N

Towards Dynamic Updates In Service
Composition

Mario Bravetti Department of Computer Science
University of Bologna

INRIA research team FOCUS

1
N

Joint work with:
Gianluigi Zavattaro

N

Plan of the Talk

¢ Choreographies and Orchestrations
+ Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

N

Web Service Choreography
Description Language

¢ Describe the interaction among the
combined services from a top abstract
view

Choreography Orchestration
(e.g- WS-CDL) (e.g- WS-BPEL)

Top abstract view One Party detailed
of whole system: view of the system

each action is a that orchestrates a
communication part of it by sending
involving two of (to other parties) &
its participants receiving messages

N

Similar to UML Sequence

Diagrams

Buyer

QuoteResponse

QuoteAcceptance

~ QrderConfirmation

DeliveryDetails

Seller Shipper

RequestForQuote -~

__RequestDelDetails -

2

DeliveryDetaills

WS-CDL

¢ Global view of service interactions

s

Buyer

pan

WS-CDL

¢ Global view of service interactions

M{ Seller }
Bwver
bk

WS-CDL

¢ Global view of service interactions

[Seller }
Request
Offer

[Buye r} PayDescr

A 4

b

N

WS-CDL

¢ Global view of service interactions

[Seller }
Request
Offer

{Buye r} PayDescr

Payment

A 4

ponkc

WS-CDL

¢ Global view of service interactions

s

Request Y

N

{Buyer} PayDescr| |Confirm

A 4

Receipt
Bank }

WS-CDL

N

RequeStBuyerQSeller '

(Oﬁ:erSeIIereBuyer ‘
I:)ay[)esc:rSellereBank) '

IDaymentBuyereBank '

(COnﬁrmBank%SeIler ‘

Recel ptBank% Buyer)

Projection of the Choreography
on the Single Participants

N

Buyer: Invoke(Request)@Seller;Receive(Offer);
Invoke(Payment) @Bank;Receive(Receipt)

Seller: Receive(Request);

(Invoke(Offer)@Buyer |
Invoke(PayDescr)@Bank);
Receive(Confirm)

Bank: Receive(PayDescr);Receive(Payment);
(Invoke(Receipt)@Buyer |
Invoke(Confirm)@Seller)

Behavioural contracts and
service retrieval

N

¢ Problem of retrieving in the internet
services (by behavioral contracts) that:
= interact without blocking (compliant)

= can play the roles described by the
choreography

+ Useful notion: projection of choreography
into contracts (one for each role)

+ We cannot require that exactly projected
contracts are retrieved

Deriving Set of Compliant Contracts

from Choreography

[CHYO07][BZ07/Db]

-

Choreography:

abstract description of the
composition of a group

~

pTojection ‘lk of collaborating services Y

compliant by
construction

p
Contract:
abstract service
9 description y

Participant 1

e.g. WS-CDL

’projection

M

N
Contract:
abstract service
L description)

Participant n

Compliance-Preserving Contract
Refinement !
L Choreography }

' compliant by ’

construction

[Contract Part. 1 } G——) [Contract Part. n J

‘ 'refines 'refines
compliance

public registry | preserved by public registry
refinement
[Contract J -— [Contract }

¥ EEEEE] ¥

ecCiprocal invocations
L Service J(I)[Service J

A Formal Model for WS-CDL

¢ A global choreography language:
H = a5, [110
HH | H+tH | HIH | H*

A Formal Model for WS-CDL

N

¢ A global choreography language:
H = a5, [110
ALH ([HaY | HIH | B

r invokes the
operation a of s

Unsuccessful

|
SUCCG_SS‘CL_II termination
termination

A Formal Model for WS-CDL

¢ A global choreography language:
H = a5, [110
HH | H+tH | HIH | H*

Sequence / / /
Choice

Parallel Repetition

N

Standard semantics

¢ Standard semantics where:
= a,, produces a a,, transition to 1
= 1 produces a V transition to 0

Semantics of choreographies

N

Arqy —7r H a H,
(COMM) @y, sry —227201 (ONE) 150 (ChO) ——L 210

H, +H, = H!

