
Hardware-software security
contracts
Principled foundations for building secure microarchitectures

1

Marco Guarnieri

IMDEA Software Institute

Contacts:

marco.guarnieri@imdea.org 
@MarcoGuarnier1

Based on joint work with

Boris Köpf @ Microsoft Research

Jan Reineke @ Saarland University

José F. Morales, Pepe Vila, Andrés Sánchez @ IMDEA Software Institute

Marco Patrignani @ CISPA

mailto:marco.guarnieri@imdea.org

2

• Security

• Programming  

 languages

• Formal methods

2

Outline
• Introduction

• Speculative execution attacks

• Hardware countermeasures and limitations

• Hardware/software security contracts for secure speculation

• Next steps & challenges

3

4

4

4

Attacks exploit μarchitectural side-effects  
invisible at ISA level

ISA: Benefits

5

High-level language

Microarchitecture

Instruction set architecture (ISA)

ISA: Benefits

5

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can program independently of  
microarchitecture

ISA: Benefits

5

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can program independently of  
microarchitecture

Can implement arbitrary  
optimizations as long as  
ISA semantics are obeyed

ISA: (security) pitfalls

6

High-level language

Microarchitecture

Instruction set architecture (ISA)

ISA: (security) pitfalls

6

High-level language

Microarchitecture

Instruction set architecture (ISA) No guarantees about timing  
and side channels

ISA: (security) pitfalls

6

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure  
optimizations as long as ISA  
semantics are obeyed

No guarantees about timing  
and side channels

ISA: (security) pitfalls

6

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure  
optimizations as long as ISA  
semantics are obeyed

No guarantees about timing  
and side channels

ISA: (security) pitfalls

6

High-level language

Microarchitecture

Instruction set architecture (ISA)

Can implement arbitrary insecure  
optimizations as long as ISA  
semantics are obeyed

No guarantees about timing  
and side channels

Impossible to program securely 
 cryptographic algorithms?

 sandboxing untrusted code?

A Way Forward: HW/SW Security Contracts

7

Succinctly captures

possible information leakage Hw-Sw contract = ISA + X

A Way Forward: HW/SW Security Contracts

7

Can program securely on top contract 
independently of microarchitecture

Succinctly captures

possible information leakage Hw-Sw contract = ISA + X

A Way Forward: HW/SW Security Contracts

7

Can program securely on top contract 
independently of microarchitecture

Can implement arbitrary insecure optimizations  
as long as contract is obeyed

Succinctly captures

possible information leakage Hw-Sw contract = ISA + X

A Way Forward: HW/SW Security Contracts

7

Can program securely on top contract 
independently of microarchitecture

Can implement arbitrary insecure optimizations  
as long as contract is obeyed

Succinctly captures

possible information leakage Hw-Sw contract = ISA + X

In this talk 
Proof-of-concept of HW/SW contracts

for secure speculation

Speculative execution attacks

8

Exploits speculative
execution

Almost all modern CPUs

 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:
Exploiting Speculative Execution — S&P 2019 9

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

Prediction based on branch
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state

Spectre 101

11

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

11

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

11

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

11

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

11

What is in A[128]?
A_size=16

B[0]B[1] ...B

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

12

A_size=16
B[0]B[1] ...B

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

12

A_size=16
B[0]B[1] ...B

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

12

A_size=16
B[0]B[1] ...B

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre 101

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

 4) Extract from cache

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Countermeasures

13

Hardware countermeasures

14

Hardware countermeasures

14

Hardware countermeasures

14

Hardware countermeasures

14

Hardware countermeasures

14

Hardware countermeasures

14

Hardware countermeasures

4

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Hardware countermeasures

4

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Hardware countermeasures

4

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Hardware countermeasures

4

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA’19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA’19]

Hardware countermeasures

4

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA’19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA’19]

Taint speculatively loaded data
+ delay tainted loads 

[STT and NDA, MICRO’19]

Hardware countermeasures

5

1. y = A[x]

2. if (x < A_size)

3. z = B[y]

4. end

Hardware countermeasures

5

1. y = A[x]

2. if (x < A_size)

3. z = B[y]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA'19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA'19]

Hardware countermeasures

5

1. y = A[x]

2. if (x < A_size)

3. z = B[y]

4. end

Delay loads until 
they can be retired  

[Sakalis et al., ISCA'19]

Delay loads until they cannot
be squashed 

[Sakalis et al., ISCA'19]

Taint speculatively loaded data
+ delay tainted loads 

[STT and NDA, MICRO’19]

Hardware countermeasures

6

Hardware countermeasures

6

Security guarantees?

How can we capture security guarantees?

18

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Hardware/software security contracts

19

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts for secure speculation — IEEE S&P 2021 
https://arxiv.org/abs/2006.03841

Contracts for side-channel-free systems

20

Contracts for side-channel-free systems

20

Contracts specify which program executions a side-channel
adversary can distinguish

Contracts for side-channel-free systems

20

Contracts specify which program executions a side-channel
adversary can distinguish

Goals

• Capture security guarantees of HW

• Basis for secure programming

Contracts

21

Contract
ISA extended with

observations

Contracts

21

Contract
ISA extended with

observations

Contracts

21

Observations expose security-relevant  
μarch events

Contract
ISA extended with

observations

Contracts

21

Observations expose security-relevant  
μarch events

Contract traces: (p, σ)

Contract
ISA extended with

observations

Contracts

21

Observations expose security-relevant  
μarch events

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Contract
ISA extended with

observations

Contracts

21

Observations expose security-relevant  
μarch events

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Hardware traces: (p, σ)

Contract
ISA extended with

observations

Contracts

21

Observations expose security-relevant  
μarch events

Attacker observes
sequences of μarch states

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Hardware traces: (p, σ)

Contract
ISA extended with

observations

Contracts

21

Contract satisfaction

Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′￼ (p, σ)= (p, σ′￼) (p, σ) = (p, σ′￼)

Observations expose security-relevant  
μarch events

Attacker observes
sequences of μarch states

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Hardware traces: (p, σ)

Contract
ISA extended with

observations

Contracts

21

Contract satisfaction

Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′￼ (p, σ)= (p, σ′￼) (p, σ) = (p, σ′￼)

Observations expose security-relevant  
μarch events

Attacker observes
sequences of μarch states

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Hardware traces: (p, σ)

Contract
ISA extended with

observations

Contracts

21

Contract satisfaction

Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′￼ (p, σ)= (p, σ′￼) (p, σ) = (p, σ′￼)

Observations expose security-relevant  
μarch events

Attacker observes
sequences of μarch states

Contract traces: (p, σ)

Hardware
Formal model of  
processor

Hardware traces: (p, σ)

Contracts for secure speculation

22

Contracts for secure speculation

22

Contract =  
 Execution Mode · Observer Mode

Contracts for secure speculation

22

Contract =  
 Execution Mode · Observer Mode

How are programs executed?

Contracts for secure speculation

22

Contract =  
 Execution Mode · Observer Mode

How are programs executed? What is visible about the
execution?

seq — sequential execution

spec — mispredict branch instrs.

Contracts for secure speculation

23

Contract =  
 Execution Mode · Observer Mode

pc — only program counter

ct — pc + addr. of loads and stores 
arch — ct + loaded values  

Contracts for secure speculation

24

Contract =  
 Execution Mode · Observer Mode

A lattice of contracts

25

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

⊤

⊥

A lattice of contracts

25
Leaks “everything”

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

⊤

⊥

A lattice of contracts

25
Leaks “everything”

Leaks “nothing”

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

⊤

⊥

A lattice of contracts

25
Leaks “everything”

Leaks “nothing”

Leaks
addresses of

non-spec.
loads/stores/

instruction
fetches

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

⊤

⊥

A lattice of contracts

25
Leaks “everything”

Leaks “nothing”

Leaks
addresses of

non-spec.
loads/stores/

instruction
fetches

Leaks all data  
accessed non-
speculatively

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

⊤

⊥

A lattice of contracts

25
Leaks “everything”

Leaks “nothing”

Leaks
addresses of

non-spec.
loads/stores/

instruction
fetches

Leaks all data  
accessed non-
speculatively

Leaks addresses of all loads/
stores/instruction fetches

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

⊤

⊥

Example: seq-ct

26

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

😈

Example: seq-ct

26

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈

Example: seq-ct

26

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈
pc 2

Example: seq-ct

26

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈
load A+x

Example: seq-ct

26

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈
load B+A[x]

Example: seq-arch

27

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

😈

Example: seq-arch

27

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈

Example: seq-arch

27

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈
pc 2

Example: seq-arch

27

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈
load A+x,A[x]

load B+A[x],B[A[x]]

Example: seq-arch

27

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x < A_size
 😈

Example: spec-ct

28

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

😈

Example: spec-ct

28

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

start
pc 2

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

load A+x

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

load B+A[x]

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

rollback
pc 4

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Example: spec-ct

28

1. if (x < A_size)

2. y = A[x]

3. z = B[y]

4. end

x > A_size
 😈

Hardware countermeasures

29

A simple processor

30

See paper for: processor operational semantics and security proofs

A simple processor
Speculative and out-of-order

executions

30

See paper for: processor operational semantics and security proofs

A simple processor

3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order
executions

30

See paper for: processor operational semantics and security proofs

A simple processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order
executions

30

See paper for: processor operational semantics and security proofs

A simple processor

Parametric in branch predictor and
memory hierarchy

3-stage pipeline  
(fetch, execute, retire)

Speculative and out-of-order
executions

30

See paper for: processor operational semantics and security proofs

Modeled as operational semantics describing how
processor’s state changes 

(inspired by [Cauligi et al. 2019])

⇒

No countermeasures [The world before Spectre]

17

No countermeasures [The world before Spectre]

17

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

No countermeasures [The world before Spectre]

17

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

No countermeasures [The world before Spectre]

17

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

No countermeasures [The world before Spectre]

17

Satisfies spec-ct

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Disabling speculative execution

32

Disabling speculative execution

32

Instructions are executed
sequentially

Disabling speculative execution

32

Instructions are executed
sequentially

🥳 No speculative leaks 🥳

Disabling speculative execution

32

Instructions are executed
sequentially

🥳 No speculative leaks 🥳

Satisfies seq-ct

Eager load delay [Sakalis et al., ISCA’19]

33

Eager load delay [Sakalis et al., ISCA’19]

33

Delaying loads until all sources of
speculation are resolved

Eager load delay [Sakalis et al., ISCA’19]

33

Delaying loads until all sources of
speculation are resolvedSecurity guarantees?

