
FLEXIBLE MODELLING

BASED ON FACETS

Juan de Lara1

Joint work with

E. Guerra1, J. Kienzle2, Y. Hattab2

 1Universidad Autónoma de Madrid (Spain)
 2McGill University (Canada)

AGENDA

Context: Model-driven Engineering

Motivation

Facets

Interfaces and laws

Tool support

Case studies

Conclusions and future work

2

CONTEXT: MODEL-

DRIVEN ENGINEERING

3

For specific domains

• Avoid coding the same

solutions over and over

• Families of applications

Domain-Specific Modelling

Languages (DSLs)

• Syntax defined by a meta-

model

• Code generators, simulators,

model transformations

Code

Generator

Modelling, validation and automatic

generation of telephony services

MDE:

DOMAIN-SPECIFIC LANGUAGES

4

Abstract syntax
• Meta-model

• Integrity constraints (OCL)

Concrete syntax
• Graphical

• Textual

• Tabular, etc

Semantics
• Operational, denotational, etc

Services
• Refactorings, code generators, simulators, etc

MetaEdit+

DOMAIN SPECIFIC

MODELLING LANGUAGES

Describe the structure of the domain

• Relevant primitives and abstractions

• Relations, features

• Explicit expert knowledge

5

DOMAIN SPECIFIC

MODELLING LANGUAGES

DSMLs need not be graphical…

xText

6

MODELS AND

META-MODELS

The abstract syntax of DSMLs is

defined through a meta-model

• Classes

• Attributes

• Relations

7

Factory meta-model

Machine

Part

Conveyor

Generator Assembler

inps

outs
*

*

* parts

Terminator

1..*

1..*

MODELS AND

META-MODELS

The abstract syntax of DSMLs is

defined through a meta-model

• Classes

• Attributes

• Relations

8

«conforms to»

c1:Conveyor

g:Generator

a:Assembler

c2:Conveyor

c3:Conveyor t:Terminator

p2: Part p2: Part
outs

o
u

ts

inps

inps

outs inps

Factory meta-model

Machine

Part

Conveyor

Generator Assembler

inps

outs
*

*

* parts

Terminator

1..*

1..*

OCL CONSTRAINTS

9

Object Constraint Language

Well-formedness rules, which

every model should satisfy

Based on First-Order Logic

g:Generator

«conforms to»

c:Conveyor

Factory meta-model

Machine

Part

Conveyor

Generator Assembler

inps

outs
*

*

* parts

Terminator

1..*

1..*

Factory meta-model

Machine

Part

Conveyor

Generator Assembler

inps

outs
*

*

* parts

Terminator

1..*

1..*

context Generator inv:

self.inps->isEmpty() and self.outs->size()>0

context Generator inv:

self.inps->isEmpty() and self.outs->size()>0

context Terminator inv:

self.outs->isEmpty() and self.inps->size()>0

context Assembler inv:

self.inps->size()>0 and self.outs.size()>0

…
inps

MODELS AND

META-MODELS

Models are represented using

concrete syntax

• Visual

• Textual

No need for a 1-1 correspondence

between abstract and concrete

syntax elements

1
0

 asse

MODEL

TRANSFORMATIONS

Models need to be manipulated for

• Simulation

• Optimization/refactoring

• Generating another model

• Generating code

in-place
transformations

1
1

…

MODEL

TRANSFORMATIONS

Models need to be manipulated for

• Simulation

• Optimization/refactoring

• Generating another model

• Generating code

Source
Target

1
2

model-to-model
transformations

MODEL

TRANSFORMATIONS

Models need to be manipulated for

• Simulation

• Optimization/refactoring

• Generating another model

• Generating code

1
3

MMsrc MMtar

Msrc Mtar

Transformation

definition

from to

«conforms to» «conforms to»

Transformation

execution

Transformation

developer

Final user

model-to-model
transformations

MODEL

TRANSFORMATIONS

Models need to be manipulated for

• Simulation

• Optimization/refactoring

• Generating another model

• Generating code

1
4

Template languages

query and

model navigation

1
5

Very nice…

Where’s the ugly?

SOME LIMITATIONS…

Model-driven Engineering

• Models are the principal artifacts

• Models conform to a meta-model

Objects are closed

• Created using classes as templates

• Slots, types, and constraints cannot be changed

This rigidity makes some MDE scenarios difficult

• Reuse of model transformations

• Model extension

• Multi-view modelling

• …

1
6

Person

fullName: String
age: int
female: boolean

:Person

fullName=“Homer ”
age=36
female=false

Meta-model

Model «conforms»

MOTIVATION:

REUSE

1
7

Person

fullName: String
age: int
female: boolean

Address

street: String
city: String

address

spouse

0..1

Census

:Person

fullName=“Homer ”
age=36
female=false

Group

Element

quantity: int

elems

Metrics

*

operation Group avg(): Real {

 if (elems.isEmpty()) return 0;

 return elems.quantity.sum()/

 elems.size();

}

:Person

fullName=“Todd”
age=8
female=false

…

Springfield: Census
«conforms»

Calculate average age of all male

adults in Springfield

Can we reuse operation avg on

Census models?

