
Verifying Computations  
(with secrets) 

 in the Blink of an Eye
Matteo Campanelli

IMDEA Software
matteo.campanelli@imdea.org

UCM, July 1st 2019

“Just Stop Owning it” —
The Rise of Cloud Computing

• Nowadays businesses usually outsource computation.

• The bulk of it is rented, remote or both.

• Service Providers (SPs) can provide storage, computation,
managed desktop, etc.

Advantages:
• Reduced infrastructure;

• Flexibility;
• Cost at scale.

Example:

A lone PhD student can analyze large genome data

by renting 100 computers for 10 hours.

And for less then $200.

What Risks When Delegating?
• Complexity: 

the computing capabilities I’m renting are complex systems and their
execution may not always be correct. 

• Incentives:  
Service Providers do not necessarily have strong incentives to ensure
correctness; 

• Opaqueness (rented computers are “black boxes”):
misconfigurations, HW problems, malicious operations, etc., 
these are all hard to detect.

How can we ever trust results computed by a third party then?

Some Solutions
•Replicating

•Caveat: HW and SW configuration might be homogeneous 

•Auditing (checking the responses in a small sample)
•Caveat: this doesn’t help if the failures are too infrequent 

•Trusted HW
•Caveat: assumes a chain of trust/additional assumptions 

Proof-based verification:
What if the server returned its results along with a (probabilistic) proof

 that the results were computed correctly?

This Talk: Proofs and Computation

Part I: 
 Proving Correctness of Computation

• The setting
• State of the art

Part II: 
 Beyond correctness — Proving Knowledge of Secrets

• zkSNARKs and their applications

Part I:
 Proving Correctness of Computation

Proof-based Verification —Setting

(weak) Client (powerful) Server

“Please compute function f on data D”

“Here is result y= f(D) and a proof π ”

Verify(f, D, y , π)  
 => accept/reject

Examples of functions f:
• video encoding
• ML training
• image processing
• data analysis

Proof-based Verification —Desiderata

(weak) Client (powerful) Server

“Please compute function f on data D”

“Here is result y= f(D) and a proof π ”

Desired Properties:
• short proof (succinctness)
• inexpensive to verify
• little overhead for server

Is this possible?
Would (e.g.) an average phone be able to verify

a herd of (untrusted) supercomputers?

Inside Proof-Based Verification
Long list of works: 
 [ALMS98, GKR08, GGPR13, …, Hyrax17, LegoSNARK19, …]

Basic Approach:

System of Equations

Single randomized equation 
that client can verify efficiently

A “proof” is usually

a cryptographic encoding of this

What Can We Achieve Nowadays?

• Very short proofs for any program (<1KB) [Groth16]

• How Efficiently?

• Verification is super fast;

• multiplication of two 1000x1000 matrices: few milliseconds

• Proving is meh (can give a 100-10000x overhead)

• matrix multiplication above: few minutes

Main Challenges
• Main challenge: reducing resources for proving.

• Example: Hashing a 13kB file (with SHA2) requires: 
 >256GB RAM; few hours of work.

• Some recent works in this directions:

• [WZCPS18]: Distributed generation of proofs (100x speedup)

• [CFQ19]: LegoSNARK — breaking proof generation in modular parts

• in some cases 3 orders of magnitude speedup

Part II:
Beyond Verifiable Computation —

Proving Knowledge
of Secrets

(Not So Much of)

A Toy Example: Selling Secrets

Buyer/Verifier Seller/Prover

The start of a sketchy transaction:
I know primes

p,q such that:  
N = pq

p,q

Proof that it knows p,q, such that
p,q in and N = pq

This “box” should  
a) convince Buyer (proof) 
b) not reveal anything on the secrets  
 (zero-knowledge)

Proofs with Secrets: Zero-Knowledge Proofs

Focus of this talk: zkSNARKs
(zk Succinct Non-Interactive Arguments of Knowledge)

Now: Zero-Knowledge Proofs

“Given data D, show me you
know secret s such that

R(D, s) holds.

Relation

“Please compute
function f on data D”

So far: Verifiable Computation

“Here is result y= f(D)
and a proof π ”

Example from before:
 D was N and
 s was (p,q) and
 R was ~ “decryption and product"

Informally: leaks nothing except
that the relation holds.

Informally: we could efficiently “extract”
the secret from the prover.

zkSNARKs and Verifiable Computation

Techniques (and most of the efficiency) are the same:

System of Equations

Single randomized equation 
that client can verify efficiently

A “proof” is usually

a cryptographic encoding of this

To achieve ZK we “hide" secret s at this step.

NEXT: Applications.

Some General Applications
of zkSNARKs

Authenticating
Pictures

Takes original pic
Publishing

Q: Can we still authenticate pictures if we first need to (slightly) modify them?

+
Signs it

Authenticating Sensitive
Pictures

Photoshop
Takes original pics

+
Signs it

Publishing

Q: How to prove the edited pic is

a transformation of an authentic pic?

(without leaking the original pic)

A: just use a zkSNARK stating knowledge of

“a signed pic to which blurring

has been applied.”

(What’s public data D? What’s secret s?)

Anonymous Credentials

Me

MPD

my personal data

πbank

πemployer

πlandlord

“Here is a signed and
‘encrypted' version of MPD”

 MPD signs

MPD[credit_history] is …
AND

 MPDsigns

MPD[empl_history] is …
AND

 MPD signs

MPD[month_income] > …
AND

public

(What’s public data D? What’s secret s?)

Verifiable ML (from [WZCPS18])

‘encryption’

Confidential data

training 
algorithm

public ML model

Research
team

The public

Problem: can’t be released.

