
From Classical to
Runtime Aware
Architectures

Madrid, 25 Abril 2017 Workshop Syec 25-26 April

Prof. Mateo Valero

BSC Director
Cursos de Postgrado

Technological Achievements

Transistor (Bell Labs, 1947)

• DEC PDP-1 (1957)
• IBM 7090 (1960)

Integrated circuit (1958)

• IBM System 360 (1965)
• DEC PDP-8 (1965)

Microprocessor (1971)

• Intel 4004

Birth of the Revolution – The Intel 4004

Introduced November 15, 1971

108KHz, 50 KIPs, 2300 10μ transistors

Sunway TaihuLight

• SW26010 processor
(Chinese design, ISA, & fab)

• 1.45 GHz

• Node = 260 Cores (1 socket)

• 4 – core groups

• 32 GB memory

• 40,960 nodes in the system

• 10,649,600 cores total

• 1.31 PB of primary memory (DDR3).

• 125.4 Pflop/s theoretical peak

• 93 Pflop/s HPL, 74% peak

• 15.3 Mwatts water cooled

• 3 of the 6 finalists for
Gordon Bell Award@SC16

Top 500 Supercomputers - November 2016
Rank Name Site Computer Total Cores Rmax Rpeak Power Mflops/W

1
Sunway
TaihuLight

National Supercomputing
Center in Wuxi

Sunway MPP, Sunway SW26010
260C 1.45GHz, Sunway

10649600
93014593,

88
125435904 15371 6051,3

2
Tianhe-2
(MilkyWay-2)

National Super Computer
Center in Guangzhou

TH-IVB-FEP Cluster, Intel Xeon
E5-2692 12C 2.200GHz, TH
Express-2, Intel Xeon Phi 31S1P

3120000 33862700 54902400 17808 1901,54

3 Titan
DOE/SC/Oak Ridge National
Laboratory

Cray XK7 , Opteron 6274 16C
2.200GHz, Cray Gemini
interconnect, NVIDIA K20x

560640 17590000 27112550 8209 2142,77

4 Sequoia DOE/NNSA/LLNL
BlueGene/Q, Power BQC 16C
1.60 GHz, Custom

1572864 17173224 20132659,2 7890 2176,58

5 Cori DOE/SC/LBNL/NERSC
Cray XC40, Intel Xeon Phi 7250
68C 1.4GHz, Aries interconnect

622336 14014700 27880653 3939 3557,93

6
Oakforest-
PACS

Joint Center for Advanced
High Performance
Computing

PRIMERGY CX1640 M1, Intel
Xeon Phi 7250 68C 1.4GHz, Intel
Omni-Path

556104 13554600 24913459 2718,7 4985,69

7
RIKEN Advanced Institute for
Computational Science
(AICS)

K computer, SPARC64 VIIIfx
2.0GHz, Tofu interconnect

705024 10510000 11280384 12659,89 830,18

8 Piz Daint
Swiss National
Supercomputing Centre
(CSCS)

Cray XC50, Xeon E5-2690v3 12C
2.6GHz, Aries interconnect ,
NVIDIA Tesla P100

206720 9779000 15987968 1312 7453,51

9 Mira
DOE/SC/Argonne National
Laboratory

BlueGene/Q, Power BQC 16C
1.60GHz, Custom

786432 8586612 10066330 3945 2176,58

10 Trinity DOE/NNSA/LANL/SNL
Cray XC40, Xeon E5-2698v3 16C
2.3GHz, Aries interconnect

301056 8100900 11078861 4232,63 1913,92

Performance Development of HPC
over the Last 23 Years from the Top500

0,1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

59.7 GFlop/s

400 MFlop/s

1.17 TFlop/s

93 PFlop/s

286 TFlop/s

567 PFlop/s

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

Supercomputer Performance Road Map

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 20071987 1989

Our origins...Plan Nacional de Investigación

High-performance Computing group @ Computer Architecture Department (UPC)

Relevance

High-speed
Low-cost Parallel

Architecture Design
PA85-0314

High Performance
Computing

TIC95-429

Architectures and
Compilers

for Supercomputers
TIC92-880

Parallelism
Exploitation in High
Speed Architectures

TIC89-299

High Performance
Computing II

TIC98-511-C02-01

High Performance
Computing III

TIC2001-995-C02-01

High Performance
Computing IV

TIN2004-07739-C02-01

High Performance
Computing VI

TIN2012-34557

2008 - 2011 2012 - 20151988

High Performance
Computing V

TIN2007-60625

CEPBA CIRI BSC

COMPAQ

INTEL
MICROSOFT

IBM

INTEL
(Exascale)

NVIDIA

REPSOL

SAMSUNG

IBERDROLA

Excellence

http://images.google.com/imgres?imgurl=http://www.cepba.upc.es/TTN-project/images/cepbasymbol.gif&imgrefurl=http://www.cepba.upc.es/TTN-project/projects.html&h=73&w=80&sz=1&hl=en&start=12&tbnid=GHqw-Hxj2oMNYM:&tbnh=68&tbnw=74&prev=/images?q=CEPBA+logo&gbv=2&svnum=10&hl=en

Venimos de muy lejos…

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 20071987 1988 1989 2008 200919861985 2010

IBM PP970 / Myrinet

MareNostrum

42.35, 94.21 Tflop/s

IBM RS-6000 SP & IBM p630

192+144 Gflop/s

SGI Origin 2000

32 Gflop/s

Connection Machine CM-200

0,64 Gflop/s

Convex C3800

Compaq GS-140

12.5 Gflop/s

Compaq GS-160

23.4 Gflop/s

Parsys Multiprocessor Parsytec CCi-8D

4.45 Gflop/s BULL NovaScale 5160

48 Gflop/s

Research prototypes

Transputer cluster

SGI Altix 4700

819.2 Gflops
SL8500

6 Petabytes

Maricel

14.4 Tflops, 20 KW

http://images.google.com/imgres?imgurl=http://www.cepba.upc.es/TTN-project/images/cepbasymbol.gif&imgrefurl=http://www.cepba.upc.es/TTN-project/projects.html&h=73&w=80&sz=1&hl=en&start=12&tbnid=GHqw-Hxj2oMNYM:&tbnh=68&tbnw=74&prev=/images?q=CEPBA+logo&gbv=2&svnum=10&hl=en
http://images.google.com/imgres?imgurl=http://www.cepba.upc.es/TTN-project/images/cepbasymbol.gif&imgrefurl=http://www.cepba.upc.es/TTN-project/projects.html&h=73&w=80&sz=1&hl=en&start=12&tbnid=GHqw-Hxj2oMNYM:&tbnh=68&tbnw=74&prev=/images?q=CEPBA+logo&gbv=2&svnum=10&hl=en