Aprq4 —1r \/ o
H, —2 H; H, * H, H, > H}
(SEQ) T — (SEQTICK) ——— ————
Hi; Ho ——2 H!: H, Hy; Hy — H,
H a'Tl_PPQ Hl H \/ HI H \/ H/
(PAR) ! (PARTICK) 22— L 2
Hy | Hh —— Hj | H> Hy, | Hy > H| | H}
H Cip—o HI .
(STAR) (STARTICK) H Y0

™1 —)?"2

H* y Hl’ H*

N

A Formal Model for orchestrations

¢ A language for orchestrations:
Cue= ala lxcIl110]

CCIl C+C | CIC | C*
P == |[C], | PIP

A Formal Model for orchestrations

N

¢ A language for orchestrations:

Ce= al@a lxl11]0]
ccli C»IC | Clc\ﬁ
P [C],4 | P|P
_ Unsuccessful
regeive oha ‘ termination
invoke a at r Successful
termination

internal

A Formal Model for orchestrations

N

¢ A language for orchestrations:
Cue= ala lxcIl110]
CCl C+C | CIC | C*

P7fC]r /PIp T

Sequence
Choice

1
Parallel Repetition

A Formal Model for orchestrations

N

¢ A language for orchestrations:

Cue= ala lxcIl110]
CCIl C+C | CIC | C*
P == |[C], | PIP

Behaviour of Parallel composition
participant r of participants

Standard semantics

N

¢ Standard semantics where:

= a_ transition of role r synchronizes with
a transition of role s and produces a
a,. transition

= 1 produces a V transition to 0
= V is synchronized over parallel

N

Notion of Implementation

U

Given a choreography H, a system P
implements H if:

= P is a composition of compliant contracts

+ Intuitively they all always reach termination vV
(we will see)
= Each completed (V terminating) weak
(T abstracting) trace of P is a completed
trace of H

+ all computations of P are correct conversations
according to the choreography H

N

Examples of choreography
Implementations:

Given the choreography:

RequeStAliceéBob; (AcceptBobéAlice * RE] eCtBob%Alice)
The following are implementations:

[Requesty,,;(Accept+Reject)] ;e |
[Request;(Acceptyy;+Rejectyjice)lpon

N

Examples of choreography
Implementations:

Given the choreography:

RequeStAliceéBob; (AcceptBobéAlice * RE] eCtBob%Alice)
The following are implementations:

[Requesty,;(Accept+Reject+Retry)] o ;e |
[Request{ Accep o Rejec o lno

N

Examples of choreography
Implementations:

Given the choreography:

RequeStAliceéBob; (AcceptBobéAlice * RE] eCtBob%Alice)
The following are implementations:

[Requestg,,;(Accept+Reject+Retry)] o |
[Request;j ;CCEP i:Alice]Bob

“Canonical” Projection and
Well-formed Choreography [sc 20071

N

+ Canonical projection [[1I;:

- Ta, ift=r
[[a, 5. 1l; =4{ a if t=s
1 otherwise

[IH;H 1l=[[H]];; [[H']l, [[HIR1=[[HI] | [[H]]
[[H+H']l=[[HI], + [[H’]l, [[H*]l=[[H]]*

¢ His well-formed if the system P, achieved via
canonical projections, implements H

Example

Consider the choreography H:

;357 by
+ Projection:

[2,;1], | [a1], 1 [Lb,], | [L;b],
¢ Is H well-formed?

= NO

« But, if r=t.... YES
[2;5, 1 I [a1] [[1b],

N

Connected Choreography

(with Ivan Lanese)

¢ Sufficient conditions
= Unique point of choice,

= connectedness of sequence,
= causality safety

that guarantee that H is well-formed

= i.e. projection of a connected choreography
H produces an implementation of H

N

Unique point of choice

¢ In a choice H+H’

= The sender of the initial transitions in H and
in H’ is always the same

= The roles in H and in H’ are the same

+ Example: if we drop the second
condition

(arés + br%t); C s>t

[(& +b,);1], | [(a+D)jE I, | [(1+b);c],

N

Plan of the Talk

Choreographies and Orchestrations
& Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

Contracts

N

¢ Contract: service “behavioural interface”

= correct sequences

of invoke and receive | public regis"{
= as in an orchestration Contract:
(role of a coreography) abstracjc SEIVICE
= just finite-state labeled | _ description /
transition systems with 1

successful termination _
Service

Contract Compliance

¢ Verification of correctness of service composition
based on their contracts: successful interaction
i.e. no deadlock / termination reached

N

public registry public registry
e N\ e
Contract: Contract:
abstract service abstract service
9 description b % description)

: - :

Reciprocal invocations
{ Service T XL T Service

Service Compliance: Formally

N
N

¢ Services are compliant if the following
holds for their composition P:

o a
P--i>.. -2 P

implies that there exists P”’ s.t.