Then how can the public check ?

proof of: 
DATA == ‘decrypt’()

AND
model = train(DATA)

Goal: we want this ML model to
be publicly auditable.

Some
Blockchain-specific

Applications
of zkSNARKs

Brush-up on Bitcoin
a protocol to agree on exchange of tokens

(e.g. which tokens are around? Who controls a token?)

Bitcoin:

Key Property: If A gives a token to B:

1. A can’t use it again (at least consensus-wise).

2. B can use it.

A B
1 token

Little Privacy in Bitcoin

₿
A

(0x123)
B

(0x456)

(Attempts of) Pseudo-anonymity in Bitcoin: randomized addresses.

C
(0xDEF)

₿

Randomized addresses are not enough!
We can trace back transactions to the actual senders/receivers. [GKRDN17,…]

B’
(0x789)

₿

“Sending tokens
to himself”

Improving Privacy in Bitcoin
Privacy Issues of Bitcoin:

• All transactions are public (and traceable)

• Side-information (e.g. cookies…)

Possible Solutions:
• Tumblers (aka mixers or mixnets)

• Private crypto-currencies 

(e.g. ZCash)

A

B

C

D

₿

₿

₿
₿

Tumblers

₿
? ?

Private Crypto-CurrenciesOur focus

Warm up:
Transactions in Bitcoin

Spent tokens 
(you can’t use them again)

Existing tokens 
(Once spent, they go to the right  

and “produce” a new coin)

A (0xAAA)

B (0xZZZ)

0xred

Scenario: A wants to pay B

Warm up:
Transactions in Bitcoin

Spent tokens 
(you can’t use them again)

Existing tokens 
(Once spent, they go to the right  

and “produce” a new coin)

A (0xAAA)

B (0xZZZ)

0xred

Public transaction reads:
“A makes spent;
 B receives it as “ NB: This is all public info!

Scenario: A wants to pay B
0xblue

“New coin” produced

from 0xred

 Traceable transaction in Bitcoin:
“A makes spent;
 B receives it as “

Roadmap (two steps):
1. Anonymize sets of spent/existing tokens;

2. use zkSNARKs to prove we are performing a  

valid transaction.

ZCash: Anonymous Transactions
Our Goal:
- Remove receiver/sender as public;
- Keep validity of transaction.

₿
? ?

Anonymized Spent Tokens

Existing tokens 

A (0xAAA)

0xred

Spent tokens  

Before: completely public.

0xYellow

Owner of the coin

is not public any more

Now: somewhat private through hashing.

H_exist()

Existing tokens 

A (0xAAA)

0xred

Spent tokens 

0xYellow
H_spent()

To anonymize:
we publish the output of two hash functions

instead of actual coins.

Transactions in ZCash

What A does to spend her coin to B:
• makes new 0xblue and send it (privately) to B
• broadcast (newtok, oldtok) where 

newtok = H_exist(0xblue)  
oldtok = H_spent(0xred)

• broadcast a zkSNARK proof π to validate transaction

Proof π proves that we are spending valid token:
• H_exist(0xred) is in the set of existing tokens

• A controls (0xred)
• oldtok == H_spent(0xred)

B (0xZZZ)

H_exist()

Existing tokens 

A (0xAAA)

0xred

Spent tokens 

0xYellow
H_spent()

newtok

oldtok

Q: How can we trust that oldtok is

some valid old coin?

zkSNARKs in ZCash: Summary

• Bitcoin is not anonymous

• We can make it anonymous by:

• extending it with anonymized sets

• using SNARKs to prove transactions are valid without leaking sender/
receiver

Fair Exchange of Digital Goods 
with Bitcoin

Buyer/Verifier Seller/Prover

I know primes
p,q such that:  
N = pq

Recall the sketchy exchange from before:

Q: What’s going to happen next?

p,q

Proof that it knows p,q, such that
p,q in and N = pq

And how to ensure fairness with no trusted party?

`

The Buyer The Seller

My
for your

My
for your

The Blockchain

The Buyer The Seller

My
for your

My
for your

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

My
for your

Buyer gets
 iff
 Seller gets

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

My
for your

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

My
for your

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Proof of in

My
for your

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need

My
for your

Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need

“Pay my to Seller if it

provides for ”

My
for your

Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need

My
for your

Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

“Pay my to Seller if it

provides for ”

Can’t do: too complex
for Bitcoin transactions

The Blockchain

The Buyer The Seller

My
for your

Now I just
need

My
for your

Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need

My
for your

y = SHA256() Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need Also extend proof to

account for

SHA256()

My
for your

y = SHA256() Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need Also extend proof to

account for

My
for your

“Pay my to Seller if
it provides SHA-1256(y)”

SHA256()

y = SHA256() Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

The Blockchain

The Buyer The Seller

My
for your

Now I just
need Also extend proof to

account for

My
for your

“Pay my to Seller if
it provides SHA-1256(y)”

SHA256()

y = SHA256() Proof of in

How to buy a Sudoku solution [Maxwell16, CGGN17]

Wrapping up

• With verifiable computation we do not need trust a remote computer.

• We can give proofs of correctness that are short and quickly verifiable.

• Proving often requires a large overhead.

• Beyond Verifiable Computation: we can prove knowledge of secrets
(zkSNARKs).

• zkSNARKs have applications both to society at large and to blockchains.

Thanks! And questions?

For more info:
- visit https://github.com/scipr-lab/libsnark

- or drop me a line at matteo.campanelli@imdea.org

https://github.com/scipr-lab/libsnark