Barcelona Supercomputing Center
Centro Nacional de Supercomputación

Spanish Government 60%

Catalonian Government 30%

Univ. Politècnica de Catalunya (UPC) 10%

BSC-CNS is
a consortium
that includes

BSC-CNS objectives

Supercomputing services
to Spanish and
EU researchers

R&D in Computer,
Life, Earth and

Engineering Sciences

PhD programme,
technology transfer,
public engagement

Barcelona Supercomputing Center
Centro Nacional de Supercomputación

475 people from

44 countries

*31th of December 2016

Competitive
project funding

secured
(2005 to 2017)

Total 144,8 M€Information compiled 16/01/2017

Europe 71,9M€

National 34 M€

Companies 38,9 M€

The MareNostrum 3 Supercomputer

Over 1015 Floating Point Operations per second

70% PRACE 24% RES 6% BSC-CNS

3 PB
of disk storage

100.8 TB
of main memory

Nearly
50,000 cores

The MareNostrum 4 Supercomputer

Total peak performance

13,7 Pflops/s
12 times more powerful than MareNostrum 3

Compute

General Purpose, for current BSC workload

More than 11 Pflops/s
With 3,456 nodes of Intel Xeon V5 processors

Emerging Technologies, for evaluation
of 2020 Exascale systems

3 systems, each of more than 0,5 Pflops/s
with KLN/KNH, Power+NVIDIA, ARMv8

Storage

More than 10 PB of GPFS
Elastics Storage System

Network

IB EDR/OPA
Ethernet

Operating System: SuSE

Mission of BSC Scientific Departments

Earth
Sciences

CASE

Computer
Sciences

Life
Sciences

To influence the way machines are built, programmed and

used: computer architecture, programming models,

performance tools, Big Data, Artificial Intelligence

To develop and implement global and

regional state-of-the-art models for short-

term air quality forecast and long-term

climate applications

To understand living organisms by means of

theoretical and computational methods

(molecular modeling, genomics, proteomics)

To develop scientific and engineering software to

efficiently exploit super-computing capabilities

(biomedical, geophysics, atmospheric, energy, social

and economic simulations)

Design of Superscalar Processors

Simple interface
Sequential
program

ILP

ISA

Programs
“decoupled”

from hardware

Applications

Decoupled from the software stack

Latency Has Been a Problem from the
Beginning... 

• Feeding the pipeline with the right instructions:

• HW/SW trace cache (ICS’99)

• Prophet/Critic Hybrid Branch Predictor (ISCA’04)

• Locality/reuse

• Cache Memory with Hybrid Mapping (IASTED87). Victim Cache 

• Dual Data Cache (ICS¨95)

• A novel renaming mechanism that boosts software prefetching (ICS’01)

• Virtual-Physical Registers (HPCA’98)

• Kilo Instruction Processors (ISHPC03,HPCA’06, ISCA’08)

F
e
tc

h

D
e
c
o
d
e

R
e

n
a

m
e

In
s
tr

u
c
ti
o
n

W
in

d
o
w

W
a
k
e
u
p
+

s
e
le

c
t

R
e
g
is

te
r

fi
le

B
y
p
a
s
s

D
a
ta

 C
a
c
h
e

R
e
g
is

te
r

W
ri
te

C
o
m

m
it

… and the Power Wall Appeared Later 

• Better Technologies

• Two-level organization (Locality Exploitation)

• Register file for Superscalar (ISCA’00)

• Instruction queues (ICCD’05)

• Load/Store Queues (ISCA’08)

• Direct Wakeup, Pointer-based Instruction Queue Design (ICCD’04,
ICCD’05)

• Content-aware register file (ISCA’09)

• Fuzzy computation (ICS’01, IEEE CAL’02, IEEE-TC’05). Currently known as
Approximate Computing 

F
e
tc

h

D
e
c
o
d
e

R
e
n
a
m

e

In
s
tr

u
c
ti
o
n

W
in

d
o
w

W
a
k
e
u
p
+

s
e
le

c
t

R
e
g
is

te
r

fi
le

B
y
p
a
s
s

D
a
ta

 C
a
c
h
e

R
e
g
is

te
r

W
ri
te

C
o
m

m
it

Fuzzy computation

Accuracy Size

Performance
@ Low Power

Binary
systems
(bmp)

Compresion
protocols

(jpeg)

Fuzzy
Computation

This one only used
~85% of the time
while consuming

~75% of the power

This image is the
original one

SMT and Memory Latency … 

• Simultaneous Multithreading (SMT)

• Benefits of SMT Processors:

• Increase core resource utilization

• Basic pipeline unchanged:

• Few replicated resources, other shared

• Some of our contributions:

• Dynamically Controlled Resource Allocation (MICRO 2004)

• Quality of Service (QoS) in SMTs (IEEE TC 2006)

• Runahead Threads for SMTs (HPCA 2008)

Fe
tc

h

D
ec

o
d

e

R
e

n
am

e

In
st

ru
ct

io
n

W
in

d
o

w

W
ak

eu
p

+
se

le
ct

R
e

gi
st

e
r

fi
le

B
yp

as
s

D
at

a
C

ac
h

e

R
e

gi
st

e
r

W
ri

te

C
o

m
m

itThread 1

Thread N

Time Predictability (in multicore and SMT processors)

• Where is it required:
• Increasingly required in handheld/desktop devices
• Also in embedded hard real-time systems (cars, planes, trains, …)

• How to achieve it:
• Controlling how resources are assigned to co-running tasks

• Soft real-time systems
• SMT: DCRA resource allocation policy (MICRO 2004, IEEE Micro 2004)
• Multicores: Cache partitioning (ACM OSR 2009, IEEE Micro 2009)

• Hard real-time systems
• Deterministic resource ‘securing’ (ISCA 2009)
• Time-Randomised designs (DAC 2014 best paper award)

QoS
spaceDefinition:

• Ability to provide a minimum performance to a task
• Requires biasing processor resource allocation

Vector Architectures… Memory Latency
and Power 

• Out-of-Order Access to Vectors (ISCA 1992, ISCA 1995)

• Command Memory Vector (PACT 1998)

• In-memory computation

• Decoupling Vector Architectures (HPCA 1996)

• Cray SX1

• Out-of-order Vector Architectures (Micro 1996)

• Multithreaded Vector Architectures (HPCA 1997)

• SMT Vector Architectures (HICS 1997, IEEE MICRO J. 1997)

• Vector register-file organization (PACT 1997)

• Vector Microprocessors (ICS 1999, SPAA 2001)