Eager load delay [Sakalis et al., ISCA’19]

34

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Eager load delay [Sakalis et al., ISCA’19]

34

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Eager load delay [Sakalis et al., ISCA’19]

34

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]and B[z] delayed until  
x < A_size is resolved

Eager load delay [Sakalis et al., ISCA’19]

34

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]and B[z] delayed until  
x < A_size is resolved

🥳 No speculative leaks 🥳

Eager load delay [Sakalis et al., ISCA’19]

35

z = A[x]

if(x < A_size) 
	 if(z==0) 
	 	 skip

Eager load delay [Sakalis et al., ISCA’19]

35

z = A[x]

if(x < A_size) 
	 if(z==0) 
	 	 skip

Eager load delay [Sakalis et al., ISCA’19]

35

z = A[x]

if(x < A_size) 
	 if(z==0) 
	 	 skip

if(z==0) is not delayed

Eager load delay [Sakalis et al., ISCA’19]

35

z = A[x]

if(x < A_size) 
	 if(z==0) 
	 	 skip

if(z==0) is not delayed

Program speculatively  
leaks A[x] 😞

Eager load delay [Sakalis et al., ISCA’19]

36

Eager load delay [Sakalis et al., ISCA’19]

36

Satisfies seq-arch

Satisfies seq/spec-ct/pc

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

37

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

37

Taint speculatively loaded data

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

37

Propagate taint through computation

Taint speculatively loaded data

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

37

Propagate taint through computation

Delay tainted operations

Taint speculatively loaded data

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

37

Propagate taint through computation

Delay tainted operations

Taint speculatively loaded data

Security guarantees?

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

38

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

38

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

38

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]tainted as unsafe 
B[z] delayed until  

A[x] is safe

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

38

if (x < A_size) 
	 z = A[x] 
	 y = B[z]

A[x]tainted as unsafe 
B[z] delayed until  

A[x] is safe

🥳 No speculative leaks 🥳

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

39

z = A[x]  
if (x < A_size) 
	 y = B[z]

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

39

z = A[x]  
if (x < A_size) 
	 y = B[z]

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

39

z = A[x]  
if (x < A_size) 
	 y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

39

z = A[x]  
if (x < A_size) 
	 y = B[z]

A[x]tagged as safe 
 

B[z] not delayed

Program speculatively  
leaks A[x] 😞

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

40

Hardware taint-tracking [Yu et al. 2019, Weisse et al. 2019]

40

Satisfies seq-arch

Satisfies spec-ct

Security guarantees

41

See paper for: models and security proofs

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +  
spec. exec
In-order CPU 
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

Security guarantees

41

See paper for: models and security proofs

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +  
spec. exec
In-order CPU 
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

Security guarantees

41

See paper for: models and security proofs

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +  
spec. exec
In-order CPU 
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

NS

Security guarantees

41

See paper for: models and security proofs

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +  
spec. exec
In-order CPU 
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

LD

NSLD

Security guarantees

41

See paper for: models and security proofs

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +  
spec. exec
In-order CPU 
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

OoO TT

LD

NSTTLD

Secure programming

25

Two flavors of secure programming

26

SandboxingConstant-time

Two flavors of secure programming

26

SandboxingConstant-time

Two flavors of secure programming

26

SandboxingConstant-time

Constant-time Sandboxing

Checking secure programming

27

Seq-ct

Seq-arch

Spec-ct

❌

✓
✓

✓

❌ ❌

See paper for: additional security checks, proofs, automation

Constant-time Sandboxing

Checking secure programming

27

Seq-ct

Seq-arch

Spec-ct

❌

✓
✓

✓

❌ ❌

See paper for: additional security checks, proofs, automation

What’s next?

45

46

Hw-Sw security 
 contracts

Modeling and 
specifications

Hardware

Software

46

Hw-Sw security 
 contracts

Modeling and 
specifications

Hardware

Software

Contracts & Modeling

47

Contracts & Modeling

47

So far: toy ISA + observation modes for cache/control-
flow leaks + execution modes for branch speculation

Contracts & Modeling

47

So far: toy ISA + observation modes for cache/control-
flow leaks + execution modes for branch speculation

Challenge: scale to real-world ISAs

Contracts & Modeling

47

So far: toy ISA + observation modes for cache/control-
flow leaks + execution modes for branch speculation

Challenge: scale to real-world ISAs

What do we need? Formal models of ISAs + adequate
extensions to capture leaks

48

Hw-Sw security 
 contracts

Modeling and 
specifications

Hardware

Software

48

Hw-Sw security 
 contracts

Modeling and 
specifications

Hardware

Software

Contracts & Hardware

49

Contracts & Hardware

49

So far: manual security proofs on toy CPU/ISA

Contracts & Hardware

49

So far: manual security proofs on toy CPU/ISA

Challenge: automation for realistic CPUs

Contracts & Hardware

49

So far: manual security proofs on toy CPU/ISA

Challenge: automation for realistic CPUs

What do we need? Automated verification and testing
techniques for contract satisfaction

50

Hw-Sw security 
 contracts

Modeling and 
specifications

Hardware

Software

50

Hw-Sw security 
 contracts

Modeling and 
specifications

Hardware

Software

Contracts & Software

51

Contracts & Software

51

So far: contracts as secure programming foundations +
tools targeting “fixed contracts”

Contracts & Software

51

So far: contracts as secure programming foundations +
tools targeting “fixed contracts”

Challenge: support for large classes of contracts

Contracts & Software

51

So far: contracts as secure programming foundations +
tools targeting “fixed contracts”

Challenge: support for large classes of contracts

What do we need? Contract-aware program analyses
and secure compilation passes

Conclusions

28

 Contract
ISA extended with
observations

Contracts

Contract satisfaction
Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′ (p, σ)= (p, σ′) (p, σ) = (p, σ′)

Contract traces: (p, σ)

Hardware
Formal model of
processor

Hardware traces: (p, σ)

A lattice of contracts

Leaks “everything”

Leaks “nothing”

Leaks
addresses of

non-spec.
loads/stores/

instruction
fetches

Leaks all data
accessed non-
speculatively

Leaks addresses of all loads/
stores/instruction fetches

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

 ⊤

 ⊥

Security guarantees
Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +
spec. exec
In-order CPU
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

OoO TT

LD

NSTTLD

Two flavors of secure programming

SandboxingConstant-time

 Contract
ISA extended with
observations

Contracts

Contract satisfaction
Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′ (p, σ)= (p, σ′) (p, σ) = (p, σ′)

Contract traces: (p, σ)

Hardware
Formal model of
processor

Hardware traces: (p, σ)

A lattice of contracts

Leaks “everything”

Leaks “nothing”

Leaks
addresses of

non-spec.
loads/stores/

instruction
fetches

Leaks all data
accessed non-
speculatively

Leaks addresses of all loads/
stores/instruction fetches

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

 ⊤

 ⊥

Security guarantees
Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla OoO CPU +
spec. exec
In-order CPU
(no specExec)

OoO CPU+load delay

OoO CPU+taint tracking

OoO TT

LD

NSTTLD

Two flavors of secure programming

SandboxingConstant-time

marco.guarnieri@imdea.org @MarcoGuarnier1

Find out more in the paper: 
https://arxiv.org/abs/2006.03841

https://arxiv.org/abs/2006.03841

Backup

28

What’s next?

25

56

Software Hardware

56

Software Hardware

Knows what data is sensitive

56

Controls
microarchitectural state

Software Hardware

Knows what data is sensitive

Contracts as basis for HW/SW co-design

56

Controls
microarchitectural state

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Knows what data is sensitive

Contracts @ Software

57

Contracts @ Software

57

Program analysis

+

Guarnieri et al., Spectector: Principled detection of speculative leaks, S&P 2020

Program analyzers that work for

 arbitrary contracts

Contracts @ Software

57

Secure compilation

Compiler

Source
program

Target
program

Contract

Compiler takes

 contracts as input

Ensure security at

contract level

Patrignani and Guarnieri, Exorcising Spectre with secure compilers, CCS 2021

Program analysis

+

Guarnieri et al., Spectector: Principled detection of speculative leaks, S&P 2020

Program analyzers that work for

 arbitrary contracts

Contracts @ Hardware

58

Contracts @ Hardware

58

Verification

Tools for

 checking

compliance
with contracts

(Partially) automate
contract satisfaction

proofs

Contracts @ Hardware

58

Verification

Tools for

 checking

compliance
with contracts

(Partially) automate
contract satisfaction

proofs

Testing/Fuzzing

Contracts as test oracles

Black box: see Oleksenko et al.,
Revizor: Fuzzing for Leaks in
Black-box CPUs https://arxiv.org/
abs/2105.06872

White box: WIP!

