FLEXIBLE MODELLING
BASED ON FACETS

Juan de Laral

Joint work with
E. Guerral, J. Kienzle?, Y. Hattab?

lUniversidad Autébnoma de Madrid (Spain)
Y McGill University (Canada) i ‘
UNIVERSTONOMA <l MC Glll

AGENDA

Context: Model-driven Engineering
Motivation

Facets

Interfaces and laws

Tool support

Case studies

Conclusions and future work

CONTEXT: MODEL-
DRIVEN ENGINEERING

For specific domains
* Avoid coding the same
solutions over and over
» Families of applications

Domain-Specific Modelling
Languages (DSLSs)

- Syntax defined by a meta-
model

« Code generators, simulators,

model transformations

ucoda

‘‘‘‘‘‘

% Code

Modelling, validation and automatic
generation of telephony services

MDE:
DOMAIN-SPECIFIC LANGUAGES

Abstract syntax

* Meta-model

* Integrity constraints (OCL)
Concrete syntax

 Graphical

* Textual

 Tabular, etc
Semantics

« Operational, denotational, etc
Services

- Refactorings, code generators, simulators, etc

DOMAIN SPECIFIC
MODELLING LANGUAGES

Describe the structure of the domain

& Productmodell: Vehicle Insurance, August 20, 2003, 17:40

Guh B Yew Dpes b
Bé YDRB v B AQH

* Relevant primitives and abstractions = *~ "= "= :
- Relations, features

* Explicit expert knowledge [e= e w e e

= "3
& s oo B Ay
Do EONOSSCOO OO0 €%k
K& Application: Conference registration, May 26, 2004, 14:19 o
Graoh Edt Yew Tvpes Help =
e | fhBR v H Qi i
OO BcESoo=@ @E ™ 8w« R
~ N
® g
i Payment method | P Soaton >
Conferance > Your name? -) d: 10810 Zoom: 100%
Registration” 1 N _m,m,:e —gm sipjones@example fi
Velcome Credit card
Please choose
Tews program Daily pac|text Subaction
Cancel registration 45| combo -
? 5|combo 12345678 Registration ot o Redi Befarshod
Coinba +PersName+, +Payment s@voicemail. Y\ —redirection edirect e’ Hello World
3 combo imple.com
Carcel S 5 :20(combo
registiation 3
v
= Registration made g i
12345676 Cancel Cancel 2T { >
2 rogram S e N
3 ontzh H Subgraph(s): None H Grid: 10@10 " Zoom: 100%
h ZSySemMpIsNPYthanIsaN
5 G e e
SMS cancellation _
send ‘ —)@ Q
¥
< i > .
Adtive: Nore H Subgraph(s): Noe ” Grid: 10210 l Zoom: 100% M eta E d It+

DOMAIN SPECIFIC
MODELLING LANGUAGES

. = Resource - bpmn2pn/specification.pamomo - Eclipse Platform =ANCEE X
DSMLs need not be graphical... |a e s so sow o v 2o
[Project Explorer &2 = O] 5 specification.pamomo &3 =0
=] <)==D| ~ I 1 specification bpmn2pn <BPMN:"BPMN", PN:"petri_nets"> { =
4 &% bpmn2pn 3= ppattern ParallelGatewayl { // positive invariant
> = metamodels 45 BPMN {
T em el = t:Task{ outgoing=@g; } =
R . g:ParallelGateway{} }
% BuildExample.build 22 = = N
pl:Place{ outarcs=fitr; }
param File project = 'exomple-project'.file EriTransition{} }

N ; ondition: "t.name=pl.name";
param File source = project/'src’

param File target = project/'target’