• Architectures with Short Vectors (PACT 1997, ICS 1998)

• Tarantula (ISCA 2002), Knights Corner

• Vector Architectures for Multimedia (HPCA 2001, Micro 2002)
• High-Speed Buffers Routers (Micro 2003, IEEE TC 2006)
• Vector Architectures for Data-Base (Micro 2012, HPCA2015,ISCA2016)

Statically scheduled VLIW architectures

• Power-efficient FU

• Clustering

• Widening (MICRO-98)

• μSIMD and multimedia vector units
(ICPP-05)

• Locality-aware RF

• Sacks (CONPAR-94)

• Non-consistent (HPCA95)

• Two-level hierarchical (MICRO-00)

• Integrated modulo scheduling
techniques, register allocation and spilling
(MICRO-95, PACT-96, MICRO-96, MICRO-01)

The MultiCore Era
Moore’s Law + Memory Wall + Power Wall

UltraSPARC T2
(2007)

Intel Xeon
7100 (2006)

POWER4
(2001)

Chip MultiProcessors (CMPs)

How Multicores Were Designed at the Beginning?

IBM Power4 (2001)
• 2 cores, ST

• 0.7 MB/core L2,
16MB/core L3 (off-chip)

• 115W TDP

• 10GB/s mem BW

IBM Power7 (2010)
• 8 cores, SMT4

• 256 KB/core L2
16MB/core L3 (on-chip)

• 170W TDP

• 100GB/s mem BW

IBM Power8 (2014)
• 12 cores, SMT8

• 512 KB/core L2
8MB/core L3 (on-chip)

• 250W TDP

• 410GB/s mem BW

How To Parallelize Future Applications?

• From sequential to parallel codes

• Efficient runs on manycore processors
implies handling:
• Massive amount of cores and available

parallelism

• Heterogeneous systems
• Same or multiple ISAs

• Accelerators, specialization

• Deep and heterogeneous memory hierarchy
• Non-Uniform Memory Access (NUMA)

• Multiple address spaces

• Stringent energy budget

• Load Balancing

Programmability Wall

Interconnect

L2 L2

D
R

A
M

D
R

A
M

MC

L3 L3 L3L3

M
R

A
M

M
R

A
M

C

C

C

CC
lu

st
er

 In
te

rc
o

n
n

ec
t

C C

C C

C

C

C

CC
lu

st
er

 In
te

rc
o

n
n

ec
t

C C

C C

C CA A

Living in the Programming Revolution

Multicores made the
interface to leak…

ISA / API

Parallel hardware
with multiple

address spaces
(hierarchy, transfer),

control flows, …

Applications

Parallel application
logic

+
Platform specificites

Applications

The efforts are
focused on

efficiently using the
underlying
hardware

ISA / API

Vision in the Programming Revolution

Need to decouple again

General purpose

Single address space

Application logic

Arch. independentApplications

Power to the runtime

PM: High-level, clean, abstract interface

History / Strategy

SMPSs V2
~2009

GPUSs
~2009

CellSs
~2006

SMPSs V1
~2007

PERMPAR
~1994

COMPSs
~2007

NANOS
~1996

COMPSs
ServiceSs

~2010

COMPSs
ServiceSs
PyCOMPSs

~2013

OmpSs
~2008

OpenMP … 3.0 …. 4.0 ….

StarSs
~2008

DDT @
Parascope
~1992

2008 2013

Forerunner of OpenMP

GridSs
~2002

OmpSs

A forerunner for OpenMP

+ Prototype
of tasking

+ Task
dependences

+ Task
priorities

+ Taskloop
prototyping

+ Task reductions
+ Dependences

on taskwaits
+ OMPT impl.

+ Multidependences

+ Commutative

+ Dependences

on taskloops

today

OmpSs: data-flow execution of sequential programs

void Cholesky(float *A) {

int i, j, k;

for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ;

for (i=k+1; i<NT; i++)

strsm (A[k*NT+k], A[k*NT+i]);

// update trailing submatrix

for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)

sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);

}

}#pragma omp task inout ([TS][TS]A)

void spotrf (float *A);

#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)

void ssyrk (float *A, float *C);

#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)

void sgemm (float *A, float *B, float *C);

#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)

void strsm (float *T, float *B);

Decouple how we write
applications form
how they are executed

Write

Execute

Clean offloading to
hide architectural
complexities

OmpSs: A Sequential Program …

void vadd3 (float A[BS], float B[BS],

float C[BS]);

void scale_add (float sum, float A[BS],

float B[BS]);

void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

OmpSs: …Taskified…
#pragma css task input(A, B) output(C)

void vadd3 (float A[BS], float B[BS],

float C[BS]);

#pragma css task input(sum, A) inout(B)

void scale_add (float sum, float A[BS],

float B[BS]);

#pragma css task input(A) inout(sum)

void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Color/number: order of task instantiation

Some antidependences covered by flow dependences not drawn

Write

Decouple

how we write

form

how it is executed

… and Executed in a Data-Flow Model
#pragma css task input(A, B) output(C)

void vadd3 (float A[BS], float B[BS],

float C[BS]);

#pragma css task input(sum, A) inout(B)

void scale_add (float sum, float A[BS],

float B[BS]);

#pragma css task input(A) inout(sum)

void accum (float A[BS], float *sum);

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

Write

Execute

Color/number: a possible order of task execution

OmpSs: Potential of Data Access Info

• Flat global address space seen by
programmer

• Flexibility to dynamically traverse
dataflow graph “optimizing”

• Concurrency. Critical path

• Memory access: data transfers
performed by run time

• Opportunities for automatic

• Prefetch

• Reuse

• Eliminate antidependences (rename)

• Replication management

• Coherency/consistency handled by
the runtime

• Layout changes

Processor

CPU

On-chip cache

Off-chip BW

CPU

Main Memory

PPU

User
main
program

CellSs PPU lib

SPU0

DMA in
Task execution
DMA out
Synchronization

CellSs SPU lib

Original task
code

Helper threadmain thread

Memory

User
data

Renaming

Task graph

Synchronization

Tasks

Finalization
signal

Stage in/out
data

Work
assignment

Data dependence

Data renaming

Scheduling

SPU1

SPU2

SPE threads

FU
FUFU

Helper thread

CellSs implementation

IFU

REG

ISSIQRENDEC

RET
Main thread

P. Bellens, et al, “CellSs: A Programming Model for the Cell BE Architecture” SC’06.
P. Bellens, et al, “CellSs: Programming the Cell/B.E. made easier” IBM JR&D 2007

Renaming @ Cell

• Experiments on the CellSs (predecessor of OmpSs)
• Renaming to avoid anti-dependences

