

Universidad Rey Juan Carlos

Juan Manuel Vara

I: Kybele Research Group | Universidad Rey Juan Carlos

Joint work with Cristian Gómez¹, Francisco J. Pérez¹, E. Marcos¹

3 Bringing models to the rescue

(4) The road ahead

THE BIGGEST INVENTION SINCE THE EMERGENCE OF THE INTERNET!!

@jmvara | @KybeleResearch

8

https://www.healthnewsreview.org/wp-content/uploads/2016/12/iStock-487078483.jpg

- What is a Blockchain?
 - A distributed DB + Encryption + Immutability + stored procedures (smart contracts)
 - A blockchain is a list (chain) of groups (blocks) of transactions
 - Like traditional DDBBs they can be used for anything a DB is used.
- How does it work?
 - Interested subjects add transactions to the pool
 - Nodes verify and add them to some block on the ledger
 - Ledger is replicated among distributed nodes
 - Eventual consistency
 - In the absence of centralized control, all nodes eventually achieve consensus about the content of the ledger
 - Append-only data structure
 - May add transactions Nearly imposible to change data

ZZ-METER

NOWII

нот *торіс*

- Why so much hype?
 - New businesses and business models are expected to arise, but as yet there are not a lot of examples of significant use in production of blockchain systems within industry or government.
- Disintermediation
 - Direct VS Indirect interactions: less processing time and lower costs
- (Improved) Peer-to-peer systems
 - E.g.: music → inmaterial nature / low costs of data transfer

Blockchain

Ü

A tool for achieving and maintaining integrity in purely distributed peer-to-peer systems ...

... that consists of an unknown number of peers with unknown reliability and <u>trustworthiness</u>.

The blockchain is a purely distributed peer-to-peer system of ledgers that utilizes a software unit that consist of an **algorithm**, which negotiates the informational content of <u>ordered</u> and <u>connected</u> blocks of data together with cryptographic and security technologies in order to achieve and maintain its <u>integrity</u>.

Drescher, D. Blockchain Basics (2017).

• General view of the blockchain

Hash functions are small computer programs that transform any kind of data into a number of fixed length (Bitcoin – sha256), regardless of the size of the input data.

- Hashing in the blockchain
 - Storing data in a change-sensitive manner
 - Incur computational costs for changing the data-structure

- Hash references are used to create an ordered list of blocks with hash references to previous block
- Knitting :)

- Adding a new block at the end of the blockchain-datastructure is easy, while changing data located somewhere in the chain is quite elaborate
- Each block stores the data into a *Merkle* tree

(Drescher, 2017)

• Hash puzzles

- Akin to **combination locks** to be openned by trial an error:
 - A specific lock that requires a unique sequence of numbers in order for it to be opened.
 - Opening is based on sheer diligence and hard work.

Nonce	Text to Be Hashed	Output
0	Hello World! 0	4EE4B774
1	Hello World! 1	3345B9A3
2	Hello World! 2	72040842
3	Hello World! 3	02307D5F
613	Hello World! 613	E861901E
614	Hello World! 614	00068A3C
615	Hello World ! 615	5EB7483F

What data combined with Hello World! would yield a shortened hash value with **three leading zeros**?

Difficulty

The puzzle

Find the nonce that combined with Hello World! yields a shortened hash value that starts with three leading zeros

Making Adding Data Computationally Expensive

(Drescher, 2017)

Blockchain Inmutability

- Inmutability
 - Making manipulations stand-out
 - Enforcing Rewriting the History for Embedding Changes

- Making Adding Data Computationally Expensive

(Drescher, 2017)

Manipulate existing T_x

If solving a hash puzzle takes on average 10 minutes, 210 minutes are needed to embed a manipulation in a T_x that belongs to a block header located 20 blocks below the current head.

