
Mario Bravetti Department of Computer Science
University of Bologna

INRIA research team FOCUS

Towards Dynamic Updates in Service
Composition

Joint work with:

Gianluigi Zavattaro

Plan of the

� Choreographies and Orchestrations

� Contract-based service discovery

� A dynamic update mechanism

� Conclusion

Plan of the Talk

Web Service Choreography
Description Language

�Describe the interaction among the
combined services from a top abstract
view

Choreography

(e.g. WS-CDL)

Top abstract view
of whole system:

each action is a

communication
involving two of

its participants

Orchestration

(e.g. WS-BPEL)

One Party detailed
view of the system

that orchestrates a

part of it by sending
(to other parties) &

receiving messages

Similar to UML Sequence
Diagrams

WS-CDL

�Global view of service interactions

Buyer

Seller

Bank

WS-CDL

�Global view of service interactions

Buyer

Seller
Request

Bank

WS-CDL

�Global view of service interactions

Buyer

Seller

PayDescr

Request
Offer

Bank

WS-CDL

�Global view of service interactions

Buyer

Seller

PayDescr

Request
Offer

Bank

Payment

WS-CDL

�Global view of service interactions

Buyer

Seller

PayDescr

Request
Offer

Bank

Payment
Confirm

Receipt

WS-CDL

RequestBuyer�Seller ;

(OfferSeller�Buyer |

PayDescrSeller�Bank) ;

PaymentBuyer�Bank ;

(ConfirmBank�Seller |

ReceiptBank�Buyer)

Projection of the Choreography
on the Single Participants

Buyer: Invoke(Request)@Seller;Receive(Offer);
Invoke(Payment)@Bank;Receive(Receipt)

Seller: Receive(Request);
(Invoke(Offer)@Buyer |
Invoke(PayDescr)@Bank);

Receive(Confirm)

Bank: Receive(PayDescr);Receive(Payment);
(Invoke(Receipt)@Buyer |
Invoke(Confirm)@Seller)

Behavioural contracts and
service retrieval

�Problem of retrieving in the internet
services (by behavioral contracts) that:

� interact without blocking (compliant)

� can play the roles described by the
choreography

�Useful notion: projection of choreography
into contracts (one for each role)

�We cannot require that exactly projected
contracts are retrieved

…

Contract:
abstract service

description

Contract:
abstract service

description

Participant 1 Participant n

Deriving Set of Compliant Contracts

from Choreography [CHY07][BZ07b]

compliant by
construction

Choreography:
abstract description of the

composition of a group
of collaborating services

e.g. WS-CDL

projection projection

…

Choreography

Compliance-Preserving Contract
Refinement !

Contract

public registry

Contract

public registry

Service Service…
Reciprocal invocations

Contract Part. 1 Contract Part. n…
refines refines

compliance
preserved by
refinement

compliant by
construction

A Formal Model for WS-CDL

�A global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H*

A Formal Model for WS-CDL

�A global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H*

r invokes the
operation a of s

Successful
termination

Unsuccessful
termination

A Formal Model for WS-CDL

�A global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H*

Choice

Sequence

Parallel Repetition

Standard semantics

�Standard semantics where:
� ar����s produces a ar����s transition to 1

� 1 produces a √ transition to 0

Semantics of choreographies

A Formal Model for orchestrations

�A language for orchestrations:

C ::= a | ar | τ | 1 | 0 |

C;C | C+C | C|C | C*

P ::= [C]r | P|P

A Formal Model for orchestrations

�A language for orchestrations:

C ::= a | ar | τ | 1 | 0 |

C;C | C+C | C|C | C*

P ::= [C]r | P|P

receive on a

Successful
termination

Unsuccessful
termination

invoke a at r

internal

�A language for orchestrations:

C ::= a | ar | τ | 1 | 0 |

C;C | C+C | C|C | C*

P ::= [C]r | P|P

A Formal Model for orchestrations

Choice

Sequence

Parallel Repetition

A Formal Model for orchestrations

�A language for orchestrations:

C ::= a | ar | τ | 1 | 0 |

C;C | C+C | C|C | C*

P ::= [C]r | P|P

Behaviour of
participant r

Parallel composition
of participants

Standard semantics

�Standard semantics where:
� as transition of role r synchronizes with

a transition of role s and produces a
ar����s transition

� 1 produces a √ transition to 0

� √ is synchronized over parallel

Notion of Implementation

�Given a choreography H, a system P
implements H if:

� P is a composition of compliant contracts

� Intuitively they all always reach termination √
(we will see)

� Each completed (√ terminating) weak
(τ abstracting) trace of P is a completed
trace of H

� all computations of P are correct conversations
according to the choreography H

Examples of choreography
Implementations:

�Given the choreography:
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following are implementations:

[RequestBob;(Accept+Reject)]Alice |
[Request;(AcceptAlice+RejectAlice)]Bob

Examples of choreography
Implementations:

�Given the choreography:
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following are implementations:

[RequestBob;(Accept+Reject)]Alice |
[Request;(AcceptAlice+RejectAlice)]Bob

[RequestBob;(Accept+Reject+Retry)]Alice |
[Request;(AcceptAlice+RejectAlice)]Bob

Examples of choreography
Implementations:

�Given the choreography:
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following are implementations:

[RequestBob;(Accept+Reject)]Alice |
[Request;(AcceptAlice+RejectAlice)]Bob

[RequestBob;(Accept+Reject+Retry)]Alice |
[Request;(AcceptAlice+RejectAlice)]Bob

[RequestBob;(Accept+Reject+Retry)]Alice |
[Request;AcceptAlice]Bob

“Canonical” Projection and
Well-formed Choreography [SC 2007]

� Canonical projection [[]]t :

as if t=r

[[ar����s]]t = a if t=s

1 otherwise

[[H;H’]]t=[[H]]t ; [[H’]]t [[H|H’]]t=[[H]]t | [[H’]]t

[[H+H’]]t=[[H]]t + [[H’]]t [[H*]]t=[[H]]t*

� H is well-formed if the system P, achieved via
canonical projections, implements H

Example

�Consider the choreography H:
ar����s ; bt����u

�Projection:

[as ;1]r | [a;1]s | [1;bu]t | [1;b]u

� Is H well-formed?

� NO

� But, if r=t…. YES

[as; bu]r | [a;1]s | [1;b]u

Connected Choreography
(with Ivan Lanese)

�Sufficient conditions

� unique point of choice,

� connectedness of sequence,

� causality safety

that guarantee that H is well-formed

� i.e. projection of a connected choreography
H produces an implementation of H

Unique point of choice

� In a choice H+H’

� The sender of the initial transitions in H and
in H’ is always the same

� The roles in H and in H’ are the same

�Example: if we drop the second
condition

(ar����s + br����t); c s����t

[(as+bt);1]r | [(a+1);ct]s | [(1+b);c]t

Plan of the

� Choreographies and Orchestrations

� Contract-based service discovery

� A dynamic update mechanism

� Conclusion

Plan of the Talk

Contracts

�Contract: service “behavioural interface”

� correct sequences
of invoke and receive

� as in an orchestration
(role of a coreography)

� just finite-state labeled
transition systems with
successful termination

Contract:
abstract service

description

Service

public registry

Contract Compliance
� Verification of correctness of service composition

based on their contracts: successful interaction
i.e. no deadlock / termination reached

Contract:
abstract service

description

Service

…
Contract:

abstract service
description

Service…

public registry public registry

Reciprocal invocations

Service Compliance: Formally

�Services are compliant if the following
holds for their composition P:

P ---> … ---> P’
implies that there exists P’’ s.t.

P’ ---> … ---> P’’ --->

� i.e. every computation can be extended to
reach successful completion of all services

� termination under fairness assumption

αααα1111

√

ααααn

αααα1111
ααααm

Example: compliant services

�The following pairs of services are
compliant:

� C1 = a+b+c C2 = a + b

� C1 = a;b C2 = a | b

� C1 = (a; b)* C2 = a;(b;a)*;b

…

Choreography

Compliance-Preserving Contract
Refinement !