• Eager (similarly done at SS designs)

• At task instantiation time

• Lazy (similar to virtual registers)

• Just before task execution

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory
Hierarchy” Sci. Prog. 2009

Main memory transfers (cold)

Main Memory transfers
(capacity)

Killed transfers

SMPSs: Stream benchmark reduction in execution time

SMPSs: Jacobi reduciton in # remanings

Data Reuse @ Cell

P. Bellens, et al, “CellSs: Scheduling Techniques to Better Exploit Memory Hierarchy” Sci. Prog. 2009

Matrix-matrix multiply

• Experiments on the CellSs

• Data Reuse

• Locality arcs in dependence graph

• Good locality but high overhead  no time improvement

Reducing Data Movement @ Cell

• Experiments on the CellSs (predecessor of
OmpSs)
• Bypassing / global software cache
• Distributed implementation

• @each SPE

• Using object descriptors managed atomically with
specific hardware support (line level LL-SC)

Main memory:
cold

Main memory:
capacity

Global
software cache

Local
software cache

P. Belens et al, “Making the Best of Temporal Locality: Just-In-Time Renaming
and Lazy Write-Back on the Cell/B.E.” IJHPC 2010

DMA Reads

GPUSs implementation
• Architecture implications

• Large local store O(GB)  large task granularity  Good
• Data transfers: Slow, non overlapped  Bad

• Cache management
• Write-through
• Write-back

• Run time implementation
• Powerful main processor and multiple cores
• Dumb accelerator (not able to perform data transfers, implement

software cache,…)

Slave threads

FU
FU

FU

Helper thread

IFU

REG

ISSIQRENDEC

RET
Main thread

E. Ayguade, et al, “An Extension of the StarSs Programming Model for Platforms with Multiple GPUs” Europar 2009

Prefetching @ multiple GPUs
• Improvements in runtime mechanisms (OmpSs +

CUDA)
• Use of multiple streams
• High asynchrony and overlap (transfers and kernels)
• Overlap kernels
• Take overheads out of the critical path

• Improvement in schedulers
• Late binding of locality aware decisions
• Propagate priorities

J. Planas et al, “Optimizing Task-based Execution Support on Asynchronous Devices.” Submitted

Nbody
Cholesky

ISA / API

Runtime Aware Architectures

The runtime drives the hardware design

Applications

Runtime

PM: High-level, clean, abstract interface

Task based PM
annotated by the user

Data dependencies
detected at runtime

Dynamic scheduling

“Reuse” architectural
ideas under

new constraints

Superscalar vision at Multicore level

Programmability
Wall

Resilience Wall

Memory Wall Power Wall

Superscalar World

Out-of-Order, Kilo-Instruction Processor,
Distant Parallelism

Branch Predictor, Speculation

Fuzzy Computation

Dual Data Cache, Sack for VLIW

Register Renaming, Virtual Regs

Cache Reuse, Prefetching, Victim C.

In-memory Computation

Accelerators, Different ISA’s, SMT

Critical Path Exploitation

Resilience

Multicore World

Task-based, Data-flow Graph, Dynamic
Parallelism

Tasks Output Prediction,

Speculation

Hybrid Memory Hierarchy, NVM

Late Task Memory Allocation

Data Reuse, Prefetching

In-memory FU’s

Heterogeneity of Tasks and HW

Task-criticality

Resilience

Load Balancing and Scheduling

Interconnection Network

Data Movement

Architecture Proposals in RoMoL

C C
L1 C

lu
st

er
 In

te
rc

o
n

n
ec

t

LM

L1

LM

C C
L1

LM

L1

LM

C C
L1

LM

L1

LM

C C
L1

LM

L1

LM

Stacked
DRAM

External
DRAM

L2

L3 cache

Cluster Interconnect
- Priority-based arbitration

- By-pass routing

Runtime Support Unit
- DVFS

- Light-weight deps tracking
- Task memoization

- Reduced data motion

Vectors
- DB, sorting

- BTrees

Cache Hierarchy
- LM usage

- Coherence
- Eviction policies

- Reductions

P
IC

O
S

Runtime Management of Local Memories (LM)

LM Management in OmpSs

– Task inputs and outputs mapped to the LMs

– Runtime manages DMA transfers

8.7% speedup in execution time

14% reduction in power

20% reduction in network-on-chip traffic

0,8

0,9

1

1,1

1,2

jacobi kmeans md5 tinyjpeg vec_add vec_red

Sp
e

e
d

u
p

Cache

Hybrid

Ll. Alvarez et al. Transparent Usage of Hybrid on-Chip Memory Hierarchies in Multicores. ISCA 2015.
Ll. Alvarez et al Runtime-Guided Management of Scratchpad Memories in Multicore Architectures. PACT 2015

C C
L1 C

lu
st

er
 In

te
rc

o
n

n
ec

t

LM
L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

C C
L1
LM

L1
LM

Stacked
DRAM

External
DRAM

L2

L3 cache

P
IC

O
S

OmpSs in Heterogeneous Systems

Heterogeneous systems

• Big-little processors

• Accelerators

• Hard to program

big

little

big big

big

little little

little

Task-based programming models can adapt to these scenarios

• Detect tasks in the critical path and run them in fast cores

• Non-critical tasks can run in slower cores

• Assign tasks to the most energy-efficient HW component

• Runtime takes core of balancing the load

• Same performance with less power consumption

Architectural Support for DVFS
Reduce overheads of software solution

– Serialization in DVFS reconfigurations
– User-kernel mode switches

Runtime Support Unit (RSU)
– Power budget
– State of cores
– Criticality of running tasks

Runtime system notifies RSU
– Start task execution

• Criticality
• Running core

– End task execution

Same algorithm for DVFS
reconfigurations

Runtime system

Scheduler

HPRQ LPRQ

A A NA NA

State

C C NC NC

Criticality

Power budget 2

SWHW

Core 0 Core 1 Core 2 Core 3
DVFS
Cntrl

RSU

Architectural Support for DVFS

Runtime system

Scheduler

HPRQ LPRQ

A A NA NA

State

C C NC NC

Criticality

Power budget 2

SWHW

Core 0 Core 1 Core 2 Core 3
DVFS
Cntrl

RSU

0,6
0,7
0,8
0,9

1
1,1
1,2
1,3
1,4

Sp
e

e
d

u
p

FIFO CATS CATA CATA+RSU TurboMode

0,4
0,5
0,6
0,7
0,8
0,9

1
1,1

ED
P

E. Castillo, CATA: Criticality Aware Task Acceleration for Multicore Processors (IPDPS’16)

TaskSuperscalar (TaskSs) Pipeline

• Hardware design for a distributed task
superscalar pipeline frontend (MICRO’10)
• Can be embedded into any manycore fabric