A simple processor — Configurations

59

A simple processor — Configurations

59

Configurations: State of the processor during computation

A simple processor — Configurations

59

Configurations: State of the processor during computation

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory
Registers

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory
Registers Reorder 

buffer

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory
Registers Reorder 

buffer
Cache 

(metadata)

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory
Registers Reorder 

buffer
Cache 

(metadata)

Branch 
predictor

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory
Registers Reorder 

buffer
Cache 

(metadata)

Branch 
predictor

Scheduler⟨m, a, buf, cs, bp, sc⟩

A simple processor — Configurations

59

Configurations: State of the processor during computation

Memory
Registers Reorder 

buffer
Cache 

(metadata)

Branch 
predictor

Scheduler
😈

⟨m, a, buf, cs, bp, sc⟩

A simple processor — Semantics

60

A simple processor — Semantics

60

Semantics: Describe how configurations evolve

A simple processor — Semantics

60

Semantics: Describe how configurations evolve

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

A simple processor — Semantics

60

Semantics: Describe how configurations evolve

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

Current state

A simple processor — Semantics

60

Semantics: Describe how configurations evolve

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

Current state Next state

A simple processor — Semantics

60

Semantics: Describe how configurations evolve

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

Current state Next state

Directive from scheduler 
fetch, execute i, retire

A simple processor — Semantics

60

Semantics: Describe how configurations evolve

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

Current state Next state

Directive from scheduler 
fetch, execute i, retire

Semantics for pipeline stages

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

applying reorder buffer 
to register state

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

applying reorder buffer 
to register state

reorder buffer  
is not full

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

instruction is a  
branch

instruction is a  
branch

applying reorder buffer 
to register state

reorder buffer  
is not full

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

instruction is a  
branch

instruction is a  
branch

applying reorder buffer 
to register state

reorder buffer  
is not full

branch predictor 
says is nextℓ′￼

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

instruction is a  
branch

instruction is a  
branch

applying reorder buffer 
to register state

reorder buffer  
is not full

branch predictor 
says is nextℓ′￼

Cache hit  
+ updating 
cache state

Rules capture effect of directives - Fetch

61

8

2) Caches, Branch predictors, and Schedulers: Rather than
providing a fixed model for caches, branch predictors and
schedulers, our semantics is parametric in such components.
To this end, we only fix the interface to these components,
which is given in Figure 8, constraining how the semantics
may interact with these components. Each of these components
is defined by a set of states, an initial state, and uninterpreted
functions modeling their relevant behavior:

• Caches are equipped with a function access(`,cs) 2
{Hit,Miss} that captures whether accessing memory ad-
dress ` in cache state cs results in a cache hit (Hit) or miss
(Miss), and a function update(`,cs) = cs0 that updates the state
of the cache based on the access to address `. We stress that
cache states cs track only the memory addresses of the blocks
in the cache, not the blocks themselves.

• Branch predictors are equipped with a function
update(bp,`,b) that updates the state bp of the branch predic-
tor by recording that the branch at program counter ` has been
resolved to value b, and predict(bp,`) that, given a predictor
state bp, predicts the outcome of the branch at address `.

• Schedulers determine which pipeline stages to activate
next. Following [14], [19], we model this choice using three
types of directives: (a) fetch is used to fetch and decode the
next instruction pointed by the program counter register pc,
(b) execute i is used to execute the i-th command in the reorder
buffer buf , and (c) retire is used to retire (i.e., apply the
changes to the memory and register file) the first command in
the buffer. Schedulers are equipped with a next(sc) function
that produces the next directive given the scheduler’s state
sc, and a update(sc,buf) function that updates the scheduler’s
state based on the state of the reorder buffer.

3) Microarchitectural states: A µarch. state µ is a 4-tuple
hbuf ,cs,bp,sci where buf is a reorder buffer, cs is the state of
the unified cache (for data and instructions), bp is the branch
predictor state, and sc is the scheduler state.

A µarch. state µ is initial if buf = e and the µarch.
components are in their initial states. Similarly, µ is final
if buf = e . Hence, a hardware configuration hs ,µi is initial
(respectively final) if s and µ are so.

For simplicity, we write hm,a,buf ,cs,bp,sci to represent the
hardware configuration hhm,ai,hbuf ,cs,bp,scii.

B. Hardware semantics

We formalize the hardware semantics of a µASM program p
using a binary relation)✓ HwStates⇥HwStates that maps
hardware states to their successors:

STEP

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
hm,a,buf ,cs,bp,sci)hm0,a0,buf 0,cs0,bp0,sc0i

The rule captures one execution step at the µarch. level. The
scheduler is queried to determine the directive d = next(sc) in-
dicating which pipeline step to execute. Next, the µarch. state
is updated by performing one step of the auxiliary relation
hm,a,buf ,cs,bpi d

=)hm0,a0,buf 0,cs0,bp0i, which depends on the
directive d and is formalized below. Finally, the scheduler state

is updated based on the data-independent projection of the
reorder buffer, i.e., sc0 = update(sc,buf 0#). This formalizes the
crucial assumption that the scheduler’s decisions may depend
upon the dependencies between the instructions in the reorder
buffer, but not on the values computed thus far.

For each directive, i.e., fetch,execute i, and retire, we
sketch below the rules that govern the definition of the
auxiliary relations fetch

==), execute i
=====), and retire

===).
1) Fetch: Instructions are fetched in-order. Here we present

selected rules modeling instruction fetch:
FETCH-BRANCH-HIT

a0 = apl(buf ,a) |buf |< w a0(pc) 6=?
p(a0(pc)) = beqz x,` `0 = predict(bp,a0(pc))

access(cs,a0(pc)) = Hit update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ·pc `0@a0(pc),cs0,bpi

FETCH-MISS
|buf |< w a0 = apl(buf ,a) a0(pc) 6=?

access(cs,a0(pc)) = Miss update(cs,a0(pc)) = cs0

hm,a,buf ,cs,bpi fetch
==)hm,a,buf ,cs0,bpi

In these rules, and in those described later, apl(buf ,a) denotes
the assignment a0 obtained by updating a with the changes
performed by the commands in buf . Concretely, apl(buf ,a)
iteratively applies the pending changes for all commands in
buf as follows: (a) Assignments x e@T set the value of
a0(x) to e if the assignment is resolved (i.e., e 2 Vals) and to
? otherwise (denoting unresolved values). (b) Load operations
load x,e@T set the value of a0(x) to ? (since the load opera-
tion has not been performed yet). (c) Whenever buf contains
a speculation barrier spbarr@T , apl(buf ,a) = lx 2 Regs. ?.
(d) Other instructions are ignored.

The rule FETCH-BRANCH-HIT models the fetch of a branch
instruction beqz x,`. Whenever the reorder buffer buf is
not full (|buf | < w), pc is defined (a0(pc) 6= ?), and the
instruction is in the cache (access(cs,a0(pc)) = Hit), the
branch predictor is queried to obtain the next program counter
`0 = predict(bp,a0(pc)). Next, the cache and the reorder buffer
states are updated. The latter is updated by appending the
command pc `0@a0(pc), which records the change to the
program counter as well as the label of the branch instruction
whose target was predicted. The semantics also contains
rules for fetching jumps jmp e, which append the command
pc e@e to the buffer, and other instructions i, which append
the commands i@e ·pc a0(pc)+1@e to the buffer.

The rule FETCH-MISS models a cache miss when loading
the next instruction. In this case, the cache is updated while the
reorder buffer is not modified. A subsequent fetch triggered by
the scheduler would result in a cache hit and a corresponding
change to the reorder buffer.

2) Execute: Commands in-flight are executed out-of-order,
where the execute i directive triggers the execution of the i-th
command in the buffer. Selected rules are given in Figure 9.

The rule EXECUTE-LOAD-HIT models the successful ex-
ecution of a load (load x,e@T) that results in a cache hit.
In the rule, (|e|)(a0) denotes the result of evaluating e in the
context of the assignment a0 obtained by applying to a all
earlier in-flight commands in buf . Whenever the address is

instruction is a  
branch

instruction is a  
branch

applying reorder buffer 
to register state

reorder buffer  
is not full

branch predictor 
says is nextℓ′￼

Cache hit  
+ updating 
cache state

add change of pc
to reorder buffer

Rules capture effect of directive - Retire

62

9

Component States Initial state Functions
Cache CacheStates cs0 access : Vals⇥CacheStates! {Hit,Miss} update : Vals⇥CacheStates! CacheStates
Branch predictor BpStates bp0 predict : predict : BpStates⇥Vals! Vals update : BpStates⇥Vals⇥Vals! BpStates
Pipeline scheduler ScStates sc0 next : ScStates! Dir update : ScStates⇥Bufs! ScStates

Fig. 8: Signatures of the microarchitectural components

EXECUTE-LOAD-HIT
|buf |= i�1 a0 = apl(buf ,a)

spbarr 62 buf store x0,e0 62 buf x 6= pc (|e|)(a0) 6=? access(cs,(|e|)(a0)) = Hit update(cs,(|e|)(a0)) = cs0

hm,a,buf · load x,e@T ·buf 0,cs,bpi execute i
=====)hm,a,buf · x m((|e|)(a0))@T ·buf 0,cs0,bpi

EXECUTE-BRANCH-ROLLBACK
|buf |= i�1 a0 = apl(buf ,a) spbarr 62 buf `0 6= e p(`0) = beqz x,`00

(a0(x) = 0^ ` 6= `00)_ (a0(x) 62 Vals\{0,?}^ ` 6= `0 +1) `0 2 {`00,`0 +1}\{`} bp0 = update(bp,`0,`
0)

hm,a,buf ·pc `@`0 ·buf 0,cs,bpi execute i
=====)hm,a,buf ·pc `0@e,cs,bp0i

Fig. 9: Selected rules for execute i

resolved, i.e., (|e|)(a0) 6= ?, and accessing the address results
in a cache hit (access(cs,(|e|)(a0)) = Hit), the reorder buffer
is updated by replacing load x,e@T with x m((|e|)(a0))@T ,
thereby recording that the load operation has been executed
and that the value of x is now m((|e|)(a0)). The cache state is
also updated to account for the memory access to (|e|)(a0).

In contrast, the EXECUTE-BRANCH-ROLLBACK rule mod-
els the resolution of a mis-speculated branch instruction that
results in rolling back the speculatively executed instructions
by dropping their entries from the reorder buffer. Whenever
the predicted value ` disagrees with the outcome `0 of the
instruction beqz x,`00 at address `0, the buffer is updated by
(1) recording the new value of pc (by replacing pc `@`0
with pc `0@e), and (2) squashing all later buffer entries
(by discarding the buffer suffix buf 0). Moreover, the branch
predictor’s state is updated by recording that the branch at
address `0 has been resolved to `0.

3) Retire: Instructions are retired in-order. This is done by
retiring only commands i@T at the head of the reorder buffer
where the instruction i has been resolved, and the tag T is e
indicating that there are no unresolved predictions. Selected
rules for the retire directive are given below:

RETIRE-ASSIGNMENT
buf = x v@e ·buf 0 v 2 Vals

hm,a,buf ,cs,bpi retire
===)hm,a[x 7! v],buf 0,cs,bpi

RETIRE-STORE
buf = store v,n@e ·buf 0

v,n 2 Vals update(cs,n) = cs0

hm,a,buf ,cs,bpi retire
===)hm[n 7! v],a,buf 0,cs0,bpi

The rule RETIRE-ASSIGNMENT models the retirement of a
command x v@e , where the assignment a is permanently
updated by recording that x’s value is now v. In contrast,
RETIRE-STORE models the retirement of store commands
store v,n@e . In this case, the memory m is permanently
updated by writing the value v to address n and the cache

state is updated. Finally, we have rules RETIRE-SKIP and
RETIRE-BARRIER modeling the retirement of skip and spbarr
instructions, which are removed from the reorder buffer with-
out modifying the arch. state.