Contract

public registry

Contract

public registry

Service Service…
Reciprocal invocations

Contract Part. 1 Contract Part. n…
refines refines

compliance
preserved by
refinement

compliant by
construction

projection projection

…

Choreography

Contract Refinement Relation

Contract

public registry

Contract

public registry

Service Service…
Reciprocal invocations

Contract Part. 1 Contract Part. n…
refines refines

compliance
preserved by
refinement

compliant by
construction

Formally: Subcontract Preorder

C

sub-contracts

of C

subcontract
preorder

�Preorder ≤ between contracts C:

� C’ ≤ C means C’ is a subcontract of C

Definition of Preorder Induced from
Independent Refinement

C1 C2 Cn

Given a set of compliant contracts

is a set of compliant contracts

subcontract
preorder

sub-contracts

of C2 …

sub-contracts

of C1

sub-contracts

of Cn

C’1 C’2 C’n
…

…

No maximal subcontract preorder
… in general

� Consider the system:

[a] | [a]

we could have one preorder ≤1 for which

a + c.0 ≤1 a a + c.0 ≤1 a

and one preorder ≤2 for which

a + c.0 ≤2 a a + c.0 ≤2 a

but no subcontract preorder could have

a + c.0 ≤ a a + c.0 ≤ a

� Consequence: no independent refinement!

Maximal pre-order

� It exists changing some assumptions
(asymmetry between inputs and outputs)

� Constraining the structure of contracts:
� outputs choosen internally (output persistence)

� Strengthening the notion of compliance:
� when an output is performed a corresponding

input is required to be already enabled, like in
ready-send of MPI (strong compliance)

� Moving to asynchronous communication
(e.g. via message queues)

Output persistence

�Output persistence means that given a
process state P:

� If P has an output transition on a and
P-->P’ with αααα different from output on a,
then also P’ has an output transition on a
(and P' -->)

αααα

√

a

a

b

√√√√

Syntactically…
(guarantees output persistance)

�This holds, for instance, in WS-BPEL

� Outputs cannot resolve the pick operator
for external choices (the decision to
execute outputs is taken internally)

� External choice among inputs: a + b but

a + b τ;a + τ;b

a + b a + τ;b

no external choice among outputs (and mixed
choice) in contracts!

Choreography implementations
(with output persistent contracts)

�Projection modified: [[ar����s]]t = τ;as if t=r
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following services can be retrieved:

[τ;RequestBob;(Accept+Reject)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

Choreography implementations
(with output persistent contracts)

�Projection modified: [[ar����s]]t = τ;as if t=r
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following services can be retrieved:

[τ;RequestBob;(Accept+Reject)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

[τ;RequestBob;(Accept+Reject+Retry)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

Choreography implementations
(with output persistent contracts)

�Projection modified: [[ar����s]]t = τ;as if t=r
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following services can be retrieved:

[τ;RequestBob;(Accept+Reject)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

[τ;RequestBob;(Accept+Reject+Retry)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

[τ;RequestBob;(Accept+Reject+Retry)]Alice |
[Request;τ;AcceptAlice]Bob

� C’ ≤ C iff for every context P

[C]|P compliance implies [C’]|P compliance

� ≤ max is a subcontract preoder

� ≤ max includes all subcontract preorders

�With respect to (fair) testing not only the
test P has to succeed but also the tested C

Compliance testing is the maximal
preorder

max

Properties of the maximal
subcontract preorder

� If we assume outputs al to be directed to
a location l (e.g. role of a choreography)
we can reduce the problem:

C’ ≤ max C iff C’\N-I(C) ≤ max C

i.e. to subcontract relation when inputs
not among inputs of C I(C) are restricted

� because compliant tests of C cannot perform
reachable outputs to C that it cannot receive

Thus…
(typical in session types)

�External choices on inputs can be
extended:

� a+b ≤max a (thanks to this property)

� Internal choices on outputs can be
reduced:

� ττττ.al ≤max
ττττ;al + ττττ;bl' (being more deterministic, as in testing)

Input and Output knowledge

�Contracts with undirected outputs à la CCS
property does not hold, e.g. a+b ≤ max a

� Consider for instance (capturing)
� the correct system [a] | [ττττ; a .b] | [ττττ;b] and

� the incorrect one [a+b] | [ττττ; a .b] | [ττττ;b]

�Problem can be solved by considering
knowledge of I/O of other contracts ≤I,O
� exploiting knowledge we have a+b ≤N,N-{b} a