• Drive hundreds of threads

• Work windows of thousands of tasks

• Fine grain task parallelism

• TaskSs components:
• Gateway (GW): Allocate resources for task meta-data

• Object Renaming Table (ORT)

• Map memory objects to producer tasks

• Object Versioning Table (OVT)

• Maintain multiple object versions

• Task Reservation Stations (TRS)

• Store and track task in-flght meta-data

• Implementing TaskSs @ Xilinx Zynq

GW

TRS

ORT

Ready Queue

OVT

TaskSs pipeline

Scheduler

C C C C
C C C C

C C C C
C C C C

Multicore Fabric

Y. Etsion et al, “Task Superscalar: An Out-of-Order Task Pipeline” MICRO-43, 2010

Architectural Support for Task Dependence
Management (TDM) with Flexible Software Scheduling

• Task creation is a bottleneck since it
involves dependence tracking

• Our hardware proposal (TDM)

• takes care of dependence tracking

• exposes scheduling to the SW

• Our results demonstrate that this
flexibility allows TDM to beat the
state-of-the-art

E. Castillo et al, Architectural Support for Task Dependence Management
with Flexible Software Scheduling submitted to MICRO’17)

Approximate Task Memoization (ATM)

• Approximate Task Memoization (ATM) aims at eliminating
redundant computations.

• ATM leverages runtime system metadatata to identify tasks
that can be memoized.
• ATM achieves 1.4x average speedup when only applying

memoization techniques (Static ATM).
• ATM achieves an increased 2.5x average speedup with an average

0.7% accuracy loss with task approcimation (Dynamic ATM).

I. Brumar et al, ATM: Approximate Task Memoization in the Runtime System (IPDPS’17)

Exploiting the Task Dependency Graph
(TDG) to Reduce Coherence Traffic

• To reduce coherence traffic, the
state-of-the-art applies round-robin
mechanisms at the runtime level.

• Exploiting the information
contained at the TDG level is
effective to
• improve performance

• dramatically reduce coherence
traffic (2.26x reduction with respect
to the state-of-the-art).

State-of-the-art Partition (DEP)
Gauss-Seidel TDG

DEP requires ~200GB of
data transfer across a 288
cores system

Exploiting the Task Dependency Graph
(TDG) to Reduce Coherence Traffic

• To reduce coherence traffic, the state-
of-the-art applies round-robin
mechanisms at the runtime level.

• Exploiting the information contained at
the TDG level is effective to
• improve performance

• dramatically reduce coherence traffic
(2.26x reduction with respect to the
state-of-the-art).

Graph Algorithms-Driven Partition (RIP-DEP)
Gauss-Seidel TDG

RIP-DEP requires ~90GB
of data transfer across a
288 cores system

I. Sánchez et al, Reducing Data Movements on Shared Memory
Architectures (submitted to SC’17)

Dealing with a New Form Of Heterogeneity

• Manufacturing Variability of CPUs – Different
power consumption

• Power variability becomes performance
heterogeneity in power constrained
environments

• Typical load-balancing may not be
sufficient

• Redistributing power and number
of active cores among sockets can
improve performance

even distribution

optimal distribution

Dynamic Analysis and Exploration
• Statically trying all configurations is not practical

• Huge overhead (one execution for each configuration)
• Has to be performed on each node

• Online analysis: Try multiple configurations in a single run.

Performance Benefit Energy
Savings

D. Chasapis et al, Runtime-Guided Mitigation of Manufacturing Variability
in Power-Constrained Multi-Socket NUMA Nodes (ICS’16)

Introduction - A New Form Of Heterogeneity

• Platform: 2 x sockets with 12 core Intel Xeon E5-2695v2

• Power variability becomes performance heterogeneity in
power constrained environments

Hash Join, Sorting, Aggregation, DBMS
• Goal: Vector acceleration of data bases

• “Real vector” extensions to x86
• Pipeline operands to the functional unit (like Cray machines,

not like SSE/AVX)

• Scatter/gather, masking, vector length register

• Implemented in PTLSim + DRAMSim2

• Hash join work published in MICRO 2012
• 1.94x (large data sets) and 4.56x (cache resident data sets)

of speedup for TPC-H
• Memory bandwidth is the bottleneck

• Sorting paper published in HPCA 2015
• Compare existing vectorized quicksort, bitonic mergesort,

radix sort on a consistent platform

• Propose novel approach (VSR) for vectorizing radix sort with
2 new instructions

• Similarity with AVX512-CD instructions
(but cannot use Intel’s instructions because the
algorithm requires strict ordering)

• Small CAM

• 3.4x speedup over next-best vectorised algorithm with the
same hardware configuration due to:

• Transforming strided accesses to unit-stride

• Elminating replicated data structures

• Ongoing work on aggregations

• Reduction to a group of values, not a single scalar value
ISCA 2016

• Building from VSR work

0
2
4
6
8

10
12
14
16
18
20
22

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

m
vl

-8

m
vl

-1
6

m
vl

-3
2

m
vl

-6
4

quicksort bitonic radix vsr

sp
ee

d
u

p
 o

ve
r

sc
al

ar
 b

as
e

lin
e

1 lane 2 lanes 4 lanes

Overlap Communication and Computation

• Hybrid MPI/OmpSs: Linpack example

• Extend asynchronous data-flow
execution to outer level
• Taskify MPI communication primitives

• Automatic lookahead

• Improved performance

• Tolerance to network bandwidth

• Tolerance to OS noise

P0 P1 P2

V. Marjanovic et al, “Overlapping Communication and Computation by using a
Hybrid MPI/SMPSs Approach” ICS 2010

Effects on Bandwidth

flattening

communication pattern

thus

reducing

bandwidth requirements

*simulation on application with

ring communication pattern

V. Subotic et al. “Overlapping communication and computation by
enforcing speculative data-flow”, January 2008, HiPEAC

Related Work

• Rigel Architecture (ISCA 2009)
• No L1D, non-coherent L2, read-only, private and cluster-shared data
• Global accesses bypass the L2 and go directly to L3

• SARC Architecture (IEEE MICRO 2010)
• Throughput-aware architecture
• TLBs used to access remote LMs and migrate data accross LMs

• Runnemede Architecture (HPCA 2013)
• Coherence islands (SW managed) + Hierarchy of LMs
• Dataflow execution (codelets)

• Carbon (ISCA 2007)
• Hardware scheduling for task-based programs

• Holistic run-time parallelism management (ICS 2013)