C. Formalizing the adversary model
We conclude by formalizing the adversary model that we

use in the security analysis in Section VI.
In our analysis, we consider an adversary A that can ob-

serve almost the entire microarchitectural state. Specifically, it
can observe (1) the data-independent projection of the reorder
buffer (i.e., which instructions are in-flight, but not to what
values they are resolved), (2) the state of cache (which stores
only the addresses of the blocks in the cache, not the blocks
themselves), branch predictor, and scheduler. We formalize
this as A = (hm,a,buf ,cs,bp,sci) = hbuf#,cs,bp,sci.

VI. MECHANISMS FOR SECURE SPECULATION

In this section, we show how several recent proposals
for hardware-level secure speculation can be cast within our
framework and we study their security.

We analyze three countermeasures: (1) disabling speculation
(seq in §VI-A), (2) delaying all speculative loads (loadDelay
in §VI-B), and (3) employing hardware-level taint tracking
and selectively delaying tainted instructions (tt in §VI-C). For
each countermeasure ctx, we formalize its semantics using a
relation)ctx obtained by modifying the hardware semantics
from §V (which induces the corresponding trace semantics
{| · |}ctx in the usual way). Additionally, we characterize their
security guarantees by showing which of the contracts from
§III they satisfy; see Figure 11 for a summary of the results.

Unless otherwise specified, all theorems hold for any in-
stantiation of cache, branch predictor, and scheduler.

Before analyzing the countermeasure, we observe that all
possible instances of the hardware semantics satisfy the J ·Kspec

ct
contract, as stated in Theorem 1.

Rules capture effect of directive - Retire

62

9

Component States Initial state Functions
Cache CacheStates cs0 access : Vals⇥CacheStates! {Hit,Miss} update : Vals⇥CacheStates! CacheStates
Branch predictor BpStates bp0 predict : predict : BpStates⇥Vals! Vals update : BpStates⇥Vals⇥Vals! BpStates
Pipeline scheduler ScStates sc0 next : ScStates! Dir update : ScStates⇥Bufs! ScStates

Fig. 8: Signatures of the microarchitectural components

EXECUTE-LOAD-HIT
|buf |= i�1 a0 = apl(buf ,a)

spbarr 62 buf store x0,e0 62 buf x 6= pc (|e|)(a0) 6=? access(cs,(|e|)(a0)) = Hit update(cs,(|e|)(a0)) = cs0

hm,a,buf · load x,e@T ·buf 0,cs,bpi execute i
=====)hm,a,buf · x m((|e|)(a0))@T ·buf 0,cs0,bpi

EXECUTE-BRANCH-ROLLBACK
|buf |= i�1 a0 = apl(buf ,a) spbarr 62 buf `0 6= e p(`0) = beqz x,`00

(a0(x) = 0^ ` 6= `00)_ (a0(x) 62 Vals\{0,?}^ ` 6= `0 +1) `0 2 {`00,`0 +1}\{`} bp0 = update(bp,`0,`
0)

hm,a,buf ·pc `@`0 ·buf 0,cs,bpi execute i
=====)hm,a,buf ·pc `0@e,cs,bp0i

Fig. 9: Selected rules for execute i

resolved, i.e., (|e|)(a0) 6= ?, and accessing the address results
in a cache hit (access(cs,(|e|)(a0)) = Hit), the reorder buffer
is updated by replacing load x,e@T with x m((|e|)(a0))@T ,
thereby recording that the load operation has been executed
and that the value of x is now m((|e|)(a0)). The cache state is
also updated to account for the memory access to (|e|)(a0).

In contrast, the EXECUTE-BRANCH-ROLLBACK rule mod-
els the resolution of a mis-speculated branch instruction that
results in rolling back the speculatively executed instructions
by dropping their entries from the reorder buffer. Whenever
the predicted value ` disagrees with the outcome `0 of the
instruction beqz x,`00 at address `0, the buffer is updated by
(1) recording the new value of pc (by replacing pc `@`0
with pc `0@e), and (2) squashing all later buffer entries
(by discarding the buffer suffix buf 0). Moreover, the branch
predictor’s state is updated by recording that the branch at
address `0 has been resolved to `0.

3) Retire: Instructions are retired in-order. This is done by
retiring only commands i@T at the head of the reorder buffer
where the instruction i has been resolved, and the tag T is e
indicating that there are no unresolved predictions. Selected
rules for the retire directive are given below:

RETIRE-ASSIGNMENT
buf = x v@e ·buf 0 v 2 Vals

hm,a,buf ,cs,bpi retire
===)hm,a[x 7! v],buf 0,cs,bpi

RETIRE-STORE
buf = store v,n@e ·buf 0

v,n 2 Vals update(cs,n) = cs0

hm,a,buf ,cs,bpi retire
===)hm[n 7! v],a,buf 0,cs0,bpi

The rule RETIRE-ASSIGNMENT models the retirement of a
command x v@e , where the assignment a is permanently
updated by recording that x’s value is now v. In contrast,
RETIRE-STORE models the retirement of store commands
store v,n@e . In this case, the memory m is permanently
updated by writing the value v to address n and the cache

state is updated. Finally, we have rules RETIRE-SKIP and
RETIRE-BARRIER modeling the retirement of skip and spbarr
instructions, which are removed from the reorder buffer with-
out modifying the arch. state.

C. Formalizing the adversary model
We conclude by formalizing the adversary model that we

use in the security analysis in Section VI.
In our analysis, we consider an adversary A that can ob-

serve almost the entire microarchitectural state. Specifically, it
can observe (1) the data-independent projection of the reorder
buffer (i.e., which instructions are in-flight, but not to what
values they are resolved), (2) the state of cache (which stores
only the addresses of the blocks in the cache, not the blocks
themselves), branch predictor, and scheduler. We formalize
this as A = (hm,a,buf ,cs,bp,sci) = hbuf#,cs,bp,sci.

VI. MECHANISMS FOR SECURE SPECULATION

In this section, we show how several recent proposals
for hardware-level secure speculation can be cast within our
framework and we study their security.

We analyze three countermeasures: (1) disabling speculation
(seq in §VI-A), (2) delaying all speculative loads (loadDelay
in §VI-B), and (3) employing hardware-level taint tracking
and selectively delaying tainted instructions (tt in §VI-C). For
each countermeasure ctx, we formalize its semantics using a
relation)ctx obtained by modifying the hardware semantics
from §V (which induces the corresponding trace semantics
{| · |}ctx in the usual way). Additionally, we characterize their
security guarantees by showing which of the contracts from
§III they satisfy; see Figure 11 for a summary of the results.

Unless otherwise specified, all theorems hold for any in-
stantiation of cache, branch predictor, and scheduler.

Before analyzing the countermeasure, we observe that all
possible instances of the hardware semantics satisfy the J ·Kspec

ct
contract, as stated in Theorem 1.

result of instruction at head of 
 reorder buffer is resolved

Rules capture effect of directive - Retire

62

9

Component States Initial state Functions
Cache CacheStates cs0 access : Vals⇥CacheStates! {Hit,Miss} update : Vals⇥CacheStates! CacheStates
Branch predictor BpStates bp0 predict : predict : BpStates⇥Vals! Vals update : BpStates⇥Vals⇥Vals! BpStates
Pipeline scheduler ScStates sc0 next : ScStates! Dir update : ScStates⇥Bufs! ScStates

Fig. 8: Signatures of the microarchitectural components

EXECUTE-LOAD-HIT
|buf |= i�1 a0 = apl(buf ,a)

spbarr 62 buf store x0,e0 62 buf x 6= pc (|e|)(a0) 6=? access(cs,(|e|)(a0)) = Hit update(cs,(|e|)(a0)) = cs0

hm,a,buf · load x,e@T ·buf 0,cs,bpi execute i
=====)hm,a,buf · x m((|e|)(a0))@T ·buf 0,cs0,bpi

EXECUTE-BRANCH-ROLLBACK
|buf |= i�1 a0 = apl(buf ,a) spbarr 62 buf `0 6= e p(`0) = beqz x,`00

(a0(x) = 0^ ` 6= `00)_ (a0(x) 62 Vals\{0,?}^ ` 6= `0 +1) `0 2 {`00,`0 +1}\{`} bp0 = update(bp,`0,`
0)

hm,a,buf ·pc `@`0 ·buf 0,cs,bpi execute i
=====)hm,a,buf ·pc `0@e,cs,bp0i

Fig. 9: Selected rules for execute i

resolved, i.e., (|e|)(a0) 6= ?, and accessing the address results
in a cache hit (access(cs,(|e|)(a0)) = Hit), the reorder buffer
is updated by replacing load x,e@T with x m((|e|)(a0))@T ,
thereby recording that the load operation has been executed
and that the value of x is now m((|e|)(a0)). The cache state is
also updated to account for the memory access to (|e|)(a0).

In contrast, the EXECUTE-BRANCH-ROLLBACK rule mod-
els the resolution of a mis-speculated branch instruction that
results in rolling back the speculatively executed instructions
by dropping their entries from the reorder buffer. Whenever
the predicted value ` disagrees with the outcome `0 of the
instruction beqz x,`00 at address `0, the buffer is updated by
(1) recording the new value of pc (by replacing pc `@`0
with pc `0@e), and (2) squashing all later buffer entries
(by discarding the buffer suffix buf 0). Moreover, the branch
predictor’s state is updated by recording that the branch at
address `0 has been resolved to `0.