&
P %, Yo pr Vs

= i.e. every computation can be extended to
reach successful completion of all services

= termination under fairness assumption

N
N

Example: compliant services

¢ The following pairs of services are
compliant:

= C, = a+b+c C,=a+b
O C1=a;b C ="a |_b
=(a; b)* C,=a(bja)%b

Compliance-Preserving Contract
Refinement !
L Choreography }

projection P
’ compliant by ’

construction

[Contract Part. 1 } <—>[Contract Part. n J

‘ 'refines ' refines
compliance

rojection

public registry | preserved by public registry

[Contract J M’ [Contract }

¥ ¥

Reciprocal invocations
L Service J(XL)[Service

|

Contract Refinement Relation

compliant by
construction

[Contract Part. 1 } <—>[Contract Part. n J

‘ 'refines 'refines
compliance

public registry | preserved by public registry
refinement
[Contract J — [Contract }

N

Formally: Subcontract Preorder

U

¢ Preorder < between contracts C:
s C' < Cmeans C'is a subcontract of C

C

subcontract
preorder

sub-contracts
of C

Definition of Preorder Induced from
Independent Refinement

N

Given a set of compliant contracts

nsu bcontract
preorder

sub-contracts
of C_

sub-contracts
of C,

sub-contracts
of C,

Cll C12 N C’

n

Is a set of compliant contracts

No maximal subcontract preorder
... In general

N

U

+ Consider the system:
[a] | [@]
we could have one preorder <, for which
a+cl<;a at+cl<;a
and one preorder <, for which
a+cl0s,a at+cl0s,a
but no subcontract preorder could have
at+clO<a a+cl0<a
¢ Consequence: no independent refinement!

N

Maximal pre-order

¢ It exists changing some assumptions
(asymmetry between inputs and outputs)

= Constraining the structure of contracts:

» outputs choosen internally (output persistence)

= Strengthening the notion of compliance:

+ when an output is performed a corresponding
input is required to be already enabled, like in
ready-send of MPI (strong compliance)

= Moving to asynchronous communication
(e.g. via message queues)

N
N

Output persistence

+ Output persistence means that given a

process state P:
= If P has an output transition on a and
P->P’ with a different from output on a,

then aIso P’ has an output transition on a
(and P’ >)

b 0.7
S

N

Syntactically...
(guarantees output persistance)

¢ This holds, for instance, in WS-BPEL

= Outputs cannot resolve the pick operator
for external choices (the decision to

execute outputs is taken internally)
+ External choice among inputs: a+b but
>=< Ta+Th
>r<7< a+thb
no external choice among outputs (and mixed
choice) in contracts!

N

Choreography implementations
(with output persistent contracts)

¢ Projection modified: [[a,5, 1, = t;a, if t=r

Requestyjicespobs (AccePtpy,satice + R€jECtsoh5 AlLice)
The following services can be retrieved:

[T;Requesty,,;,; (Accept+Reject)] 5j;c. |
[Request;(t;Accept, ;. ..+T;Reject yp:..) Igop

N

Choreography implementations
(with output persistent contracts)

¢ Projection modified: [[a,5, 1, = t;a, if t=r

Requestyjicespobs (AccePtpy,satice + R€jECtsoh5 AlLice)
The following services can be retrieved:

[T;Requestg,,, (Accept+Reject+Retry)] ;. |
[Request;(t;Acceptyy;.tT;Reject yyi.0) 1501

N

Choreography implementations
(with output persistent contracts)