- 1. Rewrite the Merkle tree of manipulated T_x
- 2. Rewrite block header of the rewritten tree
- 3. Rewrite all succeeding block headers up to the head of the blockchain data-structure

- Blockchain-algorithm allow all nodes of the system
 - To act as **supervisors** of their peers
 - Reward/punish them for adding valid and authorized transactions
- Every node is in one of two-steps algorithm
 - Evaluating a new block that was created by others
 - If a block is removed from the blockchain-data-structure, then the reward for adding it is withdrawn from the node that initially received it.
 - Trying hard to be the next node that creates a new block that has to be evaluated by all others
 - The node whose block was accepted will receive the **fees** for all transactions contained in the block as reward.

ALASTRIA

Public

- Any one can become a public node in the chain, which allow them to perform, validate and view transactions in that network.
- Semi-public or federated (Consortium):
 - The nodes must be identified before they can interact on that network (Private & Permissioned).
 - Recommended for private companies or governments that want transparency in their actions.
- Private (federated + central control):
 - Preset private nodes with privileges.
 - Federated ones, but an entity is in charge of controlling everything.

Bbitcoin

- Features of the Bitcoin network
 - Focused on providing an alternative to conventional currencies

- The cryptocurrency that operates on that network is Bitcoin(deflationary).
- Rewards for block validation

ethereum

- Features of the Ethereum network
 - Focused on Smart Contracts and dapp execution (EVM)
 - The cryptocurrency that operates on that network is Ether

- (inflationary)— Merely a way to facilitate and monetize the opetarion of Ethereum
- Rewards for block validation, transaction validation and Smart Contracts execution.

Block Generation / Consensus

- The probability of mining a block is proportional to the amount of cryptocurrency available to the miner.
 - Highest priority for users who have more currency because they are the most interested in maintaining the ecosystem correctly

- Advantages:
 - Energy saving
 - Computational power is less necessary than in PoW in order to validate a block.

- Developers
 - Implement the protocol.

• Users Connect to the network to perform transactions

– Wallet – Public key Private key

- Miners
 - Responsible for validating the blocks where transactions are recorded in exchange of rewards.
 - Pools: Set of miners that come together to mine blocks in a blockchain network

 Academic credentials:
 MIT, Cyprus
 University of Cyprus

- Medical data register
 - MedRec.

- Supply chains:
 - Carrefour, Nestle.

 Sports betting exchange and lottery applications:

– Peerplays, Wagger

- Secure digital identity solutions:
 - Illinois state

2 Smart Contracts

3 Bringing models to the rescue

(4) The road ahead

- Computer programs
 - Hosted on <u>Ethereum</u>

Szabo, N. (1996). Smart contracts: building blocks for digital markets. *EXTROPY: The Journal of Transhumanist Thought*, (16), 18, 2.

- Executes autonomously the clauses collected in it when the conditions are satisfied
 - DTL as a DDBB
 - Smart Contracts as triggers or microservices where the business logic transacting with that data lives
- Blockchain technology "Sets in stone" the agreement
 - The contract inherits trust-less, immutability, transparency ...

www.kybele.es

 Conditions are programmed
 Implied parties sign the conditions (program)
 Contract is *placed* into a blockchain so no one could modify it VS CONVENTIONAL CONTRACTS

- A program does not leave space to different interpretations:
 - disambiguation
- No need of a trusted third-party \rightarrow \not Transaction Costs
- Time-efficient
- Data Storage (future disputes)

How does a Smart Contract work?

An instance of program code that runs in the blockchain

Program code | Storage file | Account balance

(Delmolino et al., 2016)

SMART CONTRACT MODEL

- 1. User create the contract: transaction posting
 - a) Code cannot be changed
 - b) Storage file stored in the blockchain
- 2. Contract is executed upon message received (either users or contracts)
 - a. Read/write from its file
 - b. Recieve / Send money from its account balance from/to users (contracts) invoke the contract
- 3. Miners reach consensus on the output of the execution and update the blockchain accordingly

How does a Smart Contract work?