3) Retire: Instructions are retired in-order. This is done by
retiring only commands i@T at the head of the reorder buffer
where the instruction i has been resolved, and the tag T is e
indicating that there are no unresolved predictions. Selected
rules for the retire directive are given below:

RETIRE-ASSIGNMENT
buf = x v@e ·buf 0 v 2 Vals

hm,a,buf ,cs,bpi retire
===)hm,a[x 7! v],buf 0,cs,bpi

RETIRE-STORE
buf = store v,n@e ·buf 0

v,n 2 Vals update(cs,n) = cs0

hm,a,buf ,cs,bpi retire
===)hm[n 7! v],a,buf 0,cs0,bpi

The rule RETIRE-ASSIGNMENT models the retirement of a
command x v@e , where the assignment a is permanently
updated by recording that x’s value is now v. In contrast,
RETIRE-STORE models the retirement of store commands
store v,n@e . In this case, the memory m is permanently
updated by writing the value v to address n and the cache

state is updated. Finally, we have rules RETIRE-SKIP and
RETIRE-BARRIER modeling the retirement of skip and spbarr
instructions, which are removed from the reorder buffer with-
out modifying the arch. state.

C. Formalizing the adversary model
We conclude by formalizing the adversary model that we

use in the security analysis in Section VI.
In our analysis, we consider an adversary A that can ob-

serve almost the entire microarchitectural state. Specifically, it
can observe (1) the data-independent projection of the reorder
buffer (i.e., which instructions are in-flight, but not to what
values they are resolved), (2) the state of cache (which stores
only the addresses of the blocks in the cache, not the blocks
themselves), branch predictor, and scheduler. We formalize
this as A = (hm,a,buf ,cs,bp,sci) = hbuf#,cs,bp,sci.

VI. MECHANISMS FOR SECURE SPECULATION

In this section, we show how several recent proposals
for hardware-level secure speculation can be cast within our
framework and we study their security.

We analyze three countermeasures: (1) disabling speculation
(seq in §VI-A), (2) delaying all speculative loads (loadDelay
in §VI-B), and (3) employing hardware-level taint tracking
and selectively delaying tainted instructions (tt in §VI-C). For
each countermeasure ctx, we formalize its semantics using a
relation)ctx obtained by modifying the hardware semantics
from §V (which induces the corresponding trace semantics
{| · |}ctx in the usual way). Additionally, we characterize their
security guarantees by showing which of the contracts from
§III they satisfy; see Figure 11 for a summary of the results.

Unless otherwise specified, all theorems hold for any in-
stantiation of cache, branch predictor, and scheduler.

Before analyzing the countermeasure, we observe that all
possible instances of the hardware semantics satisfy the J ·Kspec

ct
contract, as stated in Theorem 1.

result of instruction at head of 
 reorder buffer is resolved

apply change to registers 
and remove entry from reorder buffer

Eager load delay [Sakalis et al. 2019]

63

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

Eager load delay [Sakalis et al. 2019]

63

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

Loads are executed
only if prior branch

instructions are
resolved

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

Eager load delay [Sakalis et al. 2019]

63

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

Loads are executed
only if prior branch

instructions are
resolved

10

Theorem 1. {| · |} ` J · Kspec
ct .

From this, it immediately follows that all countermeasures
presented below satisfy the J · Kspec

ct contract as well.

A. seq: Disabling speculation

A first, drastic countermeasure against speculative execution
attacks is disabling speculative and out-of-order execution. To
model this, we instantiate the hardware semantics by providing
a sequential scheduler that produces directives in a fetch�
execute 1�retire order. The sequential scheduler, formalized
in Appendix B, works as follows:

• Whenever the reorder buffer is empty, the scheduler
selects the fetch directive that adds entries to the buffer.

• If the first entry in the buffer is not resolved, the sched-
uler selects the execute 1 directive. Thus, the instruction is
executed and, potentially, resolved.

• If the first entry in the buffer is resolved, the scheduler
selects the retire directive. Therefore, the instruction is retired
and its changes are written into the architectural state.
That is, the sequential scheduler ensures that instructions are
executed in an in-order, non-speculative fashion.

As expected, instantiating the hardware semantics with
the sequential scheduler (denoted with seq) results in strong
security guarantees. As stated in Theorem 2, seq implements
the J · Kseq

ct interface which exposes only the program counter
and the location of memory accesses.

Theorem 2. {| · |}seq ` J · Kseq
ct .

B. loadDelay: Delaying all speculative loads

Sakalis et al. [3] propose a family of countermeasures that
delay memory loads to avoid leakage. In the following, we
analyze the eager delay of (speculative) loads countermea-
sure. This countermeasure consists in delaying loads until all
sources of mis-speculation have been resolved. We remark that
the hardware semantics of Section V supports speculation only
over branch instructions. Therefore, we model the loadDelay
countermeasure by preventing loads whenever there are pre-
ceding, unresolved branch instructions in the reorder buffer.
Using the terminology of [3], loads are delayed as long as
they are under a so-called control-shadow.

We formalize the loadDelay countermeasure by modifying
the STEP rule of the hardware semantics as follows (changes
are highlighted in blue):

STEP-OTHERS

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#)
d 2 {fetch,retire}_ (d = execute i^buf |i 6= load x,e)

hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

STEP-EAGER-DELAY

hm,a,buf ,cs,bpi d
=)hm0,a0,buf 0,cs0,bp0i

d = next(sc) sc0 = update(sc,buf 0#) d = execute i
buf |i = load x,e 8pc `@`0 2 buf [0..i�1]. `0 = e
hm,a,buf ,cs,bp,sci)loadDelayhm0,a0,buf 0,cs0,bp0,sc0i

Fetching, retiring, and executing all instructions that are not
loads works as before (see STEP-OTHERS rule). However,
load instructions are executed only if all prior branch in-
structions are resolved (see STEP-NAIVE-DELAY rule). This is
captured by requiring that all branch instructions in the buffer
prefix have tag e , i.e., 8pc `@`0 2 buf [0..i�1]. `0 = e .

Thus, loads are delayed until they are guaranteed to be
executed, while other instructions may be freely executed spec-
ulatively and out-of-order. Hence, no data memory accesses
are performed on mis-speculated paths. However, maybe sur-
prisingly, parts of the architectural state can still be leaked
on mis-speculated paths as nested conditional branches may
modify the instruction cache and the branch predictor state.

As a consequence, loadDelay violates the J · Kseq
ct contract

capturing the standard constant-time requirements.

Example 2. This program illustrates that {| · |}loadDelay 6` J ·Kseq
ct :

1 x = A[10]

2 y = not (A[20] | 1)

3 if (y) //branch always unsatisfied
4 if (x) //only reachable speculatively
5 skip

Consider two configurations s and s 0 such that s(A+10) =
0 and s 0(A+10) = 1. Then, JpKseq

ct (s) = JpKseq
ct (s 0) =

load A+10 · load A+20 · pc ?. However, the hardware can
leak information through, e.g., the instruction cache if the
branch at line 3 is speculatively taken. Then, the result of
branch at line 4, which determines whether or not skip at 5
is fetched, leaks whether A[10] (stored in x) is 0 or not,
thereby distinguishing s and s 0.

To capture the guarantees offered by the eager-delay coun-
termeasure, we can use the J · Kseq-spec

ct-pc contract, which may
intuitively be understood as J · Kseq

ct + J · Kspec
pc , i.e., control-

flow and memory accesses are leaked under sequential exe-
cution, and in addition, the program counter is leaked during
speculative execution. This new contract is satisfied by the
countermeasure, leading to Theorem 3.

Theorem 3. {| · |}loadDelay ` J · Kseq-spec
ct-pc .

As the control flow during speculation execution may only
depend upon data previously loaded non-speculatively, the
security of the countermeasure can also be captured by J ·Kseq

arch.

Theorem 4. {| · |}loadDelay ` J · Kseq
arch.

C. tt: Taint tracking of speculative values
Recent work [4], [5] propose to track transient computations

and to selectively delay instructions involving tainted informa-
tion. While these proposals slightly differ in how instructions
are labelled and on the effects of different labels, they share
the same building blocks and provide similar guarantees.

For this reason, we start by presenting an overview of
the Speculative Taint Tracking (STT) [5] and Non-speculative
Data Access (NDA) [4] countermeasures. Next, we introduce
a general extension to the hardware semantics from Section V
for supporting taint-tracking schemes. We continue by formal-
izing a countermeasure inspired by STT and we discuss its
security guarantees, and we conclude by discussing NDA.

Everything else
works as before

Hw-level taint-tracking [Yu et al. 2019, Weisse et al. 2019]

64

11

1) Overview: STT [5] and NDA [4] are two recent taint-
tracking proposals for secure speculation. These countermea-
sures extend a processor with hardware-level taint tracking
to track whether data has been retrieved by a speculatively
executed instruction. The taint-tracking mechanism propagates
taint through the computation and whenever operations are no
longer transient, the taint is removed. Finally, both NDA and
STT selectively delay tainted operations to avoid leaks.

The main difference between the two approaches is that
while STT delays the execution of tainted transmit instructions
(that is, instructions like loads that might leak information),
NDA adopts a more conservative approach that delays the
propagation of data from tainted instructions.

2) Supporting taint tracking: To support taint tracking, we
label entries in the reorder buffer with two labels: S (which
stands for “safe”) and U (which stands for “unsafe”). A labeled
command is of the form hc@T i` where c@T is a reorder
buffer entry and ` 2 {S,U} is a label. The labels S and U form
a lattice with S@ U, and thus for all `, Ut`= U and Su`= S.

Existing proposals differ in (1) how labels are assigned
and propagated, and (2) how labels affect the processor’s
execution. To accommodate different variants for (1) and (2),
we formalize these aspects using two functions:

• The labeling function lbl(buf ul ,buf ,d) computes the new
labels associated with the (unlabeled) buffer buf ul given the
old labeled buffer buf and the directive d determining the
activated pipeline step. This function models how the tracking
works, i.e., how labels are assigned to new instructions and
how they are propagated.

• The unlabeling function unlbl(buf ,d) produces an un-
labeled buffer buf ul starting from a labeled buffer buf and
a directive d. This function models how labels affect the
processor’s semantics in terms of changes to the reorder buffer
(and these changes might depend on the executed pipeline step
modeled by d).
We describe later how these functions can be instantiated to
model STT and NDA.

We formalize the tt countermeasure by modifying the STEP
rule as follows (changes are highlighted in blue):

STEP

d = next(sc) buf ul = unlbl(buf ,d)

hm,a, buf ul ,cs,bpi d
=)hm0,a0, buf 0ul ,cs0,bp0i

sc0 = update(sc,buf 0#) buf 0 = lbl(buf 0ul ,buf ,d)

hm,a,buf ,cs,bp,sci)tthm0,a0buf 0,cs0,bp0,sc0i

The rule differs from the standard STEP rule in three ways:
• Entries in the reorder buffer are labelled.
• Before activating a step in the pipeline, i.e., before apply-

ing one step of d
=), we use the unlabeling function to derive an

unlabeled buffer buf ul = unlbl(buf ,d) representing how labels
affect the reorder buffer entries.