• Runtime-guided coherence protocols (IPDPS 2014)

RoMoL … papers

• V. Marjanovic et al., “Effective communication and computation overlap with
hybrid MPI/SMPSs.” PPoPP 2010

• Y. Etsion et al., “Task Superscalar: An Out-of-Order Task Pipeline.” MICRO 2010

• N. Vujic et al., “Automatic Prefetch and Modulo Scheduling Transformations for
the Cell BE Architecture.” IEEE TPDS 2010

• V. Marjanovic et al., “Overlapping communication and computation by using a
hybrid MPI/SMPSs approach.” ICS 2010

• T. Hayes et al., “Vector Extensions for Decision Support DBMS Acceleration”.
MICRO 2012

• L. Alvarez,et al., “Hardware-software coherence protocol for the coexistence of
caches and local memories.” SC 2012

• M. Valero et al., “Runtime-Aware Architectures: A First Approach”. SuperFRI
2014

• L. Alvarez,et al., “Hardware-Software Coherence Protocol for the Coexistence of
Caches and Local Memories.” IEEE TC 2015

RoMoL … papers

• M. Casas et al., “Runtime-Aware Architectures”. Euro-Par 2015.

• T. Hayes et al., “VSR sort: A novel vectorised sorting algorithm & architecture
extensions for future microprocessors”. HPCA 2015

• K. Chronaki et al., “Criticality-Aware Dynamic Task Schedulling for
Heterogeneous Architectures”. ICS 2015

• L. Alvarez et al., “Coherence Protocol for Transparent Management of
Scratchpad Memories in Shared Memory Manycore Architectures”. ISCA 2015

• L. Alvarez et al., “Run-Time Guided Management of Scratchpad Memories in
Multicore Architectures”. PACT 2015

• L. Jaulmes et al., “Exploiting Asycnhrony from Exact Forward Recoveries for DUE
in Iterative Solvers”. SC 2015

• D. Chasapis et al., “PARSECSs: Evaluating the Impact of Task Parallelism in the
PARSEC Benchmark Suite.” ACM TACO 2016.

• E. Castillo et al., “CATA: Criticality Aware Task Acceleration for Multicore
Processors.” IPDPS 2016

RoMoL … papers

• T. Hayes et al “Future Vector Microprocessor Extensions for Data
Aggregations.” ISCA 2016.

• D. Chasapis et al., “Runtime-Guided Mitigation of Manufacturing Variability
in Power-Constrained Multi-Socket NUMA Nodes.” ICS 2016

• P. Caheny et al., “Reducing cache coherence traffic with hierarchical
directory cache and NUMA-aware runtime scheduling.” PACT 2016

• T. Grass et al., “MUSA: A multi-level simulation approach for next-
generation HPC machines.” SC 2016

• I. Brumar et al., “ATM: Approximate Task Memoization in the Runtime
System.” IPDPS 2017

• K. Chronaki et al., “Task Scheduling Techniques for Asymmetric Multi-Core
Systems.” IEEE TPDS 2017

• C. Ortega et al., “libPRISM: An Intelligent Adaptation of Prefetch and SMT
Levels.” ICS 2017

Roadmaps to Exaflop

From Tianhe-2..

…to Tianhe-2A

with domestic
technology.

From K computer…

… to Post K

with domestic
technology.

From the PPP for
HPC…

to future PRACE
systems…

…with domestic
technology

with domestic
technology.

IPCEI on HPC

?

HPC is a global competition

“The country with the strongest computing capability
will host the world’s next scientific breakthroughs”.

US House Science, Space and Technology Committee Chairman
Lamar Smith (R-TX)

“Our goal is for Europe to become one of the top 3
world leaders in high-performance computing by 2020”.

European Commission President
Jean-Claude Juncker (27 October 2015)

“Europe can develop an exascale machine with
ARM technology. Maybe we need an .

consortium for HPC and Big Data”.
Seymour Cray Award Ceremony Nov. 2015

Mateo Valero

HPC: a disruptive technology for Industry

“…Europe has a unique opportunity to act and
invest in the development and deployment of High

Performance Computing (HPC) technology, Big
Data and applications to ensure the

competitiveness of its research and its industries.”

Günther Oettinger, Digital Economy & Society
Commissioner

“The transformational impact of
excellent science in research and
innovation”

Final plenary panel at ICT - Innovate, Connect,
Transform conference, 22 Oct 2015, Lisbon.

BSC and the EC

“Europe needs to develop an entire
domestic exascale stack from the
processor all the way to the system
and application software“

Mateo Valero, Director of Barcelona
Supercomputing Center

Final plenary panel at ICT - Innovate,
Connect, Transfor”m conference, 22
October 2015 Lisbon, Portugal.

the transformational impact of excellent science in
research and innovation

Mont-Blanc HPC Stack for ARM
Industrial applications

System software

Hardware

Applications

512 RiscV cores in 64 clusters, 16GF/core: 8TF
4 HBM stacks (16GB, 1TB/s each): 64GB @ 4TB/s
16 custom SCM/Flash channels (1TB, 25GB/s each): 16TB @ 0.4TB/s

BSC Accelerator RISC-V ISA

Vector Unit

· 2048b vector

· 512b alu (4clk/op)

1 GHz @ Vmin

OOO

4w Fetch

· 64KB I$

· Decoupled I$/BP

· 2 level BP

· Loop Stream Detector

4w Rename/Retire

D$

· 64KB

· 64B/line

· 128 in-flight misses

· Hardware prefetch

1MB L2 per core

D$ to L2

· 1x512b read

· 1x512b write

L2 to mesh

· 1x512b read

· 1x512b write

Cluster holds snoop
filter

interposer

cyclone

mem mem

mem mem

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

Flash

A D D H H H H D D A

D C C C C C C C C D

D C C C C C C C C D

H C C C C C C C C H

H C C C C C C C C H

H C C C C C C C C H

H C C C C C C C C H

D C C C C C C C C D

D C C C C C C C C D

A D D H H H H D D A

Interposer

cyclone flashmem

Package substrate

Do we need an
type consortium for HPC and Big Data?