• Retype some Persons as Elements

• Create a Group containing all male

adults

MOTIVATION:

MODEL EXTENSION

1
8

Person

fullName: String
age: int
female: boolean

Address

street: String
city: String

address

spouse

0..1

Census

:Person

fullName=“Homer ”
age=36
female=false

:Person

fullName=“Todd”
age=8
female=false

…

Springfield: Census
«conforms»

Employment

Company

name: String
vatId: String

employees *

Owner

name: String

Employee

name: String
salary: double
ssNumber: int
active: boolean

belongsTo

minSalary inv:
self.salary > 15000

reportsTo

Can we extend existing Person

objects with Employment info?

• Retype some Persons as

Employees or Owners

• Add corresponding slots and

constraints

IN THIS TALK…

New modelling mechanism: the facet

• brings flexibility and dynamism to modelling

• lightweight: facets are just objects

Objects become open

• can acquire and drop slots, types and constraints

Facet laws

• specify when objects acquire/drop facets

Practical implementation

• on top of metaDepth, a textual meta-modelling tool

1
9

WHAT’S A FACET?

A facet is an object

• becomes part of another one(s), called the host object(s),

• the slots of the facet become transparently accessible from the

host, which also acquires the type and constraints of the facet.

A host object can acquire and drop facets dynamically

2
0

homer :Person

fullName= “Homer”
age= 57
female= false emp: Employee

name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield :Census

emp: Employee[1]

: Employment
homer :Person :Employee

age= 57
female= false
fullName= name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield
:Census :Employment

emp: Employee

host
object facet

WHAT’S A FACET?

Object homer receives:

• Slots (name, salary, ssNumber, active)

• Type (Employee)

• Constraints (minSalary)

From its emp facet

Host and facet slots may be synchronized

• fullName and name

• Changing either one modifies the other

Slot name ambiguity

• Resolved by facet name (homer.emp)

Shared facets and several facets in hosts

2
1

homer :Person :Employee

age= 57
female= false
fullName= name= “Homer”
salary=47500
ssNumber=12345
active=true

Springfield
:Census :Employment

emp: Employee

Employment

Employee

name: String
salary: double
ssNumber: int
active: boolean

minSalary inv:
salary > 15000

…

«conforms»

Census

…

«conforms»

FACET MANAGEMENT

A DSL for adding/removing facets to objects

2
2

addFacet homer

 emp: Employment.Employee

 with {

 name = fullName [equality]

 salary = 22345

 ssNumber = 12345

 active = true

 }

addFacet

 $Person.allInstances()→select(age>17)$

 emp: Employment.Employee with {…}

Explicit host selection

Query-based host selection

addFacet h:Person, w:Person where

 $h.spouse=w$

 emp: Employment.Employee with {…}

Pattern-based host selection

Selection of host objects by id Selection of host objects by properties

(similar commands for removing a facet)

FACET MANAGEMENT

2
3

addFacet

$Person.all()→select(age>17)$

 emp: Employment.Employee

 with {…} reuse

Facet shared among all

selected host objects

addFacet homer

 dayJob: Employment.Employee with {

 name = fullName [equality]

 salary = 15000

 ssNumber = 12345

 active = true

 }

 nightJob: Employment.Employee with {

 name = fullName [equality]

 salary = 16400

 ssNumber = dayJob.ssNumber [equality]

 active = dayJob.active [equality]

 }

Several facets in same host object

One-to-many and many-to-one host/facet relations are supported

REACTIVE FIELD

ADAPTERS

2
4

addFacet homer

 emp: Employment.Employee

 with {

 ssNumber = 12345 // value semantics: literals

 salary = $100*self.age$ // value semantics: expressions

 name = fullName [equality] // reference semantics: bx synchronization

 active = [self.age < 65] // reference semantics: reactive field adapter

 }

Coupled change dependencies

• active = [self.age < 65]  When age changes, active is updated

• name = fullName [equality]  Eq. to name = [fullName] [fullName=name]

N-ary depedencies

• salary = [100*self.age] [rich = self.salary > 10000]

• ill-behaved: name = [fullName] [fullName = ’Mr. ’.concat(name)]