• The buffer produced by the application of d
=) is labeled by

invoking the labeling function buf 0 = lbl(buf 0ul ,buf ,d). There-
fore, the labels in buf 0 are updated to track the information
flows through the computation.

unlbl(buf , fetch) = mask(buf)
unlbl(buf ,retire) = drop(buf)

unlbl(buf ,execute i) =

(
mask(buf) if transmit(buf |i)
drop(buf) otherwise

drop(e) := e
drop(hi@T i` ·buf) := i@T ·drop(buf)

mask(e) := e

mask(hi@T i` ·buf) :=

8
><

>:

x ?@T ·mask(buf) if `= U^
i = x e

i@T ·mask(buf) otherwise

Fig. 10: Unlabeling function unlbl(buf ,d) for STT

3) Speculative taint tracking: Here we present how to
model a countermeasure inspired by STT [5]. As mentioned
above, STT tracks whether data depends on speculatively
accessed data and delays the execution of transient transmit
instructions. These features are reflected in our model:

• In µASM, there are three kinds of transmit instructions:
loads load x,e, stores store x,e, and assignments to the
program counter pc e. We write transmit(i@T) whenever
the instruction i is a transmit instruction.

• To delay only transmit instructions, the unlabeling func-
tion, defined in Figure 10, replaces unsafe assignments x e
with x ? for fetch and execute i directives when the i-th
entry in the buffer is a transmit instruction. This ensures that
transmit instructions are not executed whenever they depend
on unsafe data, which are now mapped to ?. In contrast, the
unlabeling function simply strips the taint-tracking labels for
retire and execute i directives whenever the i-the entry is not
a transmit instruction; thereby allowing the hardware to freely
execute non-transmit instructions.

• The labeling function, formalized in Appendix C, speci-
fies how newly fetched instructions are labeled as well as how
labels are updated during computation, and it works as follows:
– Newly fetched load x,e instructions are labelled as safe if
there is no unresolved branch instruction in the buffer, and
they are labelled unsafe otherwise. In contrast, newly fetched
assignments x e are labelled as unsafe if they depend on
unsafe data (i.e., if one of the registers y occurring in e is
labelled as unsafe), and they are labelled as safe otherwise.
All other newly fetched instructions are labelled as safe.
– Whenever we retire or execute non-branch instructions,
labels are preserved.
– When we execute and resolve a branch instruction (thereby
eliminating one of the sources of speculation), there are two
cases. If an earlier branch instruction has not been resolved
yet, we preserve all labels since all the later instructions are
still transient. In contrast, if all earlier branch instructions
have been resolved, then we label as safe all following
instructions until the next unresolved branch since all these
instructions are non-transient. Moreover, we update the labels
of the remaining entries in the reorder buffer to account for

Hw-level taint-tracking [Yu et al. 2019, Weisse et al. 2019]

64

11

1) Overview: STT [5] and NDA [4] are two recent taint-
tracking proposals for secure speculation. These countermea-
sures extend a processor with hardware-level taint tracking
to track whether data has been retrieved by a speculatively
executed instruction. The taint-tracking mechanism propagates
taint through the computation and whenever operations are no
longer transient, the taint is removed. Finally, both NDA and
STT selectively delay tainted operations to avoid leaks.

The main difference between the two approaches is that
while STT delays the execution of tainted transmit instructions
(that is, instructions like loads that might leak information),
NDA adopts a more conservative approach that delays the
propagation of data from tainted instructions.

2) Supporting taint tracking: To support taint tracking, we
label entries in the reorder buffer with two labels: S (which
stands for “safe”) and U (which stands for “unsafe”). A labeled
command is of the form hc@T i` where c@T is a reorder
buffer entry and ` 2 {S,U} is a label. The labels S and U form
a lattice with S@ U, and thus for all `, Ut`= U and Su`= S.

Existing proposals differ in (1) how labels are assigned
and propagated, and (2) how labels affect the processor’s
execution. To accommodate different variants for (1) and (2),
we formalize these aspects using two functions:

• The labeling function lbl(buf ul ,buf ,d) computes the new
labels associated with the (unlabeled) buffer buf ul given the
old labeled buffer buf and the directive d determining the
activated pipeline step. This function models how the tracking
works, i.e., how labels are assigned to new instructions and
how they are propagated.

• The unlabeling function unlbl(buf ,d) produces an un-
labeled buffer buf ul starting from a labeled buffer buf and
a directive d. This function models how labels affect the
processor’s semantics in terms of changes to the reorder buffer
(and these changes might depend on the executed pipeline step
modeled by d).
We describe later how these functions can be instantiated to
model STT and NDA.

We formalize the tt countermeasure by modifying the STEP
rule as follows (changes are highlighted in blue):

STEP

d = next(sc) buf ul = unlbl(buf ,d)

hm,a, buf ul ,cs,bpi d
=)hm0,a0, buf 0ul ,cs0,bp0i

sc0 = update(sc,buf 0#) buf 0 = lbl(buf 0ul ,buf ,d)

hm,a,buf ,cs,bp,sci)tthm0,a0buf 0,cs0,bp0,sc0i

The rule differs from the standard STEP rule in three ways:
• Entries in the reorder buffer are labelled.
• Before activating a step in the pipeline, i.e., before apply-

ing one step of d
=), we use the unlabeling function to derive an

unlabeled buffer buf ul = unlbl(buf ,d) representing how labels
affect the reorder buffer entries.

• The buffer produced by the application of d
=) is labeled by

invoking the labeling function buf 0 = lbl(buf 0ul ,buf ,d). There-
fore, the labels in buf 0 are updated to track the information
flows through the computation.

unlbl(buf , fetch) = mask(buf)
unlbl(buf ,retire) = drop(buf)

unlbl(buf ,execute i) =

(
mask(buf) if transmit(buf |i)
drop(buf) otherwise

drop(e) := e
drop(hi@T i` ·buf) := i@T ·drop(buf)

mask(e) := e

mask(hi@T i` ·buf) :=

8
><

>:

x ?@T ·mask(buf) if `= U^
i = x e

i@T ·mask(buf) otherwise

Fig. 10: Unlabeling function unlbl(buf ,d) for STT

3) Speculative taint tracking: Here we present how to
model a countermeasure inspired by STT [5]. As mentioned
above, STT tracks whether data depends on speculatively
accessed data and delays the execution of transient transmit
instructions. These features are reflected in our model:

• In µASM, there are three kinds of transmit instructions:
loads load x,e, stores store x,e, and assignments to the
program counter pc e. We write transmit(i@T) whenever
the instruction i is a transmit instruction.

• To delay only transmit instructions, the unlabeling func-
tion, defined in Figure 10, replaces unsafe assignments x e
with x ? for fetch and execute i directives when the i-th
entry in the buffer is a transmit instruction. This ensures that
transmit instructions are not executed whenever they depend
on unsafe data, which are now mapped to ?. In contrast, the
unlabeling function simply strips the taint-tracking labels for
retire and execute i directives whenever the i-the entry is not
a transmit instruction; thereby allowing the hardware to freely
execute non-transmit instructions.

• The labeling function, formalized in Appendix C, speci-
fies how newly fetched instructions are labeled as well as how
labels are updated during computation, and it works as follows:
– Newly fetched load x,e instructions are labelled as safe if
there is no unresolved branch instruction in the buffer, and
they are labelled unsafe otherwise. In contrast, newly fetched
assignments x e are labelled as unsafe if they depend on
unsafe data (i.e., if one of the registers y occurring in e is
labelled as unsafe), and they are labelled as safe otherwise.
All other newly fetched instructions are labelled as safe.
– Whenever we retire or execute non-branch instructions,
labels are preserved.
– When we execute and resolve a branch instruction (thereby
eliminating one of the sources of speculation), there are two
cases. If an earlier branch instruction has not been resolved
yet, we preserve all labels since all the later instructions are
still transient. In contrast, if all earlier branch instructions
have been resolved, then we label as safe all following
instructions until the next unresolved branch since all these
instructions are non-transient. Moreover, we update the labels
of the remaining entries in the reorder buffer to account for

Entries in the reorder buffer are labelled as safe/unsafe

Hw-level taint-tracking [Yu et al. 2019, Weisse et al. 2019]

64

11

1) Overview: STT [5] and NDA [4] are two recent taint-
tracking proposals for secure speculation. These countermea-
sures extend a processor with hardware-level taint tracking
to track whether data has been retrieved by a speculatively
executed instruction. The taint-tracking mechanism propagates
taint through the computation and whenever operations are no
longer transient, the taint is removed. Finally, both NDA and
STT selectively delay tainted operations to avoid leaks.

The main difference between the two approaches is that
while STT delays the execution of tainted transmit instructions
(that is, instructions like loads that might leak information),
NDA adopts a more conservative approach that delays the
propagation of data from tainted instructions.

2) Supporting taint tracking: To support taint tracking, we
label entries in the reorder buffer with two labels: S (which
stands for “safe”) and U (which stands for “unsafe”). A labeled
command is of the form hc@T i` where c@T is a reorder
buffer entry and ` 2 {S,U} is a label. The labels S and U form
a lattice with S@ U, and thus for all `, Ut`= U and Su`= S.

Existing proposals differ in (1) how labels are assigned
and propagated, and (2) how labels affect the processor’s
execution. To accommodate different variants for (1) and (2),
we formalize these aspects using two functions:

• The labeling function lbl(buf ul ,buf ,d) computes the new
labels associated with the (unlabeled) buffer buf ul given the
old labeled buffer buf and the directive d determining the
activated pipeline step. This function models how the tracking
works, i.e., how labels are assigned to new instructions and
how they are propagated.

• The unlabeling function unlbl(buf ,d) produces an un-
labeled buffer buf ul starting from a labeled buffer buf and
a directive d. This function models how labels affect the
processor’s semantics in terms of changes to the reorder buffer
(and these changes might depend on the executed pipeline step
modeled by d).
We describe later how these functions can be instantiated to
model STT and NDA.