¢ Projection modified: [[a,5, 1, = t;a, if t=r

Requestyjicespobs (AccePtpy,satice + R€jECtsoh5 AlLice)
The following services can be retrieved:

[t;Requestg,,;(Accept+Reject+Retry)] ;.. |
[Request;t;Acceptpiicelob

N

Compliance testing is the maximal
preorder

o C’ <™ C iff for every context P
[C]IP compliance implies [C']IP compliance
= <™ js a subcontract preoder

= <™ includes all subcontract preorders

+ With respect to (fair) testing not only the
test P has to succeed but also the tested C

N

Properties of the maximal
subcontract preorder

¢ If we assume outputs a,; to be directed to
a location 1 (e.g. role of a choreography)

we can reduce the problem:
C’' <™ Ciff C'\N-I(C) <™ C

l.e. to subcontract relation when inputs
not among inputs of C I(C) are restricted

= because compliant tests of C cannot perform
reachable outputs to C that it cannot receive

N
N

Thus...
(typical in session types)

External choices on inputs can be
extended:

m a+b <™ a (thanks to this property)

+ Internal choices on outputs can be
reduced:

<max

mT.a S T;a, A T T bl (being more deterministic, as in testing)

Input and Output knowledge

N

+ Contracts with undirected outputs a la CCS
property does not hold, e.g. a+tb #"* a

= Consider for instance (capturing)
+ the correct system [all [z a.bl | [tb]and
+ the incorrect one [a+b 1 | [t @bl | [t;b |

+ Problem can be solved by considering
knowledge of I/O of other contracts <,
= exploiting knowledge we have a+b <y . a

Decidible Sound Characterization
Based on a Must-like Testing

N

Subcontract relation contains a universal
quantification over possible contexts

Sound characterization resorting to a
must-testing theory (should-testing [RV05])
= C’ <™ Cis implied by

C"\ N-I(C) Sshould-testing C

m j.e. £ 7 coarser than testing preorder
(and of simulation)

max

Uncontrollable contracts

N

¢ Trace equivalence not coarser than <max
because contracts can include traces
not leading to success
= Those traces not observed by tests

= Example:
uncontrollable contracts (unsuccesful for
any test) are all equivalent:
+ a;b;0 equivalent to b;c;0

Choreography Conformance

L Choreography }

iIs conformant for is conformant for
participant 1 to participant n to

compliance

public registry | 9uaranteed by public registry

EEN

Contract J - [Contract }

Definition of Relation Induced from
Independence Property

/‘\

" with roles

P1/P2se++s / l

contracts
for p,

for p,

[Cl 1[G, ...

contracts

conformance

I [C,]

contracts
for p,

relation

on iIMplements H

No Maximal Choreography
Conformance Relation

N

J # Consider the choreography

A3 | br%s
that can be implemented as:

[T;a, | T;FS 1.1 [tab+Tb;al,
[t7agT;b, + tbtia, 1. | [alb],

but not as:
[tiaytb, + thyta 1. | [tab +t;b;al,

= Notice that we used output persistent contract

so even asymmetry of I/O does not help

Summary of Results

N

U

¢ Refinement with knowledge about other initial
contracts limited to I/O actions

= ‘normal” compliance:
+ Uncostrained contracts: maximal relation does not exist

» Contracts where outputs are internally chosen (output persistence):
maximal relation exists and “"1"” knowledge is irrelevant

+ Output persistent contracts where outputs are directed to a location:
maximal relation exists and “I/O"” knowledge is irrelevant
= strong compliance:
+ Uncostrained contracts (where output are directed to a location):
maximal relation exists and “I/O"” knowledge is irrelevant
= queue-based (asynchronous) compliance:

+ Uncostrained contracts (where output are directed to a location):
maximal relation exists and “I/O"” knowledge is irrelevant

N

Summary of Results

L

Direct conformance w.r.t. the whole choreography:
maximal relation does not exist (all kinds of compl.)

¢ Sound characterizations of the relations obtained
(apart from the queue based) by resorting to an
encoding into (a fair version of) must testing [RV05]
= With respect to testing: both system and test must succeed
= Much coarser: all non-controllable systems are equivalent

¢ As a consequence:
= Algorithm that guarantees compliance

= Classification of the relations w.r.t. existing pre-orders:
coarser than (fair) must testing (e.q., they allow external
non-determinism on inputs to be added in refinements)

N

Plan of the Talk

Choreographies and Orchestrations
+ Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

Updatable processes/contracts

(with Marco Carbone)

N

U

+ How to model updatable processes? Eg.