• Safety policy: each field is evaluated once within a cycle

MODEL SCENES

2
5

Springfield :Census :Employment

homer :Person :Employee
age=57
female=false
fullName=“Homer”
name=“Homer” dayJob, nightJob

ssNumber=12345 dayJob, nightJob

active=true dayJob, nightJob

salary=15000 dayJob

salary=16400 nightJob

simsHome :Address

street=“Evergreen Terrace”
city=“Springfield”

:address

Different visualizations for a model

• “Scenes”

Total scene

• Default visualization

Total scene

MODEL SCENES

2
6

Different visualizations for a model

• “Scenes”

Total scene

• Default visualization

Sliced scene

• W.r.t. a given facet meta-model

Springfield :Employment

 homer :Employee

name=“Homer” dayJob, nightJob

ssNumber=12345 dayJob, nightJob

active=true dayJob, nightJob

salary=15000 dayJob

salary=16400 nightJob

Scene sliced by Employment

MODEL SCENES

2
7

Different visualizations for a model

• “Scenes”

Total scene

• Default visualization

Sliced scene

• W.r.t. a given facet meta-model

Granulated

• Shows facets typed w.r.t. a certain meta-

model

Springfield
:Employment

nightJob :Employee

name=“Homer”
salary=16400
ssNumber=12345

active=true

name=“Homer”
salary=15000
ssNumber=12345
active=true

dayJob :Employee

Scene granulated by

Employment

FACET LAWS

AND INTERFACES

Opportunistic vs planned handling of facets

Control which elements can be used as facets

Declarative specification of conditions for acquiring/droping facets

2
8

:CMM :FMM

FMM CMM

Facet Interface

«
co

n
fo

rm
s to

»

«
co

n
fo

rm
s to

»

Creation MM Facet MM

model with facets

Facet Law

FACET INTERFACES

Restricts how a meta-model can be used for facet-based modelling

Declares

• classes that can be used to create facets

• allowed combinations

• extra well-formedness constraints (eg., due to facet combination)

2
9

FacetInterface for Employment {

 public: all

 compatible: [Employee, Owner]

 constraints: Employee.repToIrreflexive= $self.reportsTo.excludes(self)$

}

FACET LAWS

Specs stating when host objects should acquire/drop a facet

• must/may

Can add additional constraints and set default values

Setting homer.age:=16 makes homer drop the work facet

3
0

FacetLaws for Census with Employment {

 must extend <p:Person> where $p.age>17$

 with work:Employee with {

 name = fullName [equality]

 salary = 24000

 minLocalSalary: $ self.salary>16000 $

 retirement: $ self.age>65 implies not self.active $

 }

}

FACET LAWS

Check manually issued addFacet/removeFacet commands

• Should conform to the facet laws, if defined

Check faceted models for consistency

• Models should satisfy the laws

To complete addFacet commands

• Take default values and slot relations from the laws

To constraint facets

• By adding extra constraints

To automate facet acquisition/loss

• Via the “must” extension laws

• addFacet/removeFacet automatically issued

3
1

TOOL SUPPORT

MetaDepth (http://metaDepth.org)

• Textual multi-level modelling tool

• Epsilon languages for model

management (EOL, ETL, EGL)

Facets, facet handling, interfaces, laws

Mirror fields

Triggered constraints (add/drop facets)

3
2

Model Census {
 Node Person{
 name: String;
 age: int;
 female: boolean = true;
 spouse: Person[0..1];
 address: Address[1];
 }
 Node Address {
 street: String;
 city: String;
 }
}

var p : Person := new Person;
p.age := 23; // implicitly creates an Employee facet (as p.age > 17)
p.salary := 15100; // OK, as p has now an Employee facet
p.age := 16; // p loses its Employee facet (as p.age <= 17)
p.salary := 21000; // Error! p has no Employee facet

EOL program

Census meta-model

http://metadepth.org/

EVALUATION

Based on five scenarios

• Integration of annotation models

• Reuse of model management operations

• Multi-view modelling

• Multi-level modelling

• Language product lines

Comparison with solutions using alternative techniques

• Cross-referencing, EMF profiles, a-posterioti typing

• Model adaptation, a-posteriori typing, concepts, model typing

• Central repository, OpenFlexo, OSM, Vitruvius

• MetaDepth, Melanee, MultEcore, ML2

• Model templates, DeltaEcore, VML*, SmartAdapters, etc

3
3

INTEGRATING

ANNOTATION MODELS

Annotation models widely used in MDE:

• Concrete syntax (CS) representation, uncertainty, variability, access

control, etc.

3
4

Model ConcreteSyntax {
 abstract Node GraphicalElem {
 x, y : int;
 label : String;
 linkedTo : GraphicalElem[∗];
 }
 Node Rectangle : GraphicalElem {
 width, height : int;
 }
 Node Circle : GraphicalElem {
 radius : int;
 }
}

Graphical CS support

• Meta-model

• Simple visualizer

• Facet laws to assign CS to

domain meta-models

We obtain for free:

• Bidirectional synchronization

textual/graphical CS.