We formalize the tt countermeasure by modifying the STEP
rule as follows (changes are highlighted in blue):

STEP

d = next(sc) buf ul = unlbl(buf ,d)

hm,a, buf ul ,cs,bpi d
=)hm0,a0, buf 0ul ,cs0,bp0i

sc0 = update(sc,buf 0#) buf 0 = lbl(buf 0ul ,buf ,d)

hm,a,buf ,cs,bp,sci)tthm0,a0buf 0,cs0,bp0,sc0i

The rule differs from the standard STEP rule in three ways:
• Entries in the reorder buffer are labelled.
• Before activating a step in the pipeline, i.e., before apply-

ing one step of d
=), we use the unlabeling function to derive an

unlabeled buffer buf ul = unlbl(buf ,d) representing how labels
affect the reorder buffer entries.

• The buffer produced by the application of d
=) is labeled by

invoking the labeling function buf 0 = lbl(buf 0ul ,buf ,d). There-
fore, the labels in buf 0 are updated to track the information
flows through the computation.

unlbl(buf , fetch) = mask(buf)
unlbl(buf ,retire) = drop(buf)

unlbl(buf ,execute i) =

(
mask(buf) if transmit(buf |i)
drop(buf) otherwise

drop(e) := e
drop(hi@T i` ·buf) := i@T ·drop(buf)

mask(e) := e

mask(hi@T i` ·buf) :=

8
><

>:

x ?@T ·mask(buf) if `= U^
i = x e

i@T ·mask(buf) otherwise

Fig. 10: Unlabeling function unlbl(buf ,d) for STT

3) Speculative taint tracking: Here we present how to
model a countermeasure inspired by STT [5]. As mentioned
above, STT tracks whether data depends on speculatively
accessed data and delays the execution of transient transmit
instructions. These features are reflected in our model:

• In µASM, there are three kinds of transmit instructions:
loads load x,e, stores store x,e, and assignments to the
program counter pc e. We write transmit(i@T) whenever
the instruction i is a transmit instruction.

• To delay only transmit instructions, the unlabeling func-
tion, defined in Figure 10, replaces unsafe assignments x e
with x ? for fetch and execute i directives when the i-th
entry in the buffer is a transmit instruction. This ensures that
transmit instructions are not executed whenever they depend
on unsafe data, which are now mapped to ?. In contrast, the
unlabeling function simply strips the taint-tracking labels for
retire and execute i directives whenever the i-the entry is not
a transmit instruction; thereby allowing the hardware to freely
execute non-transmit instructions.

• The labeling function, formalized in Appendix C, speci-
fies how newly fetched instructions are labeled as well as how
labels are updated during computation, and it works as follows:
– Newly fetched load x,e instructions are labelled as safe if
there is no unresolved branch instruction in the buffer, and
they are labelled unsafe otherwise. In contrast, newly fetched
assignments x e are labelled as unsafe if they depend on
unsafe data (i.e., if one of the registers y occurring in e is
labelled as unsafe), and they are labelled as safe otherwise.
All other newly fetched instructions are labelled as safe.
– Whenever we retire or execute non-branch instructions,
labels are preserved.
– When we execute and resolve a branch instruction (thereby
eliminating one of the sources of speculation), there are two
cases. If an earlier branch instruction has not been resolved
yet, we preserve all labels since all the later instructions are
still transient. In contrast, if all earlier branch instructions
have been resolved, then we label as safe all following
instructions until the next unresolved branch since all these
instructions are non-transient. Moreover, we update the labels
of the remaining entries in the reorder buffer to account for

Entries in the reorder buffer are labelled as safe/unsafe

Derive unlabeled buffer 
(hides information tagged  

as unsafe)

Hw-level taint-tracking [Yu et al. 2019, Weisse et al. 2019]

64

11

1) Overview: STT [5] and NDA [4] are two recent taint-
tracking proposals for secure speculation. These countermea-
sures extend a processor with hardware-level taint tracking
to track whether data has been retrieved by a speculatively
executed instruction. The taint-tracking mechanism propagates
taint through the computation and whenever operations are no
longer transient, the taint is removed. Finally, both NDA and
STT selectively delay tainted operations to avoid leaks.

The main difference between the two approaches is that
while STT delays the execution of tainted transmit instructions
(that is, instructions like loads that might leak information),
NDA adopts a more conservative approach that delays the
propagation of data from tainted instructions.

2) Supporting taint tracking: To support taint tracking, we
label entries in the reorder buffer with two labels: S (which
stands for “safe”) and U (which stands for “unsafe”). A labeled
command is of the form hc@T i` where c@T is a reorder
buffer entry and ` 2 {S,U} is a label. The labels S and U form
a lattice with S@ U, and thus for all `, Ut`= U and Su`= S.

Existing proposals differ in (1) how labels are assigned
and propagated, and (2) how labels affect the processor’s
execution. To accommodate different variants for (1) and (2),
we formalize these aspects using two functions:

• The labeling function lbl(buf ul ,buf ,d) computes the new
labels associated with the (unlabeled) buffer buf ul given the
old labeled buffer buf and the directive d determining the
activated pipeline step. This function models how the tracking
works, i.e., how labels are assigned to new instructions and
how they are propagated.

• The unlabeling function unlbl(buf ,d) produces an un-
labeled buffer buf ul starting from a labeled buffer buf and
a directive d. This function models how labels affect the
processor’s semantics in terms of changes to the reorder buffer
(and these changes might depend on the executed pipeline step
modeled by d).
We describe later how these functions can be instantiated to
model STT and NDA.

We formalize the tt countermeasure by modifying the STEP
rule as follows (changes are highlighted in blue):

STEP

d = next(sc) buf ul = unlbl(buf ,d)

hm,a, buf ul ,cs,bpi d
=)hm0,a0, buf 0ul ,cs0,bp0i

sc0 = update(sc,buf 0#) buf 0 = lbl(buf 0ul ,buf ,d)

hm,a,buf ,cs,bp,sci)tthm0,a0buf 0,cs0,bp0,sc0i

The rule differs from the standard STEP rule in three ways:
• Entries in the reorder buffer are labelled.
• Before activating a step in the pipeline, i.e., before apply-

ing one step of d
=), we use the unlabeling function to derive an

unlabeled buffer buf ul = unlbl(buf ,d) representing how labels
affect the reorder buffer entries.

• The buffer produced by the application of d
=) is labeled by

invoking the labeling function buf 0 = lbl(buf 0ul ,buf ,d). There-
fore, the labels in buf 0 are updated to track the information
flows through the computation.

unlbl(buf , fetch) = mask(buf)
unlbl(buf ,retire) = drop(buf)

unlbl(buf ,execute i) =

(
mask(buf) if transmit(buf |i)
drop(buf) otherwise

drop(e) := e
drop(hi@T i` ·buf) := i@T ·drop(buf)

mask(e) := e

mask(hi@T i` ·buf) :=

8
><

>:

x ?@T ·mask(buf) if `= U^
i = x e

i@T ·mask(buf) otherwise

Fig. 10: Unlabeling function unlbl(buf ,d) for STT

3) Speculative taint tracking: Here we present how to
model a countermeasure inspired by STT [5]. As mentioned
above, STT tracks whether data depends on speculatively
accessed data and delays the execution of transient transmit
instructions. These features are reflected in our model:

• In µASM, there are three kinds of transmit instructions:
loads load x,e, stores store x,e, and assignments to the
program counter pc e. We write transmit(i@T) whenever
the instruction i is a transmit instruction.

• To delay only transmit instructions, the unlabeling func-
tion, defined in Figure 10, replaces unsafe assignments x e
with x ? for fetch and execute i directives when the i-th
entry in the buffer is a transmit instruction. This ensures that
transmit instructions are not executed whenever they depend
on unsafe data, which are now mapped to ?. In contrast, the
unlabeling function simply strips the taint-tracking labels for
retire and execute i directives whenever the i-the entry is not
a transmit instruction; thereby allowing the hardware to freely
execute non-transmit instructions.

• The labeling function, formalized in Appendix C, speci-
fies how newly fetched instructions are labeled as well as how
labels are updated during computation, and it works as follows:
– Newly fetched load x,e instructions are labelled as safe if
there is no unresolved branch instruction in the buffer, and
they are labelled unsafe otherwise. In contrast, newly fetched
assignments x e are labelled as unsafe if they depend on
unsafe data (i.e., if one of the registers y occurring in e is
labelled as unsafe), and they are labelled as safe otherwise.
All other newly fetched instructions are labelled as safe.
– Whenever we retire or execute non-branch instructions,
labels are preserved.
– When we execute and resolve a branch instruction (thereby
eliminating one of the sources of speculation), there are two
cases. If an earlier branch instruction has not been resolved
yet, we preserve all labels since all the later instructions are
still transient. In contrast, if all earlier branch instructions
have been resolved, then we label as safe all following
instructions until the next unresolved branch since all these
instructions are non-transient. Moreover, we update the labels
of the remaining entries in the reorder buffer to account for

Entries in the reorder buffer are labelled as safe/unsafe

Derive unlabeled buffer 
(hides information tagged  

as unsafe)
Computation on unlabeled buffer

Hw-level taint-tracking [Yu et al. 2019, Weisse et al. 2019]

64

11

1) Overview: STT [5] and NDA [4] are two recent taint-
tracking proposals for secure speculation. These countermea-
sures extend a processor with hardware-level taint tracking
to track whether data has been retrieved by a speculatively
executed instruction. The taint-tracking mechanism propagates
taint through the computation and whenever operations are no
longer transient, the taint is removed. Finally, both NDA and
STT selectively delay tainted operations to avoid leaks.

The main difference between the two approaches is that
while STT delays the execution of tainted transmit instructions
(that is, instructions like loads that might leak information),
NDA adopts a more conservative approach that delays the
propagation of data from tainted instructions.

2) Supporting taint tracking: To support taint tracking, we
label entries in the reorder buffer with two labels: S (which
stands for “safe”) and U (which stands for “unsafe”). A labeled
command is of the form hc@T i` where c@T is a reorder
buffer entry and ` 2 {S,U} is a label. The labels S and U form
a lattice with S@ U, and thus for all `, Ut`= U and Su`= S.