�Subcontract relation contains a universal
quantification over possible contexts

�Sound characterization resorting to a
must-testing theory (should-testing [RV05])

� C’ ≤ C is implied by

C’ \ N-I(C) ≤should-testing C

� i.e. ≤max coarser than testing preorder
(and of simulation)

Decidible Sound Characterization
Based on a Must-like Testing

max

Uncontrollable contracts

�Trace equivalence not coarser than ≤max

because contracts can include traces
not leading to success

� Those traces not observed by tests

� Example:
uncontrollable contracts (unsuccesful for
any test) are all equivalent:
� a;b;0 equivalent to b;c;0

is conformant for
participant 1 to

is conformant for
participant n to

…

Choreography

Choreography Conformance

Contract

public registry

Contract

public registry

Service Service…
Reciprocal invocations

compliance
guaranteed by
conformance

Definition of Relation Induced from
Independence Property

Hwith roles
p1,p2,…,pn

[C1]p1 | [C2]p2 … | [Cn]pn implements H

…

…

contracts
for p1

contracts
for p2

contracts
for pn

conformance
relation

No Maximal Choreography
Conformance Relation

�Consider the choreography

ar����s | br����s

that can be implemented as:

[τ;as | τ;bs]r | [τ;a;b + τ;b;a]s

[τ;as;τ;bs + τ;bs;τ;as]r | [a|b]s

but not as:

[τ;as;τ;bs + τ;bs;τ;as]r | [τ;a;b + τ;b;a]s

� Notice that we used output persistent contracts,
so even asymmetry of I/O does not help

Summary of Results

� Refinement with knowledge about other initial
contracts limited to I/O actions
� “normal” compliance:

� Uncostrained contracts: maximal relation does not exist

� Contracts where outputs are internally chosen (output persistence):
maximal relation exists and “I” knowledge is irrelevant

� Output persistent contracts where outputs are directed to a location:
maximal relation exists and “I/O” knowledge is irrelevant

� strong compliance:
� Uncostrained contracts (where output are directed to a location):

maximal relation exists and “I/O” knowledge is irrelevant

� queue-based (asynchronous) compliance:
� Uncostrained contracts (where output are directed to a location):

maximal relation exists and “I/O” knowledge is irrelevant

Summary of Results

� Direct conformance w.r.t. the whole choreography:
maximal relation does not exist (all kinds of compl.)

� Sound characterizations of the relations obtained
(apart from the queue based) by resorting to an
encoding into (a fair version of) must testing [RV05]
� With respect to testing: both system and test must succeed

� Much coarser: all non-controllable systems are equivalent

� As a consequence:
� Algorithm that guarantees compliance

� Classification of the relations w.r.t. existing pre-orders:
coarser than (fair) must testing (e.g., they allow external
non-determinism on inputs to be added in refinements)

Plan of the

� Choreographies and Orchestrations

� Contract-based service discovery

� A dynamic update mechanism

� Conclusion

Plan of the Talk

Updatable processes/contracts
(with Marco Carbone)

�How to model updatable processes? Eg.

� services which receive workflow from the
environment in order to interact with it

� internal “adaptable/mutable” subparts of
cloud behaviour

�By extending choreographies and
orchestrations/contracts with

� updatable parts (named scopes) X[H] and

� update actions/primitives X{H}

Buyer-Seller-Bank Example

�Consider the running system:

[X[CmcBuyer]| C]buyer | [C']seller | [X[CmcBank]|C'']bank

if the following update is performed:

X{buyer:CvisaBuyer, bank:CvisaBank}

the system becomes:

[X[CvisaBuyer]| C]buyer | [C']seller | [X[CvisaBank]|C'']bank

Updating a scope, graphically

X X→ X

Updating a scope, graphically

X X→ X

proj

Updating a scope, graphically

X X→ X

X→

proj proj

Updating a scope, graphically

X X→ X

X→

proj projproj

Dynamic Choreographies

�Each scope X associated to a set of roles
� given function type(X) = {r1,…,rn}

�Global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H* |

X[H] | Xr{H}

with roles(H) included in type(X)

Extending choreography
semantics with scope and updates

�where H[H'/X] turns scopes X[H''], for
any H'', occurring inside H into X[H']