- . . . ttern ParallelGateway3 { // negative invariant
param File jar = projects/'result's " foo.jar’ PN
t1:Task{ ocutgoing=fig; }
—task Zip depends Compile { t2:Task{ outgoing=fig; }
Larget.zip(iar) g:ParallelGateway{} }
get.zipl] N
} pli:Place{ outarcs=@pll; }
pl2:Place{ outarcs=f@pl2; }
. tr:Transition{} }
= task _Complle depends Clean { ondition: "tl.name=pll.name", "t2.name=pl2.name";
= Jawvac [eg | // disabling condition
= SOUFCES 4= SOUFCE BRI {)
destination = target t2:Taski{ ougoing=le; J

g:Gateway{} }
] PN {3}

}

= task Run depends Zip {
val classpath = newClasspath(jar) -

val clazz = classpath.loadClass{"helloworld.HelloWorld") Writable Insert :1
clazz. runMain

}

~task Clean {
target . deletelirectoryiontents

jar.delete

MODELS AND
META-MODELS

The abstract syntax of DSMLs is

defined through a meta-model Factory meta-model
(inps A
Classes - T _
. Attributes Conveyor | quts Machine
_ * 1.*
Relations JAN
x v parts | |
Part Generator || Assembler || Terminator
=~/

MODELS AND
META-MODELS

The abstract syntax of DSMLs is

defined through a meta-model Factory meta-model
(inps A
« Classes - T _
. Attributes Conveyor | quts | Machine
_ * 1.%
- Relations JAN
x\ parts | |
«conforms to» Part Generator || Assembler || Terminator
. =~/
)
d:Generator
outs p2: Part p2: Part
cl:Conveyor "PS e nps _
e a:Assembler c3:Conveyor t:Terminator
c2:Conveyor (Gnps
J

OCL CONSTRAINTS

Object Constraint Language

Factory meta-model

()

Well-formedness rules, which Inps = _
every model should satisfy || ©°"VeY" | ous __| Machine

«\vparts [I
Based on First-Order Logic ‘ Part ‘ ‘ Generator H Assembler H Terminator ‘

context Generator inv:

self.inps->iIsEmpty() and self.outs->size()>0
context Terminator inv:
self.outs->IsEmpty() and self.inps->size()>0
context Assembler inv:

self.inps->size()>0 and self.outs.size()>0

«conforms to>

c:Conveyor
inps

g:Generator

MODELS AND
META-MODELS

Models are represented using

concrete syntax

* Visual
Textual

-

g:Generator

c1:Conveyor

sino

c2:Conveyor

\.

Jouts p2: Part p2: Part
inps /]\

J/

OULS|
a:Assembler outs

c3:Conveyor

inps

t: Terminator

inps

.

No need for a 1-1 correspondence
between abstract and concrete

syntax elements

.
o

T4

MODEL
TRANSFORMATIONS

Models need to be manipulated for

« Simulation In-place
- Optimization/refactoring | transformations
- Generating another model [h
« Generating code g
P

(Bg 110
¥

MODEL
TRANSFORMATIONS

Models need to be manipulated for

« Simulation

+ Optimization/refactoring

« Generating another model
« Generating code

model-to-model
transformations

Target
Source 4)

Cgﬁ?&%w o™

MODEL
TRANSFORMATIONS

Models need to be manipulated for

« Simulation
 Optimization/refactoring

« Generating another model
« Generating code

model-to-model
transformations

Transformation® =

developer ig
from [EEER. | tg
M Msr definition M |\/Itar
.\ A\
1
1 «conforms to» «conforms to» i

{ . \
M | Transformation M
src | execution | tar

Final user

MODEL
TRANSFORMATIONS

myContacts.android &%

[T Resource Set

#] android.ecore

platform:/resource/org.eclipse.ac

- 4 atform:/resource/org.eclipse.acceleo.module.example.androi ® androic.l
Models need to be manipulated for PR e LG

4 & Activity MyContacts
o Text firstName
i Text lasthame
o Text phoneMumber
o Text email
[H Spinner country
J Button save

* Simulation

T name: EString

2 widgets : Widget
widgets

H Widget

H Text -> Widget

T a-» Widget

+ Optimization/refactoring

query and er -» Widget
» Generating another model model navigation
myCom:acts.android -'”mycontactsactwity.mtl &3 =a

« Generating code

* @author Jonathan Musset

TemplateWanguages ;L

public class MyContactsActivity extends Activity {

1o

S
B * MyContactshctivity.