Existing proposals differ in (1) how labels are assigned
and propagated, and (2) how labels affect the processor’s
execution. To accommodate different variants for (1) and (2),
we formalize these aspects using two functions:

• The labeling function lbl(buf ul ,buf ,d) computes the new
labels associated with the (unlabeled) buffer buf ul given the
old labeled buffer buf and the directive d determining the
activated pipeline step. This function models how the tracking
works, i.e., how labels are assigned to new instructions and
how they are propagated.

• The unlabeling function unlbl(buf ,d) produces an un-
labeled buffer buf ul starting from a labeled buffer buf and
a directive d. This function models how labels affect the
processor’s semantics in terms of changes to the reorder buffer
(and these changes might depend on the executed pipeline step
modeled by d).
We describe later how these functions can be instantiated to
model STT and NDA.

We formalize the tt countermeasure by modifying the STEP
rule as follows (changes are highlighted in blue):

STEP

d = next(sc) buf ul = unlbl(buf ,d)

hm,a, buf ul ,cs,bpi d
=)hm0,a0, buf 0ul ,cs0,bp0i

sc0 = update(sc,buf 0#) buf 0 = lbl(buf 0ul ,buf ,d)

hm,a,buf ,cs,bp,sci)tthm0,a0buf 0,cs0,bp0,sc0i

The rule differs from the standard STEP rule in three ways:
• Entries in the reorder buffer are labelled.
• Before activating a step in the pipeline, i.e., before apply-

ing one step of d
=), we use the unlabeling function to derive an

unlabeled buffer buf ul = unlbl(buf ,d) representing how labels
affect the reorder buffer entries.

• The buffer produced by the application of d
=) is labeled by

invoking the labeling function buf 0 = lbl(buf 0ul ,buf ,d). There-
fore, the labels in buf 0 are updated to track the information
flows through the computation.

unlbl(buf , fetch) = mask(buf)
unlbl(buf ,retire) = drop(buf)

unlbl(buf ,execute i) =

(
mask(buf) if transmit(buf |i)
drop(buf) otherwise

drop(e) := e
drop(hi@T i` ·buf) := i@T ·drop(buf)

mask(e) := e

mask(hi@T i` ·buf) :=

8
><

>:

x ?@T ·mask(buf) if `= U^
i = x e

i@T ·mask(buf) otherwise

Fig. 10: Unlabeling function unlbl(buf ,d) for STT

3) Speculative taint tracking: Here we present how to
model a countermeasure inspired by STT [5]. As mentioned
above, STT tracks whether data depends on speculatively
accessed data and delays the execution of transient transmit
instructions. These features are reflected in our model:

• In µASM, there are three kinds of transmit instructions:
loads load x,e, stores store x,e, and assignments to the
program counter pc e. We write transmit(i@T) whenever
the instruction i is a transmit instruction.

• To delay only transmit instructions, the unlabeling func-
tion, defined in Figure 10, replaces unsafe assignments x e
with x ? for fetch and execute i directives when the i-th
entry in the buffer is a transmit instruction. This ensures that
transmit instructions are not executed whenever they depend
on unsafe data, which are now mapped to ?. In contrast, the
unlabeling function simply strips the taint-tracking labels for
retire and execute i directives whenever the i-the entry is not
a transmit instruction; thereby allowing the hardware to freely
execute non-transmit instructions.

• The labeling function, formalized in Appendix C, speci-
fies how newly fetched instructions are labeled as well as how
labels are updated during computation, and it works as follows:
– Newly fetched load x,e instructions are labelled as safe if
there is no unresolved branch instruction in the buffer, and
they are labelled unsafe otherwise. In contrast, newly fetched
assignments x e are labelled as unsafe if they depend on
unsafe data (i.e., if one of the registers y occurring in e is
labelled as unsafe), and they are labelled as safe otherwise.
All other newly fetched instructions are labelled as safe.
– Whenever we retire or execute non-branch instructions,
labels are preserved.
– When we execute and resolve a branch instruction (thereby
eliminating one of the sources of speculation), there are two
cases. If an earlier branch instruction has not been resolved
yet, we preserve all labels since all the later instructions are
still transient. In contrast, if all earlier branch instructions
have been resolved, then we label as safe all following
instructions until the next unresolved branch since all these
instructions are non-transient. Moreover, we update the labels
of the remaining entries in the reorder buffer to account for

Entries in the reorder buffer are labelled as safe/unsafe

Update labels

Derive unlabeled buffer 
(hides information tagged  

as unsafe)
Computation on unlabeled buffer

Constant-time Sandboxing

Checking secure programming

27

[[⋅]]seq
ct

[[⋅]]seq
arch

[[⋅]]spec
ct

✓
✓

✓

See paper for: security definitions

.. + NI wrt [[⋅]]seq
arch

.. + Speculative NI  
[Guarnieri et al., S&P’20] .. + weak spec. NI

Constant-time Sandboxing

Checking secure programming

27

[[⋅]]seq
ct

[[⋅]]seq
arch

[[⋅]]spec
ct

✓
✓

✓

See paper for: security definitions

.. + NI wrt [[⋅]]seq
arch

.. + Speculative NI  
[Guarnieri et al., S&P’20] .. + weak spec. NI

Background: Reorder buffer

66

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

66

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

66

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

66

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

	 c ⟵ x < A_size

	 beqz c, END

L1: load t, A + x	  
 load y, B + t

END:

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

66

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: - -

3: - -

… … …

	 c ⟵ x < A_size

	 beqz c, END

L1: load t, A + x	  
 load y, B + t

END:

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 1

3: - -

… … …

Speculative  
Instruction

Fetch

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

67

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: - -

3: - -

… … …

	 c ⟵ x < A_size

	 beqz c, END

L1: load t, A + x	  
 load y, B + t

END:

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 1

3: load y, B + t 1

… … …

Speculative  
Instruction

Fetch
Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 1

3: - -

… … …

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

68

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: - -

3: - -

… … …

	 c ⟵ x < A_size

	 beqz c, END

L1: load t, A + x	  
 load y, B + t

END:

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz c, END -

2: load t, A + x 1

3: load y, B + t 1

… … …

Evaluate

x < A_size

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Entry Instruction Control Dep.

0: c ⟵ x < A_size -

1: beqz c, END -

2: load t, A + x 1

3: load y, B + t 1

… … …

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

69

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: - -

3: - -

… … …

	 c ⟵ x < A_size

	 beqz c, END

L1: load t, A + x	  
 load y, B + t

END:

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz c, END -

2: - -

3: - -

… … …

Rollback 
mis-speculation

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz c, END -

2: load t, A + x 1

3: load y, B + t 1

… … …

Background: Reorder buffer
• Key hardware data structure for  

out-of-order and speculative execution

• Keeps track of “in-flight instructions”

• Example:

70

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: - -

3: - -

… … …

	 c ⟵ x < A_size

	 beqz c, END

L1: load t, A + x	  
 load y, B + t

END:

Entry Instruction Control Dep.

0: beqz c, END -

1: - -

2: - -

3: - -

… … …

Retire
Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: load t, A + x 2

3: - -

… … …

Entry Instruction Control Dep.

0: c ⟵ x <
A_size

-

1: beqz c, END -

2: load t, A + x 2

3: load y, B + t 2

… … …

Entry Instruction Control Dep.

0: c ⟵ 0 -

1: beqz c, END -

2: - -

3: - -

… … …

Speculative execution attacks 101

71

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

72

Size of array A

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

72

Size of array A

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

72

Size of array A

Branch predictor

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

72

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

72

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)

	 y = B[A[x]]

Speculative execution + branch prediction

72

Size of array A

Branch predictor

Prediction based on branch
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state

Spectre V1

73

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

73

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

73

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

73

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

73

What is in A[128]?
A_size=16

B[0]B[1] ...B

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

74

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

74

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

74

A_size=16
B[0]B[1] ...B

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

74

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

74

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

74

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

74

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre V1

void f(int x)

	 if (x < A_size)

	 	 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor	

 2) Prepare cache

 3) Run with x = 128

 4) Extract from cache

74

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Secure programming — foundations

75

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

Specify secret data

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

Specify secret data

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

Specify secret data

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

If is non-interferent wrt contract and policy , and
hardware satisfies , then  

 is non-interferent wrt hardware and policy  

p π

p π

Specify secret data

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

If is non-interferent wrt contract and policy , and
hardware satisfies , then  

 is non-interferent wrt hardware and policy  

p π

p π

Specify secret data

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

If is non-interferent wrt contract and policy , and
hardware satisfies , then  

 is non-interferent wrt hardware and policy  

p π

p π

Specify secret data

Secure programming — foundations

75

Program is non-interferent wrt contract and policy  
if for all arch. states , : if then

p π
σ σ′￼ σ ≈π σ′￼ (p, σ) = (p, σ′￼)

If is non-interferent wrt contract and policy , and
hardware satisfies , then  

 is non-interferent wrt hardware and policy  

p π

p π

Specify secret data

Constant-time

76

Constant-time

76

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

Constant-time

76

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

Control-flow and memory accesses  
do not depend on secrets

Constant-time

76

Traditional CT wrt policy non-interference wrt seq-ct and π ≡ π

General CT wrt and non-interference wrt and π ≡ π

Control-flow and memory accesses  
do not depend on secrets

Sandboxing

77

Sandboxing

77

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

Sandboxing

77

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

Programs never access high
memory locations (out-of-sandbox)

Sandboxing

77

Traditional SB wrt policy non-interference wrt seq-arch and π ≡ π

General SB wrt and  
Traditional SB wrt + non-interference wrt and

π ≡
π π

Programs never access high
memory locations (out-of-sandbox)

Constant-time Sandboxing

Checking secure programming

78

[[⋅]]seq
ct

[[⋅]]seq
arch

[[⋅]]spec
ct

Traditional CT

.. + NI wrt [[⋅]]seq
arch

.. + speculative NI  
[Guarnieri et al., S&P’20]

Traditional SB

Traditional SB

.. + weak spec. NI

Constant-time Sandboxing

Checking secure programming

78

[[⋅]]seq
ct

[[⋅]]seq
arch

[[⋅]]spec
ct

Traditional CT

.. + NI wrt [[⋅]]seq
arch

.. + speculative NI  
[Guarnieri et al., S&P’20]

Traditional SB

Traditional SB

.. + weak spec. NI

