMillan, Oded Padon, Sharon Shoham

James R. Wilcox, Doug Woos

http://microsoft.github.io/ivy/

http://microsoft.github.io/ivy/

And Also

19

Anindya Benerjee Yotam Feldman Neil Immerman Aurojit Panda

Shachar Itzhaky Aleks Nanevsky Orr Tamir Robbert van Renesse

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

Why verify distributed protocols?

• Distributed systems are everywhere

• Safety-critical systems

• Cloud infrastructure

• Blockchain

• Distributed systems are notoriously hard to get right

• Even small protocols can be tricky

• Bugs occur on rare scenarios

• Testing is costly and not sufficient

What about correctness of the low level implementation?

Decidable Reasoning for Verification:
How Far Can You EPR?

Oded Padon

PhD Thesis

http://www.cs.tau.ac.il/~odedp

23

http://microsoft.github.io/ivy/

http://www.cs.tau.ac.il/~msagiv/odedp
http://microsoft.github.io/ivy/

Deductive Verification in First-Order Logic
[CAV’13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, MS:

Effectively-Propositional Reasoning about Reachability in Linked Data Structures

[PLDI’16] Oded Padon, Kenneth McMillan, Aurojit Panda, MS, Sharon Shoham
Ivy: Safety Verification by Interactive Generalization

[POPL’16] Oded Padon, Neil Immerman, Aleksandr Karbyshev, Sharon Shoham, MS
Decidability of Inferring Inductive Invariants

[OOPSLA’17] Oded Padon, Giuliano Losa, MS, Sharon Shoham
Paxos made EPR: Decidable Reasoning about Distributed Protocols

[POPL’18] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, MS, Sharon Shoham
Reducing liveness to safety in first-order logic. PACMPL 2(POPL): 26:1-26:33 (2018)

[PLDI’18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, MS, Sharon Shoham, James R.
Wilcox, Doug Woos: Modularity for Decidability of Deductive Verification with Applications to Distributed
Systems

[FMCAD’18] Oded Padon, Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, MS, Sharon Shoham:

Temporal Prophecy for Proving Temporal Properties of Infinite-State Systems. FMCAD 2018: 1-11

Verification
Is there a behavior

of 𝑆 that violates 𝜑?

Counterexample Proof

Automatic verification of infinite-state systems

Property 𝜑System 𝑆

25

“Program testing can be used to show the presence of bugs, but never to show their absence!” Dijkstra (1970)

Naïve period in
program verification 70’s

Safety
Property 

Verification
Is there a behavior

of P that violates ?

Counterexample Proof

Program P

Disillusionment in program verification 80’s

[POPL’78, CACM’79] R.A. DeMillo, R.J. Lipton, A. J. Perlis:
Social Processes and Proofs of Theorems and Programs

Rice’s Theorem 

I can’t decide!

Unknown

Challenges in program verification

• Specifying program behavior

• Asymptotic complexity of program verification
• The halting problem

• Rice theorem

• The ability of simple programs to represent complex behaviors

• The complexity of realistic systems
• Huge code

• Heterogeneous code

• Missing code

Mathematical Induction

• P(n) is a property of natural number n

• To show that P(n) holds for every n, it suffices
to show that:
– P(0) is true

– If P(m) is true then P(m+1) is true for every
number m

• In logic
– (P(0) m N. P(m) P(m+1)) 
n N. P(n)

0 m

P(0) P(m)

m+1

P(m+1)

Induction on a ball game

• Four players pass a ball:

–A will pass to C

–B will pas to D

–C will pass to A

–D will pass to B

• The ball starts at player A

• Can the ball get to D?

A B

C D

Induction on a ball game

• Four players pass a ball:

–A will pass to C

–B will pas to D

–C will pass to A

–D will pass to B

• The ball starts at player A

• Can the ball get to D?

A B

C D

Formalizing with induction

• 𝑥0 = 𝐴

• 𝑥𝑛+1 =

𝐶 𝑖𝑓 𝑥𝑛 = 𝐴
𝐷 𝑖𝑓𝑥𝑛 = 𝐵
𝐴 𝑖𝑓𝑥𝑛 = 𝐶
𝐵 𝑖𝑓𝑥𝑛 = 𝐷

• Prove by induction ∀𝑛. 𝑥𝑛 ≠ 𝐷

– 𝑥0 ≠ 𝐷 ?

– 𝑥𝑚 ≠ 𝐷 ⇒ 𝑥𝑚+1 ≠ 𝐷 ?