An instance of program code that runs in the blockchain

Program code | Storage file | Account balance

(Delmolino et al., 2016)

CONTRACT INVOCATION – T_{X} AS FUNCTION CALLS

- Contract code will be invoked whenever it receives a T_x from a user
- Multiple entry points of execution each one is defined as a function
 After processing the message, contract can return value back to the sender
- The content of the T_x will specify the entry point at which the contract's will be invoked

GAS - DISCOURAGING OVER CONSUMPTION OR RESOURCES

- The user who creates a T_x must spend currency to purchase gas
- Each program instruction consumes gas
- If gas runs out before T_x reaching an ordinary point, exception raised

Smart Contracts-based crowdlending

EthicHub

Programming Smart Contracts

Programming Smart Contracts

Dealing with Smart Contracts - Issues

Learning Curve

• Alharby, M., Aldweesh, A., & van Moorsel, A. (2018). Blockchain-based smart contracts: A systematic mapping study of academic research (2018). In *Proceedings of the 2018 International Conference on Cloud Computing, Big Data and Blockchain.*

Security Issues

 Mavridou, A., & Laszka, A. (2018, February). Designing secure ethereum smart contracts: A finite state machine based approach. In *International Conference on Financial Cryptography and Data Security* (pp. 523-540). Springer, Berlin, Heidelberg.

IT – Business Gap

- Mik, E. (2017). Smart contracts: terminology, technical limitations and real world complexity. *Law, Innovation and Technology*, *9*(2), 269–300.
- Bosu, A., Iqbal, A., Shahriyar, R., & Chakraborty, P. (2019). Understanding the motivations, challenges and needs of blockchain software developers: A survey. *Empirical Software Engineering*, 24(4), 2636-2673.

"In other words, they're code that does what it's been programmed to do.

If the **business rules** ... have been defined badly and/or the programmer doesn't do a good job, the result is going to be a mess, and, even if programmed correctly, a smart contract isn't smart – it just functions as **designed**."

What's a smart contract (and how does it work)? Computer World, Jul 29 (2019)

• [Formal] verification of Smart Contracts

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi, N., ... & Zanella-Béguelin, S. (2016, October). Formal verification of smart contracts: Short paper. In *Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security* (pp. 91-96). ACM. Bragagnolo, S., Rocha, H., Denker, M., & Ducasse, S. (2018, March). SmartInspect: solidity smart contract inspector. In 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE) (pp. 9-18). IEEE.

- DSL-based
 - Legal principles-based DSL (Adico-Solidity).
 - Natural language-based (SmaCoNat)

Frantz, C. K., & Nowostawski, M. (2016, September). From institutions to code: Towards automated generation of smart contracts. In 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS* W) (pp. 210-215). IEEE.

Regnath, E., & Steinhorst, S. (2018, September). SmaCoNat: Smart Contracts in Natural Language. In 2018 Forum on Specification & Design Languages (FDL) (pp. 5-16). IEEE.

 Templates for Smart Contracts

Clack, C. D., Bakshi, V. A., & Braine, L. (2016). Smart contract templates: foundations, design landscape and research directions. *arXiv preprint arXiv:1608.00771*.

MDE-based

- Both use MDE to map the business process (BPMN) into a smart contract.
- Lorikeet need to extend the BPMN notation (2 elements)

López-Pintado, O., García-Bañuelos, L., Dumas, M., & Weber, I. (2017, September). Caterpillar: A Blockchain-Based Business Process Management System. In *BPM (Demos)*.

Tran, A. B., Lu, Q., & Weber, I. (2018). Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based Business Process Execution and Asset Management. In *BPM* (*Dissertation/Demos/Industry*) (pp. 56-60).