SR R R R R

wow

[for (v : Widget
[if (v.oclIsKir
private EditText wFirstName;

w 5w
o R

m

[elseif (v.oclIsKindCf (Spinner))]
private Spinner wCountry:;

Tl @ 3:47 Pm

[elseif (v.oclIsKindOf (Buttonf)]
private Button w3ave;

[/1f]
[/for]

/**% Called when the activity is first created. */
gOverride
public void onCreate (Bundle instanceState) {
super.onCreate (instanceS5tate) ;
setContentView (R.layout.main) ;
initControls()

-

_

N
Very nice...

Where’s the ugly?

Meta-model

Person

SOME LIMITATIONS...

Model-driven Engineering age: int
female: boolean

* Models are the principal artifacts

A
* Models conform to a meta-model Model «conforms»
:Person
Objects are closed fullName="Homer ”

age=36
female=false

 Created using classes as templates
» Slots, types, and constraints cannot be changed

This rigidity makes some MDE scenarios difficult

* Reuse of model transformations
* Model extension
« Multi-view modelling

MOTIVATION:
REUSE

Census Metrics
operation Group avg(): Real {
Person Element if (elems.isEmpty()) return O;
0.1 fullName: String quantity: int <— return elems.q.uantity.sum()/
> age:int “Melems elems.size();
>POUSE! fomale: boolean }
Y address Group
Address
street: String
city: String Calculate average age of all male
A adults in Springfield
— «conforms»
Springfield: Census |' :
Can we reuse operation avg on
:Person :Person Census models?
gt;';'jgry Homer gl‘g'ﬂgmg Todd - Retype some Persons as Elements
female=false female=false * Create a Group containing all mal
adults

MOTIVATION:
MODEL EXTENSION

Employment

Census '
Employee “minsalary inv:
Person name: String self.salary > 15000
— salary: double L
0..1 fuIINfa\me.Strlng ssNumber: int i
> age: int o
Spouse| ¢ _|e: boolean active: boolean
' employees T
Y address reporsTioy
Address Company Owner
street: String narlnde:SString name: String
e Qbr vatld: String
city: String | beIongsToA
N
— . lcconforms» L.
Springfield: Census |) Can we extend existing Person
objects with Employment info?
:Person :Person
fullName=“Homer” | | fullName=“Todd” * Retype some Persons as
age=36 age=8 Employees or Owners
female=false female=false - Add corresponding slots and

constraints

IN THIS TALK...

New modelling mechanism: the facet

* brings flexibility and dynamism to modelling
* lightweight: facets are just objects

Objects become open

 can acquire and drop slots, types and constraints

Facet laws

* specify when objects acquire/drop facets

Practical implementation

 on top of metaDepth, a textual meta-modelling tool

WHAT’S A FACET?

A facet is an object

* becomes part of another one(s), called the host object(s),

* the slots of the facet become transparently accessible from the
host, which also acquires the type and constraints of the facet.

A host object can acquire and drop facets dynamically

— host Springfield
Springfield :Census object facet " :Census :Employment
homer :Person [« -~ . :
: homer :Person :Employee
fullName= “Homer” : Employment |
age= 57)2 age= 57 oy :
female= false emp: Employee female= false :&€mp: Employee °
. name= “Homer” fullName= name= “Homer” '
‘o | salary=47500 salary=47500
emp: Employee[1] | | ssNumber=12345 :ssNumber=12345
active=true ‘active=true

WHAT’S A FACET?

Census | | Employment

Object homer receives:

* Slots (name, salary, ssNumber, active)
* Type (Employee)

 Constraints (minSalary)

From its emp facet

Employee

name: String
salary: double
ssNumber: int
active: boolean

minSalary inv:
salary > 15000

|.