A B

C D

Formalizing with induction

• 𝑥0 =
𝐴

• 𝑥𝑛+1 =

𝐶 𝑖𝑓 𝑥𝑛 = 𝐴
𝐷 𝑖𝑓𝑥𝑛 = 𝐵
𝐴 𝑖𝑓𝑥𝑛 = 𝐶
𝐵 𝑖𝑓𝑥𝑛 = 𝐷

• Prove a stronger claim by induction ∀𝑛. 𝑥𝑛 ≠ 𝐵 ∧ 𝑥𝑛 ≠ 𝐷

– 𝑥0 ≠ 𝐵 ∧ 𝑥0 ≠ 𝐷

– 𝑥𝑚 ≠ 𝐵 ∧ 𝑥𝑚 ≠ 𝐷 ⇒ 𝑥𝑚+1 ≠ 𝐵 ∧ 𝑥𝑚+1 ≠ 𝐷

A B

C D

Inductive Invariants

Transition System

Bad Inv

The program is safe with respect Bad iff there exists an

inductive invariant Inv satisfying:

The program is safe if all the reachable states satisfy the property

Inv Bad =  (Safety) Bad = Safety

Init  Inv (Initiation)

if   Inv and  T ’ then ’  Inv (Consecution)

Initial

Reach

Counter-model Proof

Deductive verification

Property 𝜑Program 𝑃 Invariant 𝐼𝑛𝑣

Deductive Verification
Is 𝐼𝑛𝑣 an inductive invariant for P that proves 𝜑 ?
 Are the logical verification conditions valid ?

Simple Example: inductive Invariants

x=1, y =1

x=1, y =3

x=3, y =4 x=7, y =6

x=3, y =0 x=3, y =2

x=5, y =4

1: x := 1;

2: y := 2;

while * do {

3: assert odd[x];

4: x:= x + y;

5: y := y + 2

}

6:

x=2, y =2

x=2, y =3

x=4, y =5

odd[x]

x=1, y =0

x=0, y =3

x=1, y =2

Simple Example: inductive Invariants

x=1, y =2

x=1, y =1

x=1, y =0

x=1, y =3

x=3, y =4 x=7, y =6

x=3, y =0 x=3, y =2

x=5, y =4

1: x := 1;

2: y := 2;

while * do {

3: assert odd[x];

4: x:= x + y;

5: y := y + 2

}

6:

x=2, y =2

x=2, y =3

x=4, y =5

x=0, y =3

Dafny [Leino’17]

Property 𝜑System 𝑆 Invariant 𝐼𝑛𝑣

Deductive Verification
Is 𝐼𝑛𝑣 an inductive invariant for 𝑆 that proves 𝜑 ?
 Are the logical verification conditions valid ?

K. Rustan M. Leino: Accessible Software Verification with Dafny. IEEE Software 34(6): 94-97 (2017)

SMT Formula

SAT UNSAT

?

Counter-model Proof

Deductive verification

Property 𝜑System 𝑆 Invariant 𝐼𝑛𝑣

Unknown / Diverge

Church’s Theorem

I can’t decide!Deductive Verification
Is 𝐼𝑛𝑣 an inductive invariant for 𝑆 that proves 𝜑 ?
 Are the logical verification conditions valid ?

Effects of undecidability(SMT)

• The verifier may fail on tiny programs

• No explanation when tactics fails

– Counterproofs

Copyright: Michael Hanke

Challenges in deductive verification
1. Formal specification: formalizing infinite-state systems and their properties

2. Deduction: checking inductiveness

– Undecidability of implication checking

• Unbounded state (threads, messages), arithmetic, quantifier alternation

3. Inference: finding inductive invariants (Inv)

– Hard to specify

– Hard to maintain

– Hard to infer

• Undecidable even when deduction is decidable

State of the art in formal verification
Ex

p
re

ss
iv

en
e

ss

Automation

Proof Assistants

Ultimately limited by human

proof/code:

Verdi: ~10

IronFleet: ~4

Decidable Models
Model Checking
Static Analysis

Ultimately limited by undecidability

Ivy
Decidable deduction

Finite counterexamples

proof/code: ~0.2

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic without theories

• No function symbols

• Restricted quantifier prefix: ∃∗∀∗𝜑𝑄𝐹

• No ∀∃

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

EPR Satisfiability

∃𝑥, 𝑦. ∀𝑧. 𝑟 𝑥, 𝑧 ↔ 𝑟(𝑧, 𝑦)