A window of opportunity is open:
• Basic industrial and scientific know-how is available
• Excellent funding opportunities exist in H2020 at European level

and in the member state structural funds

It’s time to invest in large Flagship projects
for HPC to gain critical mass

HPC European strategy & Innovation

http://ec.europa.eu/commission/2014-2019/oettinger/blog/mateo-valero-
director-barcelona-supercomputing-center_en

A New Era of Information Technology

Current infrastructure sagging under its own weight

Prof. Mateo Valero – Big Data

Pervasive
Connectivity

Explosion of
Information

400,710 ad
requests

2000 lyrics played
on Tunewiki

1,500 pings sent on
PingMe

208,333 minutes
Angry Birds played

23,148 apps
downloaded

98,000 tweets

Smart Device
Expansion

In 60 sec
today

2013

30
Billion

By 2020

40
Trillion GB

… for 8
Billion

10
Million

DATA

(1)

(2)

(3)

Devices

Mobile
Apps

(4)

(1) IDC Directions 2013: Why the Datacenter of the Future Will Leverage a Converged Infrastructure, March 2013, Matt Eastwood ; (2) & (3) IDC Predictions 2012: Competing for 2020, Document 231720, December 2011, Frank Gens; (4) http://en.wikipedia.org

Internet of Things

HPC European strategy & Innovation

The Data Deluge

2020
40ZB*

(figure exceeds prior forecasts
by 5 ZBs)

2005 2010
2012

2015

8.5ZB

2.8ZB
1.2ZB0.1ZB

* Source: IDC

Prof. Mateo Valero – Big Data

1030
This will take us
beyond our
decimal system

Geopbyte

This will be our digital
universe tomorrow…

Brontobyte

10
27

10
24

This is our digital universe today
= 250 trillion of DVDs

Yottabyte

1021

1.3 ZB of network
traffic by 2016

Zettabyte

10
18

1 EB of data is created on the internet each day = 250 million
DVDs worth of information. The proposed Square Kilometer

Array telescope will generated an EB of data per day

Exabyte

10
12

Terabyte

500TB of new data per day are ingested in Facebook databases

1015
Petabyte
The CERN Large Hadron Collider
generates 1PB per second

109

Gigabyte

10
6

Megabyte

How big is big?
Saganbyte, Jotabyte,…

Prof. Mateo Valero – Big Data

Higgs and Englert’s Nobel for Physics 2013

Last year one of the most computer-intensive scientific
experiments ever undertaken confirmed Peter Higgs and
François Englert’s theory by making the Higgs boson – the so-
called “God particle” – in an $8bn atom smasher, the Large
Hadron Collider at Cern outside Geneva.

“ the LHC produces 600 TB/sec… and after filtering needs to
store 25 PB/year”… 15 million sensors….

Big Data in Biology

• High resolution imaging

• Clinical records

• Simulations

• Omics

https://www.google.es/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=k-dhpRx1XamynM&tbnid=vB9Q2HF4OA6ksM:&ved=0CAcQjRw&url=https://www.egi.eu/news-and-media/newsletters/Inspired_Issue_14/future-ls.html&ei=Ks4qVIXELOX-sATn4YHgAQ&bvm=bv.76477589,d.cWc&psig=AFQjCNEUhN6IVwZ0aj6VEvnaybVAuvr_ig&ust=1412177712503833

Sequencing Costs

75Prof. Mateo Valero – Big Data

Source: National Human Genome Research Institute (NHGRI)
http://www.genome.gov/sequencingcosts/

(1) "Cost per Megabase of DNA Sequence" — the cost of determining one megabase (Mb; a million bases) of DNA sequence of a specified quality
(2) "Cost per Genome" - the cost of sequencing a human-sized genome. For each, a graph is provided showing the data since 2001

In both graphs, the data from 2001 through October 2007 represent the costs of generating DNA sequence using Sanger-based chemistries and
capillary-based instruments ('first generation' sequencing platforms). Beginning in January 2008, the data represent the costs of generating DNA
sequence using 'second-generation' (or 'next-generation') sequencing platforms. The change in instruments represents the rapid evolution of DNA
sequencing technologies that has occurred in recent years.

Cognitive Computing

Acuerdo de colaboración para promover
conjuntamente el desarrollo de sistemas
avanzados de “deep learning” con
aplicaciones a los servicios bancarios

Example: Cognitive Computing is already in
business

• In 2011 IBM Watson computer defeated two of Jeopardy’ s
greatest champions

77

Prof. Mateo Valero – Big Data

Since then, Watson

supercomputer has

become 24 times

faster and smarter,

90% smaller, with a

2,400% improvement

in performance

Watson Group has

collaborated with

partners to build

6,000 apps

Neural Networks

• Computational model in computer science
based on a collection of simple neural units.

• Each neural unit is connected to many others

• The strengths of these connections is
expressed in terms of weights.

• Neural units compute summation functions

• NN are self-learning and can be trained

• NN are particularly good in feature detection.

• In practice, NN can be expressed in
terms of matrix-matrix multiplications.

IA+HPC

SC-2017-SLC

Dios los cría y la IA+HPC los junta….

IA+HPC

SC-2017-SLC

BSC strategy for Artificial Intelligence

Social &
Personal

Data

Organ
simulation

Earth
Sciences

Industrial
CASE apps

Medical
Imaging

Genomic
Analytics

Text
Analytics

Programming models and runtimes
(PyCOMPSs, TIRAMISU, interoperability current approaches)

Data models and algorithms
(approximate computing -- reduced precision, adaptive layers, DL/Graph Analytics, …)

Precision medicine Other domains

Data platforms + standards

Projects with public/private institutions and companies

Hw acceleration of DL workloads
(novel architectures for NN, FPGA acceleration)

NVIDIA Tesla P4 and P40 GPU’s (2016)

• Tesla P4
• # CUDA cores: 2560 @ 1063MHz
• Peak single precision: 5.5TFLOPS
• Peak INT8: 22 TOPS
• Low precision: 8-bit dot-product

with 32-bit accumulate
• VRAM: 8 GB GDDR5 @ 192 GB/s
• TDP: ~75W

• Tesla P40
• # CUDA cores: 2560 @ 1531MHz
• Peak single precision: 12.0TFLOPS
• Peak INT8: 47 TOPS
• Low precision: 8-bit dot-product

with 32-bit accumulate
• VRAM: 24 GB GDDR5 @ 346GB/s
• TDP: ~250W

83

Source: NVIDIA

Google Tensor Processing Unit (2015,
published 2017)

• 34 GB/s off-chip memory

• 28MB on-chip memory

• Frequency 700MHz

• TDP 75W

• Matrix Multiply Unit

• 256x256 MAC Units

• 8-bit multiply and adds

• 32-bit accumulators

• Peak Throughput: 92 TOPS/s

• Power Efficiency: 132 GOPS/W

• GPUs for training, TPUs for inference

• Gameplay to beat the World Go champion

• Internally used at google for Streetview and

• Rankbrain search optimizer

84

Source: google

Nervana’s Lake Crest Deep Learning
Architecture (2017)

• The Lake Crest chip will operate as a Xeon Co-processor.