2 Smart Contracts

3 Bringing models to the rescue

Our proposal

- Define and enrich customized textual structures
 - E.g. gas control in loops to avoid
- Reduce the learning curve
 - Auto-completion
 - Syntactical validation
 - QuickFixes
 - Good practices
 - Auto-documentation ...
- Development of technological bridges
 - Close the gap between business professionals and developers

[Illustration by Bernhard Rumpe]

Cabot, J. Lightweight Model-Driven Engineeering. Les journées nationales du GDR GPL. Jun 15, 2017

- What is Xtext?
 - Framework for textual DSLs development
 - Xtend (Java-like) for the development of validations, quickfixes, etc.
 - Ecore metamodel automatically generated from the grammar.

- How to develop a textual language?
 - I. Write the grammar
 - a) Define the terminals.

b) Define the rules.

- How to develop a textual language?
 - 3. Generate language artifacts.

Q ▼ Q ▼ B
 M ▼ B
 M ▼ C ▼ C
 T Generate SM2 (sm2) Language Infrastructure

- How to develop a textual language?
 - 4. Run the Generated Eclipse plug-in.

- How to develop a textual language?
 - 5. [Generate Code Generator Xtend]
 - 6. [Unit Testing]

7. [Creating Custom Validation Rules]

Example: Safe Remote Purchase

@jmvara | @KybeleResearch

www.kybele.es

Ü

• Business modeling notation

Gordijn, J., & Akkermans, H. (2001). Designing and evaluating e-business models. *IEEE intelligent Systems*, (4), 11-17.

 Focused on representing the value interchanges between the different actors involved in the provision of a service.

- Actors
 - An entity that carries out value activities that allow him/her/it to increase ... profit or utility

- Value Interface
 - Group the ports through which the actor is willing to make value interchanges
 - A form of representation of economic reciprocity of value between actors.

- Stimulus
 - Events caused by an actor, trigger come value exchange.
 - E.g.: Deliveroo's customer is hungry
 - Two types: Start stimulus y Stop stimulus.

- Value Ports
 - Used by an actor to request
 value objects to or from its environment (directional)

.

- Value Transfer
 - Connect two value ports with each other in order to enable value objects exchange
- Value Object
 - Satisfies a particular need or is used to produce other value objects.

Correspondences

Correspondences Analysis

Adress ⇔ Actors

pragma solidity >=0.4.22 <0.6.0; 3⊖ contract Purchase{ wint public val; address payable public seller; address payable public buyer; 9 enum State{Created,Locked,Inactive}; 10 State public state; 11 constructor()public{ 120 13 seller = msg.sender; 14 val = msg.value /2; 15 require((2 * val) == msg.value,"Value has to be even."); 16 } 17 18⊝ modifier condition(bool condition){ 19 require(condition); 20 _÷ 21 } 22

```
23Θ
        modifier onlyBuyer(){
24
            require(msg.sender == buyer,"Only buyer can call this.");
25
            _;
26
        3
27
280
        modifier onlySeller(){
29
            require(msg.sender == seller,"Only seller can call this.");
30
            _;
31
       }
32
330
        modifier inState(State _state){
34
            require(state == _state);
35
            _;
36
       }
37
38
        event Aborted();
39
        event PurchaseConfirmed();
40
        event ItemReceived();
41
42⊖
        function abort()public onlySeller inState(State.Created){
43
            emit Aborted();
44
            state = State.Inactive;
45
            seller.transfer(address(this).balance);
46
       }
47
        function confirmPurchase() public inState(State.Created) condition(msg.value == (2 * val)) {
48⊖
49
            emit PurchaseConfirmed();
50
            buyer = msg.sender;
51
            state = State.Locked;
52
       }
```

```
54<del>0</del>
        function confirmReceived() public onlyBuyer inState(State.Locked){
            emit ItemReceived();
            state = State.Inactive;
            buyer.transfer(val);
            seller.transfer(address(this).balance);
        }
```