Host and facet slots may be synchronized

* fullName and name
« Changing either one modifies the other

Slot name ambiguity

» Resolved by facet name (homer. emp)

Shared facets and several facets in hosts

A A
:«conforms» I
|
Springfield ;
I«conforms»
:Census :Employment !

homer :Person :Employee

age=>57 R _
female= false : €mp: Employee :

Esalary=47500
gssNumber=12345
‘active=true

:fullName= name= “Homer”

FACET MANAGEMENT

A DSL for adding/removing facets to objects

Selection of host objects by id Selection of host objects by properties
addFacet homer addFacet
emp: Employment.Employee $Person.allinstances()—select(age>17)$
with { _ emp: Employment.Employee with {...}
name = fullName [equality] |5 ery-hased host selection
salary = 22345
ssNumber = 12345 addFacet (h:Person, w:Person) where
active = true $h.spouse=w$
} emp: Employment.Employee with {...}
Explicit host selection Pattern-based host selection

(similar commands for removing a facet)

FACET MANAGEMENT

One-to-many and many-to-one host/facet relations are supported

addFacet homer addFacet
dayJob: Employment.Employee with { $Person.all()—select(age>17)$
name = fullName [equality] emp: Employment.Employee
salary = 15000 with {...} reuse
ssNumber = 12345 Facet shared among all
\ SENE = iz selected host objects
nightJob: Employment.Employee with {
name = fullName ‘equality]
salary = 16400
ssNumber = dayJob.ssNumber [equality]
active = dayJob.active ‘equality]
}

Several facets in same host object

REACTIVE FIELD
ADAPTERS

addFacet homer
emp: Employment.Employee

with {
ssNumber = 12345 /[l value semantics: literals
salary = $100*self.age$ // value semantics: expressions
name = fullName [equality] // reference semantics: bx synchronization
active = [self.age < 65] I/ reference semantics: reactive field adapter
}

Coupled change dependencies

* active = [self.age < 65] - When age changes, active is updated
« name = fullName [equality] = Eg. to name = [fullName] [fullName=name]
N-ary depedencies

* salary = [100*self.age] [rich = self.salary > 10000]
* ill-behaved: name = [fullName] [fullName = "Mr. ".concat(hame)]
- Safety policy: each field is evaluated once within a cycle

MODEL SCENES

Different visualizations for a model

Springfield :Census :Employment

* “Scenes”
homer :Person :Employee
age=57/
Total scene fema'ezfa'fe)

fullName=“Homer

* Default visualization name=“Homer” dayJob, nightiob
ssNumber=12345 dayJob, nightiob
active=true dayJob, nightJob

salary=15000 dayJob
salary=16400 nightjob

V:address

simsHome :Address

street="Evergreen Terrace’
city="Springfield”

Total scene

MODEL SCENES

Different visualizations for a model

» “Scenes”

Total scene

» Default visualization
Sliced scene

« W.r.t. a given facet meta-model

Springfield :Employment

homer :Employee

name=“Homer” dayJob, nightiob
ssNumber=12345 dayJob, nightiob
active=true dayJob, nightJob
salary=15000 dayJob
salary=16400 nightJob

Scene sliced by Employment

MODEL SCENES

Different visualizations for a model Springfield
:Employment

» “Scenes”

dayJob :Employee
name=“Homer”
salary=15000

« Default visualization ssNumber=12345

Total scene

Sliced scene active=true
* W.r.t. a given facet meta-model nightlob :Employee
Granulated name="Homer”
: salary=16400
« Shows facets typed w.r.t. a certain meta- <sNumber=12345
model active=true

Scene granulated by
Employment

FACET LAWS
AND INTERFACES

Opportunistic vs planned handling of facets
Control which elements can be used as facets

Declarative specification of conditions for acquiring/droping facets

Facet Interface
CMM l FMM
Facet Law > " % """" 3
Creation MM R;;f”;ﬁ;-\ =‘~---[------ ' Facet MM
~ Oé\\é} N

«0] SWJOoJuod»