Dynamic Orchestrations

�A language for orchestrations:

C ::= a | ar | 1 | 0 |

C;C | C+C | C|C | C* |

X[C] | X{r1:C1, …, rn:Cn}

P ::= [C]r | P|P

�A distributed update can be performed if no
scope X[C] of roles in type(X) has started

Standard “canonical” projection
[Bravetti, Zavattaro SC 2007]

� Projection [[H]]t of choreography H to
participant t

as if t=r

[[ar����s]]t = a if t=s

1 otherwise

[[H;H’]]t=[[H]]t ; [[H’]]t [[H|H’]]t=[[H]]t | [[H’]]t

[[H+H’]]t=[[H]]t + [[H’]]t [[H*]]t=[[H]]t*

Extended….

� Projection [[H]]t of choreography H to
participant t

X[[[H]]t] if t in type(X)

[[X[H]]]t =

1 otherwise

X{t1:[[H]]t1, …, tn:[[H]]tn } if t = r

[[Xr{H}]]t =

1 otherwise

where type(X) = {t1,…,tn}

Extension of Connectedness
and external updates

�Constraint: there are not (and cannot be
produced) scopes in parallel with the
same name X

� so not to confuse starts of different scopes

�Open transitions: update choreographies
H in a scope X from "outside" provided:

� H is connected

� The update does not violate the constraint
above

Main Theorem

�Projection of a connected choreography
H produces an implementation of H

� Traces considered by implementation
definition also include open transitions

�Channels "a" statically associated to
choreographies H (global type)

Typing a concrete langauge
with sessions (session types)

Networks and Expressions

Session Typing is not trivial

� Γ typing environment
� each channel is typed with a choreography

� ∆ maps:

� each started session into an orchestration

Typing scopes and updates

� Inside a scope X[] we may communicate
using several started sessions

�We must update all session (types) the
process in the scope is engaged in

�Updates are going to update code inside
multiple sessions

� must be allowed individually by their types

An idea of the typing rules

Example with two channels

Typing the example

Plan of the

� Choreographies and Orchestrations

� Contract-based service discovery

� A dynamic update mechanism

� Conclusion

Plan of the Talk

Conclusion

�We are working on:

� Use of the above in the context of session
types for typing a concrete language:
typing rules and properties (e.g. subject
reduction)

Conclusion

�Open problems:

� Complete characterization of compliance
testing
� work in this direction has been done in

[Bernardi, Hennessy Concur 2013] where
however uncontrollable processes are not
characterized and fairness is not considered

� Refinement theory for dynamic (with
updates) choreographies/contracts

References
� M. Bravetti and G. Zavattaro. Contract based Multi-party Service Composition. In

FSEN’07. (full version in Fundamenta Informaticae)
� M. Bravetti and G. Zavattaro. Towards a Unifying Theory for Choreography

Conformance and Contract Compliance. In SC ’07.
� M. Bravetti and G. Zavattaro. A Theory for Strong Service Compliance. In

Coordination’07. (full version in MSCS)
� M. Bravetti and G. Zavattaro. Contract Compliance and Choreography Conformance

in the presence of Message Queues.In WS-FM ’08
� M. Bravetti and G. Zavattaro. On the Expressive Power of Process Interruption and

Compensation. In WS-FM ’08

� M. Bravetti, I. Lanese, G. Zavattaro. Contract-Driven Implementation of
Choreographies.In TGC '08

� M. Bravetti, G. Zavattaro. Contract-Based Discovery and Composition of Web
Services. In Formal Methods for Web Services, Advanced Lectures '09, LNCS 5569

� M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. A Calculus for Component
Evolvability (Extended Abstract). In FACS’10

� M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes
(Extended Abstract). In FORTE/FMOODS’11

� M. Boreale, M. Bravetti. Advanced Mechanisms for Service Composition, Query and
Discovery in Rigorous Software Eng. for Service-Oriented Systems '11, LNCS 6582

� M. Bravetti, M. Carbone, T. Hildebrandt, I. Lanese, J. Mauro, J. A. Pérez, G.
Zavattaro: Towards Global and Local Types for Adaptation. In BEAT2 '13, LNCS 8368