=SAT ∀𝑧. 𝑟 𝑐1, 𝑧 ↔ 𝑟(𝑧, 𝑐2)

=SAT 𝑟 𝑐1, 𝑐1 ↔ 𝑟 𝑐1, 𝑐2 ∧ 𝑟 𝑐1, 𝑐2 ↔ 𝑟 𝑐2, 𝑐2

=SAT 𝑝11 ↔ 𝑝12 ∧ 𝑝12 ↔ 𝑝22

Skolem

Herbrand

Effectively Propositional Logic – EPR
a.k.a. Bernays-Schönfinkel-Ramsey class

• Limited fragment of first-order logic without theories

• No function symbols

• Restricted quantifier prefix: ∃∗∀∗𝜑𝑄𝐹

• Finite model property

• A formula is satisfiable iff it has a model of size:
constant symbols + # existential variables

• Complexity:

• NEXPTIME-complete

• Σ2
𝑃 if relation arities are bounded by a constant

• NP if quantifier prefix is also bounded by a constant

F. Ramsey. On a problem in formal logic. Proc. London Math. Soc. 1930

EPR++

• EPR++ allow acyclic function and quantifier alternations

• E.g., 𝑓: 𝐴 → 𝐵 without 𝑔: 𝐵 → 𝐴

• Maintains small model property of EPR

• Finite complete instantiations

• But what can you possibly express in such a restricted logic?

• Transtive closure over deterministic paths

• Set cardinalities

• Avoiding quantifier alternations

• Encoding liveness and LTL [POPL’18]

46

Key idea: representing deterministic paths
[Shachar Itzhaky PhD, SIGPLAN Dissertation Award 2016]

Alternative 1: maintain 𝑛
• 𝑛∗ defined by transitive closure of n
• not definable in first-order logic

𝑛𝑛

𝑛∗

h t

nnh t

Alternative 2: maintain 𝑛∗

• 𝑛 defined by transitive reduction of 𝑛∗

• Unique due to outdegree  1
• Definable in first order logic

𝑛 𝑥, 𝑦 ≡ 𝑛∗ 𝑥, 𝑦 ∧ 𝑥 ≠ 𝑦 ∧
∀𝑧. 𝑛∗ 𝑥, 𝑧 → 𝑧 = 𝑦 ∨ 𝑧 = 𝑥

n*

h t
Not first order expressible

First order expressible

Ivy’s principles

• Modularity

– The user breaks the verification system into small problems expressed in decidable logics

– The system explores circular assume/guarantee reasoning to prove correctness

• Inductive invariants and transition systems are expressed in decidable logics

– Turing complete imperative programs over unbounded relations

– Allows quantifiers to reason about unbounded sets

• But no arbitrary quantifier alternations and theories

– Checking inductiveness is decidable

– Display CTIs as graphs (similar to Alloy)

Languages and verification

Language Executable Expressiveness Inductiveness

C, Java, Python…  Turing-Complete Undecidable

SMV  Finite-state Temporal Properties

TLA+  Turing-Complete Manual

Coq, Isabelle/HOL  Expressive Manual with tactics

Dafny  Turing-Complete
Undecidable with
lemmas

Ivy  Turing-Complete Decidable(EPR)

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

• Inductive?

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

3 5

2

4

1

6

2
3 5

2

4

1

6

NO

Example: Leader election in a ring
• Unidirectional ring of nodes, unique numeric ids

• Protocol:

• Each node sends its id to the next

• Upon receiving a message, a node passes it (to the next) if
the id in the message is higher than the node’s own id

• A node that receives its own id becomes a leader

• Theorem: The protocol selects at most one leader

3 5

2

4

1

6
next

next next

next

next

next

[CACM’79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular configurations of processes

Leader election protocol – first-order logic
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5

Leader election protocol – first-order logic
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

Axiomatized in first-order logic

first-order structureprotocol state

≤

n1
L

id1

n2
L

id2

n3
L

≤ id3

n4
L

n5
L

id5 id6
≤ ≤

<n5, n1, n3> ∈ 𝐼(btw)

id4

n6
L

≤

n1

3 5

2

4

1

6
next

next next

next

next

next 2
5

pnd
id

id id idpnd

n5



1
 L

next

2
L

next
id id

3
L



id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

≤

1
 L

next

2
L

next
id id

3
L

≤

id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next

pnd

…

Specify and verify the protocol for any number of nodes in the ring

Leader election protocol – first-order logic
•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

|

action receive(n: Node, m: ID) = {
requires pending(m, n);
if id(n) = m then
// found leader
leader(n) := true

else if id(n)  m then
// pass message
“s := next(n)”;
pending(m, s) := true

}

action send(n: Node) = {
“s := next(n)”;
pending(id(n),s) := true

}

𝑇𝑅(send):
∃n,s: Node. “s = next(n)” ∧ ∀x:ID,y:Node. pending'(x,y)↔ (pending(x,y)∨(x=id(n)∧y=s))