P e

e e =

«0} SW.I0JU0I»

model with facets

Employment |

Employee minSalary inv:
name: String self.salary > 15000
salary: double |

FACET INTERFACES |owwem |

active: boolean

employees

reports.Tow
Company Owner
Facetlr_lterface for Employment { name: String "ame: String
pUb'lC: all vatld: Sltrlng belongsToA

compatible: [Employee, Owner]
constraints: Employee.repTolrreflexive= $self.reportsTo.excludes(self)$

}

Restricts how a meta-model can be used for facet-based modelling

Declares

* classes that can be used to create facets
- allowed combinations
- extra well-formedness constraints (eg., due to facet combination)

FACET LAWS

Specs stating when host objects should acquire/drop a facet

* must/may
Can add additional constraints and set default values

FacetLaws for Census with Employment {
must extend <p:Person> where $p.age>17$
with work:Employee with {
name = fullName [equality]
salary = 24000
minLocalSalary: $ self.salary>16000 $
retirement: $ self.age>65 implies not self.active $

}

Setting homer.age:=16 makes homer drop the work facet

FACET LAWS

Check manually issued addFacet/removeFacet commands

« Should conform to the facet laws, if defined
Check faceted models for consistency

* Models should satisfy the laws
To complete addFacet commands

* Take default values and slot relations from the laws
To constraint facets

« By adding extra constraints
To automate facet acquisition/loss

* Via the "“must” extension laws
- addFacet/removeFacet automatically issued

Census meta-model

TOOL SUPPORT Model Census{

Node Person{

name: String;
MetaDepth () age: int;

» Textual multi-level modelling tool female: boolean = true;

management (EOL, ETL, EGL) address: Address[1];

}
Facets, facet handling, interfaces, laws Node Address {
Mirror fields street: String;
city: String;
Triggered constraints (add/drop facets) }
}

EOL program

var p : Person := new Person;

p.age :=23; /[implicitly creates an Employee facet (as p.age > 17)
p.salary := 15100; // OK, as p has now an Employee facet

p.age :=16; /Il p loses its Employee facet (as p.age <= 17)

p.salary := 21000; // Error! p has no Employee facet

http://metadepth.org/

EVALUATION

Based on five scenarios

* Integration of annotation models

* Reuse of model management operations
 Multi-view modelling

 Multi-level modelling

- Language product lines

Comparison with solutions using alternative techniques

 Cross-referencing, EMF profiles, a-posterioti typing

- Model adaptation, a-posteriori typing, concepts, model typing
 Central repository, OpenFlexo, OSM, Vitruvius

« MetaDepth, Melanee, MultEcore, ML2

- Model templates, DeltaEcore, VML*, SmartAdapters, etc

INTEGRATING

ANNOTATION MODELS

Annotation models widely used in MDE:
« Concrete syntax (CS) representation, uncertainty, variability, access

control, etc.

Graphical CS support
* Meta-model
« Simple visualizer

» Facet laws to assign CS to
domain meta-models

We obtain for free:

 Bidirectional synchronization
textual/graphical CS.

CS meta-model
Model ConcreteSyntax {

abstract Node GraphicalElem {
X, Y s int;
label . String;;
linkedTo : GraphicalElem|[x];

}

Node Rectangle : GraphicalElem {
width, height : int;

}

Node Circle : GraphicalElem {
radius : int;

}

CS FOR CENSUS

FacetLaws for Census with ConcreteSyntax {

must extend <p:Person> where $p.female$ with c:Circle with {
label =name [equality]
linkedTo = spouse [equality]
radius = [2*age] [age = radius/2]

}

must extend <p:Person> where $not p.female$ with r:Rectangle with {
label =name [equality]
linkedTo = spouse [equality]
height = age ‘equality]
width = age ‘equality]

}} | £:| Drawing Springfield - - l'E"||E||—Eh] census Spl"lng'Fleld {
'""”” i~ Person marge {)
fullName = "Marge";
Homer dage = 47;
spouse = homer;
zF'Ieaseenterradius S | } address = SlmSHouse;

? radius: |94 B

} (scene sliced by Census)

Aceptar Cancelar

CAN WE DO THIS
DIFFERENTY?