= services which receive workflow from the
environment in order to interact with it

= internal “adaptable/mutable” subparts of
cloud behaviour

+ By extending choreographies and
orchestrations/contracts with
= updatable parts (named scopes) X[H] and
= Update actions/primitives X{H}

Buyer-Seller-Bank Example

¢ Consider the running system:
[X[Cchuyer]l C]buyer | [Cl]seller | [X[Cchank]|C"]bank

if the following update is performed:
X{ buyer : CvisaBuyerl bank: Cvisa Bank}

the system becomes:
[X[CvisaBuyer]l C]buyer | [C']seller | [X[CvisaBank]lcn]bank

Updating a scope, graphically

@ X

~N

X- @
E—)

-

.

@X

Updating a scope, graphically

@ X

~

J
Loro
O

X- @
)

-

\

@X

Updating a scope, graphically

) 4

@ X X-@ @ X
_
@pm {Loro
@ X— @ °

--}

Updating a scope, graphically

@ X

~

X- @
—

@pm oo

X—>'.

—

@X

J
Lo
(@

N

Dynamic Choreographies

¢ Each scope X associated to a set of roles
= given function type(X) =1{r,,...,r,}

¢ Global choreography language:
H = a5, [110
HH | HtH | HIH | H* |
X[H] | X {H}
with roles(H) included in type(X)

Extending choreography
semantics with scope and updates

|

X, {H}

H, ——= Hj
(CoMMUPD) ST (SEQUPD) Xl{H} :
X {E} 2y Hy; Hy 2 g om,[H/ X))
H M H! H MH’
(PARUPD) . L (STARUPD) - L
X7{H} / * X"{H} / 2k
H, | Ho —— H{ | (H2[H/X]) HY —— Hy; (Hi[H/X])

(ScopE) X|[H]| —)iT—> H

¢ where H[H'/X] turns scopes X[H"], for
any H", occurring inside H into X[H']

N

Dynamic Orchestrations

¢ A language for orchestrations:
Cue= ala l 110

CC | C+C | CIC | C*|
XIC] | X{r,:C,, ..., r.:C.}

P == |[C]. | PIP

¢ A distributed update can be performed if no
scope X[C] of roles in type(X) has started

N

Standard “canonical” projection
[Bravetti, Zavattaro SC 2007]

¢ Projection [[H]I, of choreography H to
participant t

a, ift=r
a1, = [a if t=s
1 otherwise

[[H;H'll=[1HI]; i[H’]]t [[HIH] =[[H]]; | [[H"]],
[[H+H'll=[[HI], + [[H'1l, [[H*]l=[[H]]*

N

Extended....

¢ Projection [[H]I, of choreography H to
participant t

X[[[HI]; 1 if t in type(X)

([XH] I, = |

1 otherwise

\

X{t:[HI,,, ..., t:AHI,. } ift=r
([X AH} 1, = .

1 otherwise

where type(X) ={t,,...,t}

Extension of Connectedness
and external updates

¢ Constraint: there are not (and cannot be
produced) scopes in parallel with the
same name X

= SO nhot to confuse starts of different scopes

Open transitions: update choreographies
H in a scope X from "outside" provided:
= H is connected

= The update does not violate the constraint
above

N

Main Theorem

¢ Projection of a connected choreography
H produces an implementation of H

= [races considered by implementation

definition also include open transitions

Typing a concrete langauge

N

P = start a.(s).P

s.send|op|(e)

s.pick{w; opi(xi) : P;}ier
ifethen Pelse Q)
whileedo P

P;: P

P|P

skip

X°[P]

Xs{li|Z] : Pilier

with sessions (session types)