𝐵𝑎𝑑:

assert I0 = ∀ x,y: Node. leader(x)leader(y) → x = y



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next



1
 L

next

2
L

next
id id

3
L



id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next

pnd



1
 L

next

2
L

next
id id

3
L



id
next

pnd

Representing Sets of States with First Order
Formulas
• Configurations with at least two leaders

•  X,Y: Node. leader(X)leader(Y) X Y



1
L next

2
L

next
id id



1
L next

2
 L

next
id id

X Y

Representing Sets of States with First Order
Formulas
• Configurations with at least two leaders

•  X,Y: Node. leader(X)leader(Y)  X  Y



1
L next

2
L

next
id id



1
L next

2
L

next
id id



L L L



next next

next
…

Safety property: I0

I0 = x, y: Node. leader(x) ∧ leader(y) → x = y

Inductive invariant: Inv = I0 I1 I2 I3

I1 = n1,n2: Node. leader(n2) → id[n1]  id[n2]

I2 = n1,n2: Node. pending(id[n2],n2) → id[n1]  id[n2]

I3 =n1,n2,n3: Node. btw(n1,n2,n3)  pending(id[n2], n1) → id[n3]  id[n2]

The leader has the highest ID

Only the leader can be self-pending

Cannot bypass higher nodes

Leader election protocol – inductive invariant

•  (ID, ID) – total order on node id’s

• btw (Node, Node, Node) – the ring topology

• id: Node  ID – relate a node to its unique id

• pending(ID, Node) – pending messages

• leader(Node) – leader(n) means n is the leader

EPR Solver
𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉

𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

Proof

I can decide EPR!

VC Generator

Leader Protocol 𝐼𝑛𝑣 = I0 I1 I2

rcv(1, id(2))

I0I1 I2  I2



1
 L

next

2
L

next
id id

pnd

3
L



id
next



1
 L

next

2
L

next
id id

pnd

3
L



id
next

Check Inductiveness

CTI

EPR

Ivy: check inductiveness

𝐵𝑎𝑑 =  I0

VC Generator

Leader Protocol 𝐼𝑛𝑣 = I0 I1 I2 I3

EPR Solver

Proof

I0 I1 I2 I3 is an inductive invariant for the leader protocol, proving its safety

I can decide EPR!

Ivy: check inductiveness

𝐼𝑛𝑖𝑡 𝑉 ∧ ¬𝐼𝑛𝑣 𝑉
𝐼𝑛𝑣 𝑉 ∧ 𝑇𝑅 𝑉, 𝑉′ ∧ ¬𝐼𝑛𝑣 𝑉′

𝐼𝑛𝑣 𝑉 ∧ 𝐵𝑎𝑑(𝑉)

L L
≤

id idpnd

pnd
id
≤

id

btw

≤

L

id id

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

∀∗ invariant – excluded substructures

substructure

The leader has
the highest ID

Only the leader can
be self-pending

Cannot bypass
higher nodes

At most
one leader

Modularity
Original system Original inductive argument

Original property

Separate Verification of each module

Incorrect
Finds bug

Correct
Finds proof

subsystem Partial
argument Property

Verification tool

An ADT for pid sets
datatype set(pid) = {

relation member (pid, set)
relation majority(set)
procedure empty returns (s:set)
procedure add(s:set,e:pid) returns (r:set)

specification {
procedure empty ensures ∀𝑝.¬member(𝑝, s)
procedure add ensures ∀𝑝.member 𝑝, 𝑟 ↔ (member 𝑝, s ∨ 𝑝 = 𝑒)

property [maj] ∀𝑠, 𝑡.𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑠 ∧ 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑡 → ∃𝑝. member 𝑝, 𝑠 ∧ member(𝑝, 𝑡)
}

}

We have hidden the cardinality and arithmetic

The key is to recognize that the protocol only needs property maj

Implementation of the set ADT
• Standard approach

• Implement operations sets using array representation
member(p, s) i. repr(s)[i] = p