• Tensor-based (i. e. dense linear algebra computations)

• 4 8GB HBM2 at the same chip interposer@1TB/s

• Each HBM has its own memory controller

• 12 Inter-Chip Links (ICL) 20x faster than PCI

• 12 Computing Nodes featuring several cores

• Intel's new "Flexpoint" architecture within the Nodes

• Flexpoint enables 10x ILP increase and low power consumption

85

Source: elektroniknet

Quantitative Analysis of Deep Learning
Architectures

• Each N-neuron Hidden Layer (HL) requires a NxN GEMM

• 2D NxN Systolic Array carries out NxN GEMM in 2N+1 cycles.

86

0,00001

0,0001

0,001

0,01

0,1

1

10

Se
co

n
d

s/
G

EM
M

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

0,01

0,1

1

10

100

1000

10000

G
B

/s

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

1,E+07

1,E+09

1,E+11

1,E+13

1,E+15

1,E+17

O
P/

s

Matrix Size

166MHz

1000MHz

1500MHz

2500MHz

Quantitative Analysis of Deep Learning
Architectures

• Each N-neuron Hidden Layer (HL) requires a NxN GEMM

• 2D NxN Systolic Array carries out NxN GEMM in 2N+1 cycles.

87

0,00001

0,0001

0,001

0,01

0,1

1

10

Se
co

n
d

s/
G

EM
M

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

0,01

0,1

1

10

100

1000

10000

G
B

/s

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

1,E+07

1,E+09

1,E+11

1,E+13

1,E+15

1,E+17

O
P/

s

Matrix Size

166MHz

1000MHz

1500MHz

2500MHz

HL of ~1024 neurons can identify
simple images
– 28x28 pixel images

– Each image contains a digit 0-9

Quantitative Analysis of Deep Learning
Architectures

• Each N-neuron Hidden Layer (HL) requires a NxN GEMM

• 2D NxN Systolic Array carries out NxN GEMM in 2N+1 cycles.

88

0,00001

0,0001

0,001

0,01

0,1

1

10

Se
co

n
d

s/
G

EM
M

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

0,01

0,1

1

10

100

1000

10000

G
B

/s

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

1,E+07

1,E+09

1,E+11

1,E+13

1,E+15

1,E+17

O
P/

s

Matrix Size

166MHz

1000MHz

1500MHz

2500MHz

HL of ~4096 neurons can identify
images containing a single
concept
– 32x32 pixel images

– Each image is classified by
categories like “ship”, “cat” or
“deer”.

Quantitative Analysis of Deep Learning
Architectures

• Each N-neuron Hidden Layer (HL) requires a NxN GEMM

• 2D NxN Systolic Array carries out NxN GEMM in 2N+1 cycles.

89

0,00001

0,0001

0,001

0,01

0,1

1

10

Se
co

n
d

s/
G

EM
M

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

0,01

0,1

1

10

100

1000

10000

G
B

/s

Matrix Size

166MHz
1000MHz
1500MHz
2500MHz

1,E+07

1,E+09

1,E+11

1,E+13

1,E+15

1,E+17

O
P/

s

Matrix Size

166MHz

1000MHz

1500MHz

2500MHz

Lake Crest’s mem BW (~TB/s)
targets very large HL with
O(10,000-100,000) neurons

These NN are
used for complex
image analysis

BSC Proposal for Deep Learning
90

16 2D-systolic arrays 4096x4096@1GHz: 134TOP/s
4 HBM stacks (16GB@1TB/s each): 64 GB @ 4TB/s
DDR5 SDRAM (384GB@180GB/s): 384GB @ 0.18TB/s

SoC

HBM HBM

HBMHBM

Interposer

HBM MC HBM MC

HBM MCHBM MC

D
D

R

D
D

R

Sw
it

ch General
Purpouse

SoC

Sw
it

ch

Syst Arrays

Syst Arrays

Human Brain Project

• 10-year, 1000M€ FET flagship project

• Goal: to pull together all existing
knowledge about the human brain and
to reconstruct the brain in
supercomputer based models and
simulations.

91

Expected outcomes: new treatments for brain disease

and new brain-like computing technologies

BSC role: Provision and optimisation of programming

models to allow simulations to be developed efficiently

MareNostrum part of the HPC platform for simulations

View from Europe: SpiNNaker machine

• HBP platform
– 500,000 cores

– 6 cabinets
(including server)

• Launch
– 30 March 2016

92

IBM TrueNorth Processor
• 64*64=4096 cores

• 256 neurons/core, 64K synapses/core

• 104Kb/core memory
• 65Kb for synapse states
• 32Kb for neuron states/parameters
• 6Kb for router destination addresses
• 1Kb for axonal delays

• 20mW/cm2 power density
• 72mW at 0.75V

• 46 Billion SOPS/Watt (Synoptic
Operations Per Second) typ.

• 400 Billion SOPS/Watt max.
• Compared to SoA supercomputer

at 4.5 Billion FLOPS/Watt

Source: Science magazine

View from Europe: Heidelberg HICANN

• Wafer-scale analogue neuromorphic system

• 8” 180nm wafer:
• 200,000 neurons

• 50M synapses

• 104x faster than biology

94

Quantum Computing: Brave New World of
post-Moore architecture

Quantum Processors
– Dwave

– IBM

– Microsoft

– Google

– View from Europe: Delft University Prototypes

D-Wave Quantum Processor

Environment colder than space

Leverages superconducting quantum effect

1000 qbits, 128K josephson junctions

Installed at NSA, Google, UCSB

108X faster than Quantum Monte Carlo

Algorithm on a single core*

• Source: Denchev et al. What is the Computational Value of Finite-Range Tunneling?
Phys. Rev. August 2016

IBM
Building “Universal Quantum Computer”

Developed a Quantum Computing API to make developing quantum
applications easier

Promotes experimentation on

publicly available 5-qbit quantum

processor

Microsoft and Google
Microsoft is looking into topological quantum computing in their
global “Station Q” research consortium

Microsoft has “Quarc” lab working actively in quantum computer
architecture in Redmond.

Google manufactured a 9-bit Quantum Computer in their Quantum
AI Lab

Google ambition is to produce a viable quantum computer in the
next five years*

• Mohseni et al: “Commercialize quantum technologies in five years”,
Nature (Comments) March 2017

View from Europe: Delft Quantum
Prototypes

50M Euro grant from Intel

Building hybrid CMOS/Quantum processor

Doing algorithms, compilers, architecture*

* (To appear in DAC 2017) Riesebos et al. “Pauli Frames
for Quantum Computer Architectures”

www.bsc.es

THANK YOU!