¢ Channels "a" statically associated to
choreographies H (global type)

session start
send

pick
conditional
while

sequence

parallel composition

skip

scoped code

update

Networks and Expressions

N

w = on | onrep pick events
/ .
e:=v|eande | note .. expressions
vi=3¢s|true| false values
N:u=I[:P location

| N | N network parallel

N

Session Typing is not trivial

I'=Pp> A

¢ /" typing environment

= each channel is typed with a choreography
¢ A maps:

= each started session into an orchestration

N

Typing scopes and updates

¢ Inside a scope X[| we may communicate
using several started sessions

¢ We must update all session (types) the

process in the scope is engaged in

Updates are going to update code inside
multiple sessions

= must be allowed individually by their types

“An idea of the typing rules

I'a:H ¢+ P> A - sQr: [H|,
I'a: H F start as(s).P > A

!/Start]

I'Fe: S |
I' + s.send|op|(e) > A - sQr :op(S)

!/Send]

'Example with two channels
:

Roles(a) = {buyer, seller, bank}

Roles(b) = {cashInt, cash}

Network : ll e Pl ” lg b P2 ” l3 2 P3 ” l4 e P4 ” l5 . P5

Py =... start Guyer(s). (X°[PrcBuyer] | P)

Py =... start Ggeter(S).P’

Py=... start Gpa(S). start beasnrnt(S'). (X*° [PreBank&Cashint] | P”)
Py =... start beasn(8). X°[Prccash)

P5 — .. X{ll[s] . PvisaBuyera l3 [Sa SI] : Pvischmk&C’ashInt: l4 [S] : PvisaC’ash}

Typing the example
&

Global Types: H,, Hy

Local Types:
[[Ha]]buyer — X[Cchuyer] | C
[[Ha]]selle'r = ('
[[Ha]]bank — X[Cchank] | C”
[[Hb]]cashfnt — X[CmcCashInt]
[[Hb]]cash — X[CmcCash]

Typing:

Vi e {1,2,3,4}. a:H,.b:Hy - P, > ()

For instance: typing of P3 reduces to

a . Ha, b: Hb = XS’S, {Pchank&CashInt] | P” > s@bank : [[Ha]]bank : S’@CCLShITlt . [[Hbﬂcashlnt

N

Plan of the Talk

Choreographies and Orchestrations
+ Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

N

Conclusion

+ We are working on:

= Use of the above in the context of session
types for typing a concrete language:

typing rules and properties (e.g. subject
reduction)

Conclusion

N

Open problems:

s Complete characterization of compliance
testing

+ work in this direction has been done in
[Bernardi, Hennessy Concur 2013] where
however uncontrollable processes are not
characterized and fairness is not considered

= Refinement theory for dynamic (with
updates) choreographies/contracts

N

References

¢ M. Bravetti and G. Zavattaro. Contract based Multi-party Service Composition. In
FSEN'07. (full version in Fundamenta Informaticae)

¢ M. Bravetti and G. Zavattaro. Towards a Unifying Theory for Choreography
Conformance and Contract Compliance. In SC ‘07.

¢ M. Bravetti and G. Zavattaro. A Theory for Strong Service Compliance. In
Coordination’07. (full version in MSCS)

¢ M. Bravetti and G. Zavattaro. Contract Compliance and Choreography Conformance
in the presence of Message Queues.In WS-FM 08

¢ M. Bravetti and G. Zavattaro. On the Expressive Power of Process Interruption and
Compensation. In WS-FM 08

¢ M. Bravetti, I. Lanese, G. Zavattaro. Contract-Driven Implementation of
Choreographies.In TGC '08

¢ M. Bravetti, G. Zavattaro. Contract-Based Discovery and Composition of Web
Services. In Formal Methods for Web Services, Advanced Lectures '09, LNCS 5569

¢ M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. A Calculus for Component
Evolvability (Extended Abstract). In FACS'10

¢ M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes
(Extended Abstract). In FORTE/FMOODS'11

¢ M. Boreale, M. Bravetti. Advanced Mechanisms for Service Composition, Query and
Discovery in Rigorous Software Eng. for Service-Oriented Systems '11, LNCS 6582

¢ M. Bravetti, M. Carbone, T. Hildebrandt, I. Lanese, J. Mauro, 1. A. Pérez, G.
Zavattaro: Towards Global and Local Types for Adaptation. In BEAT2 '13, LNCS 8368