• Define cardinality of sets as a recursive function ||: set int
• majority(s) |s| + |s| > |all|

• Prove lemma by induction on |all|

∀𝑠, 𝑡. 𝑠 + 𝑡 > all → ∃𝑝.𝑚𝑒𝑚𝑏𝑒𝑟 𝑝, 𝑠 ∧ 𝑚𝑒𝑚𝑏𝑒𝑟(𝑝, 𝑡)

• The lemma implies property maj
• All the verification conditions are in EPR+++limited

arithmetic (FAU)

• Protocol state

voters: pid set

• Property maj

s, t: set. ∃p: pid. majority(s) majority(t)
member(p, s)member(p, t)

• Solution: Harness modularity

• Create an abstract protocol model that doesn’t use voters

• Prove an invariant using maj, then use this as a lemma to prove the concrete
protocol implementation

Quantifier alternation cycles

setpid

Quantifier
Alternation Cycle

Abstract protocol model

procedure vote(v : pid, n : pid) = {
require ∀ 𝑚.¬vote𝑑(v,𝑚);
voted(v,n) := true;

}

procedure make_leader(n : pid, s : set) = {
require majority(s);
require ∀𝑚.member 𝑚, s → voted(𝑚, n);
isleader(n) := true;
quorum := s;

}

• one leader: ∀𝑛,𝑚. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ∧ 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑚 → 𝑛 = 𝑚
• voted is a partial function: ∀p,𝑛,𝑚. voted(p,n) ∧ voted(p,m)→𝑛=𝑚
• leader has a quorum: ∀𝑛,𝑚. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ∧ 𝑚𝑒𝑚𝑏𝑒𝑟 𝑚, 𝑞𝑢𝑜𝑟𝑢𝑚
→ 𝑣𝑜𝑡𝑒𝑑(𝑚, 𝑛)

Invariant:

Provable in EPR++

relation voted(pid, pid)
relation isleader(pid)
var quorum: set

Implementation
• Uses real network vote messages

• Decorated with ghost calls to abstract model

• Uses abstract mode invariant in proof

relation already_voted(pid)
handle req(p:pid, n:pid) {

if ¬already_voted p {
already_voted p := true;
send vote(p,n);
ghost abs.vote(p,n);

}
}

call to abstract model must satisfy precondition

In place of property maj, we use the one leader invariant of the abstract model
∀𝑝, 𝑛. 𝑎𝑏𝑠. 𝑣𝑜𝑡𝑒𝑑 𝑝, 𝑛 → 𝑎𝑙𝑟𝑒𝑎𝑑𝑦_𝑣𝑜𝑡𝑒𝑑 𝑝
∀𝑝, 𝑛. 𝑛𝑒𝑡𝑤𝑜𝑟𝑘. 𝑣𝑜𝑡𝑒 𝑝, 𝑛 ↔ 𝑎𝑏𝑠. 𝑣𝑜𝑡𝑒𝑑 𝑝, 𝑛
∀𝑛. 𝑙𝑒𝑎𝑑𝑒𝑟 𝑛 ↔ 𝑎𝑏𝑠. 𝑖𝑠𝑙𝑒𝑎𝑑𝑒𝑟 𝑛
…

Proof using Ivy/Z3

• For each module, we provide suitable inductive invariants

• Reduces the verification to EPR++ verification conditions
• the sub verification problems

• Each module’s VC’s in decidable fragment
• Support from Z3

• If not, Ivy gives us an explanation, for example a function cycle

• Z3 can quickly and reliably prove all the VC’s

Proof Length

Protocol System/Project LOC
manual

proof
Ratio

RAFT

Coq/Verdi 530 50,000 94

Ivy 560 200 0.36

MULTIPAXOS

Dafny/IronFleet 3000 12,000 4

Ivy 330 266 0.8

Verification Effort

Protocol System/Project Human Effort
Verification

Time

RAFT

Coq/Verdi 3.7 years -

Ivy
3 months

(from ground
up)

Few min

MULTIPAXOS

Dafny/IronFleet Several years 6hr in cloud

Ivy
1 month

(pre-verified
model)

few minutes on
laptop

IVY summary

• A system with the following properties

– Proof Automation

• Can be used by non-experts

– Transparency

• The user either get CTI or an error message that the verification condition
falls outside the decidable fragments

• Used to verify small but intricate distributed protocols all the
way from the design to the implementation

• Publically available https://github.com/Microsoft/ivy

https://github.com/Microsoft/ivy