CS meta-model

3
5

FacetLaws for Census with ConcreteSyntax {
 must extend <p:Person> where $p.female$ with c:Circle with {
 label = name [equality]
 linkedTo = spouse [equality]
 radius = [2*age] [age = radius/2]
 }
 must extend <p:Person> where $not p.female$ with r:Rectangle with {
 label = name [equality]
 linkedTo = spouse [equality]
 height = age [equality]
 width = age [equality]
 }
}

CS FOR CENSUS

Census Springfield {
 Person marge {
 fullName = "Marge";
 age = 47;
 spouse = homer;
 address = simsHouse;
 }
 …
} (scene sliced by Census)

Synch.

CAN WE DO THIS

DIFFERENTY?

3
6

Cannot be used to fully solve this case study:

Cross-referencing, EMF profiles

• No direct support for conditional styles (different CS based on female)

• No direct support for bidirectional changes

A-posteriori typing

• Cannot map slots like x and y
[1] Langer, Wieland, Wimmer,Cabot. EMF profiles: a lightweight extension approach for EMF

models. JOT 11,1(2012),1–29.

[2] de Lara, Guerra. A posteriori typing for model-driven engineering: Concepts, analysis, and

applications. ACM TOSEM 25, 4(2017),31:1–31:60.

[1]

[2]

(DYNAMIC) PRODUCT LINES

“SE methods for creating a collection of similar software systems from a

shared set of software assets using a common means of production”

(Dynamic) Language product lines

3
7

Model Components {

 abstract Node NamedElement {

 name : String;

 }

 Node Component : NamedElement {

 ports : Port[1..*];

 }

 abstract Node Port : NamedElement ;

 Node InputPort : Port;

 Node OutputPort : Port {

 target : InputPort[1..*];

 }

}

Base language definition

// variability model

Model ComponentFeatures {

 Node FeaturedElement {

 security : boolean = false;

 monitoring : boolean = true;

 }

}

Feature model

Component

Features

security monitoring

(DYNAMIC) PRODUCT LINES

3
8

Model ComponentFacets { // facet metamodel

 Node Cipher { // to be added to ports when security is selected

 blockSize : int;

 key : String;

 nRounds : int;

 }

 Node Monitor { // to be added to components when monitoring is selected

 activeRate : double = 0.0;

 powerConsumption : double = 0.0;

 }

}

Meta-model fragments to be added when the configuration changes

(DYNAMIC) PRODUCT LINES

3
9

FacetLaws for Components with ComponentFeatures {
 must extend <n:NamedElement> with cfg: FeaturedElement with {
 security = false
 monitoring = true
 } reuse
}

All elements share a configuration

FacetLaws for Components, ComponentFeatures with ComponentFacets {
 must extend <p:Port & FeaturedElement> where $p.security$
 with c : Cipher with {
 blockSize = 32
 key = "915F4619BE41B2516355A50110A9CE91"
 nRounds = 12
 }
 must extend <c:Component & FeaturedElement> where $c.monitoring$
 with m: Monitor with {
 …
 } reuse
}

Facets are added depending on the chosen configuration

RELATED WORKS

Role-based modelling (eg., Lodwick [1], CROM [2])

• Facets fulfill most typical features of role-based languages

• Heavyweight (role, natural, compartment types)

• Practical integration with MDE: inheritance, attribute/slot handling,

OCL constraints, integration with model management languages

A-posteriori typing

• Can dynamically add/remove types

• Cannot add slots or constraints

4
0

[1] Steimann. On the representation of roles in object-oriented and conceptual modelling.

Data Knowl. Eng. 35,1(2000),83–106.

[2] Kühn, Böhme, Götz,Aßmann. A combined formal model for relational context-dependent

roles. In SLE’15. pp.:113–124.

de Lara, Guerra. A posteriori typing for model-driven engineering: Concepts, analysis, and

applications. ACM TOSEM 25, 4(2017),31:1–31:60.

CONCLUSIONS AND

FUTURE WORK

Facets add flexibility and dynamicity to modelling

• make objects open

• acquire/drop slots, types and constraints dynamically

• reactive synchronization of fields

Facet interfaces and laws

• property-based facet acquisition and drop

Some scenarios where facets present advantages

Implementation on top of metaDepth

4
1

Future work

• Improve tooling

• Interaction with behaviour specifications

• Combine operations defined in host objects and facet

• Static analysis

Juan.deLara@uam.es
@miso_uam http://metadepth.org

THANKS!

http://miso.es