Approach Dynamic | Sharing | Field access | Typing | Bx change
Cross-ref. (base.) no yes navigation no no
EMF profiles [1] limited yes navigation no no
A-posteriori [2] limited limited | transparent yes limited
Facets yes yes transparent yes yes

Cannot be used to fully solve this case study:

Cross-referencing, EMF profiles

* No direct support for conditional styles (different CS based on female)
* No direct support for bidirectional changes

A-posteriori typing
« Cannot map slots like x and y

[1] Langer, Wieland, Wimmer,Cabot. EMF profiles: a lightweight extension approach for EMF
models. JOT 11,1(2012),1-29.

[2] de Lara, Guerra. A posteriori typing for model-driven engineering: Concepts, analysis, and
applications. ACM TOSEM 25, 4(2017),31:1-31:60.

(DYNAMIC) PRODUCT LINES

“SE methods for creating a collection of similar software systems from a
shared set of software assets using a common means of production”

(Dynamic) Language product lines

Model Components { /[variability model

abstract Node NamedElement { Model ComponentFeatures {
name : String; Node FeaturedElement {

} security : boolean = false;

Node Component : NamedElement { monitoring : boolean = true;
ports : Port[1..*]; }

} }

abstract Node Port : NamedElement ;

Node InputPort : Port; Feature model

Node OUtpUtPOft . Port{ Component
target : InputPort[1..*]; Features

}

} O- O—

Base language definition security monitoring

(DYNAMIC) PRODUCT LINES

Model ComponentFacets { // facet metamodel

Node Cipher {// to be added to ports when security is selected
blockSize : int;
key : String;
nRounds : int;

}

Node Monitor { // to be added to components when monitoring is selected
activeRate : double = 0.0;
powerConsumption : double = 0.0;

}
}

Meta-model fragments to be added when the configuration changes

(DYNAMIC) PRODUCT LINES

All elements share a configuration

FacetLaws for Components with ComponentFeatures {
must extend <n:NamedElement> with cfg: FeaturedElement with {
security = false
monitoring = true
} reuse

}

Facets are added depending on the chosen configuration

FacetLaws for Components, ComponentFeatures with ComponentFacets {
must extend <p:Port & FeaturedElement> where $p.security$
with ¢ : Cipher with {
blockSize = 32
key = "915F4619BE41B2516355A50110A9CE91"
nRounds = 12
}
must extend <c:Component & FeaturedElement> where $c.monitoring$
with m: Monitor with {

} reuse

}

RELATED WORKS

Role-based modelling (eg., Lodwick [1], CROM [2])

* Facets fulfill most typical features of role-based languages

« Heavyweight (role, natural, compartment types)

* Practical integration with MDE: inheritance, attribute/slot handling,
OCL constraints, integration with model management languages

[1] Steimann. On the representation of roles in object-oriented and conceptual modelling.
Data Knowl. Eng. 35,1(2000),83-106.

[2] Kihn, Bohme, Go6tz,ABmann. A combined formal model for relational context-dependent
roles. In SLE'15. pp.:113-124.

A-posteriori typing

« Can dynamically add/remove types
« Cannot add slots or constraints

de Lara, Guerra. A posteriori typing for model-driven engineering: Concepts, analysis, and
applications. ACM TOSEM 25, 4(2017),31:1-31:60.

CONCLUSIONS AND
FUTURE WORK

Facets add flexibility and dynamicity to modelling

* make objects open
* acquire/drop slots, types and constraints dynamically
* reactive synchronization of fields

Facet interfaces and laws

- property-based facet acquisition and drop
Some scenarios where facets present advantages

Implementation on top of metaDepth

Future work

* Improve tooling

* Interaction with behaviour specifications

« Combine operations defined in host objects and facet
- Static analysis

<<

’

& http://miso.es
&Juan.deLara@uam.eS

[El@miso_uam http://metadepth.org