53

55

56

57

58

59

• Smart contract \leftarrow Value Interface(s)

```
pragma solidity >=0.4.22 <0.6.0;
    contract Purchase{
 36
        uint public val;
        address payable public seller;
        address payable public buyer;
        enum State{Created,Locked,Inactive};
        State public state;
10
11
12⊝
        constructor()public{
            seller = msg.sender;
13
14
            val = msg.value /2;
15
            require((2 * val) == msg.value,"Value has to be even.");
16
        3
17
180
        modifier condition(bool condition){
19
            require(condition);
20
            _;
21
        3
22
230
        modifier onlyBuyer(){
24
            require(msg.sender == buyer,"Only buyer can call this.");
25
            _;
26
        }
27
28⊝
        modifier onlySeller(){
29
            require(msg.sender == seller,"Only seller can call this.");
30
            _;
31
       }
32
330
        modifier inState(State _state){
34
            require(state == _state);
35
            _;
36
        }
37
38
        event Aborted();
39
        event PurchaseConfirmed();
40
        event ItemReceived();
41
42⊝
        function abort()public onlySeller inState(State.Created){
43
            emit Aborted();
44
            state = State.Inactive;
45
            seller.transfer(address(this).balance);
46
       }
47
48⊝
        function confirmPurchase() public inState(State.Created) condition(msg.value == (2 * val)) {
49
            emit PurchaseConfirmed();
50
            buyer = msg.sender;
51
            state = State.Locked;
52
       }
53
54<del>0</del>
        function confirmReceived() public onlyBuyer inState(State.Locked){
55
            emit ItemReceived();
56
            state = State.Inactive;
57
            buyer.transfer(val);
58
            seller.transfer(address(this).balance);
59
```


Correspondences Analysis

Events ⇔ Start stimulus

Functions ⇔ Value Ports & Value Transfer

Correspondences Analysis

u

• Notifications, Badges, Permissions ... ⇔ Value Objects

Visualization

 platform:/resource/SmaC/SmaC.model File Version Contract Purchase Enum State Property UInteger val Property Address seller Property Address buyer Constructor public payable Modifier onlyBuyer Modifier onlySeller Modifier inState Event Aborted Event PurchaseConfirmed Event ItemReceived Clause confirmPurchase Clause confirmReceived 	 platform:/resource/transformations.trace Trace Model Source Model SmaC Target Model e3valueModel Trace Link Address-Actor Trace Link Event-Start stimulus Trace Link Event-Start stimulus Trace Link Event-Start stimulus Trace Link Contract-Value Interface Trace Link Clause-Value Ports&Valu Trace Link Clause-Value Ports&Valu Trace Link Contract-ValueInterfaces 	Metamode Metamode Metachange Metachange Metachange	Resource Set Image: Set
SmaC.model	trace.model		e3valueModel.e3value
🔲 Properties 🕱 💽 Problems 📸 Target Platform State			
Property	V	/alue	
Name 💷 Addr		Address-A	ctor
Operation Type	U	Transform	

2 Smart Contracts

3) Bringing models to the rescue

- Blockchain as a way to improve p2p systems
 - Hashing / Asymmetric Cryptography
 - Public ledger as a distributed DDBB
- More recent blockchain networks providing a computational infrastructure
 - Trust-less | Immutability | Transparency
 - Disambiguation + Disintermediation
- Smart Contracts as the way to explode such infrastructure
 - IT Strategy gap
 - Tooling needed

Raise the level of abstraction at which Smart Contracts are developed /designed

Raise the level of abstraction at which Smart Contracts are developed /designed

- SmaC validation
- Technological Bridges development
 - m2m & m2t transfos.
- Graphical concrete syntaxes development
- Extend e³Value with smart contract elements non directly matched
 - Modifiers.
- Enable automatic deploying mechanisms

Credits

- Delmolino, K., Arnett, M., Kosba, A., Miller, A., & Shi, E. (2016, February). Step by step towards creating a safe smart contract: Lessons and insights from a cryptocurrency lab. In *International Conference on Financial Cryptography and Data Security* (pp. 79-94). Springer, Berlin, Heidelberg.
- Drescher, D. Blockchain Basics: A Non-technical Introduction in 25 Steps, 1st edn. Apress, Frankfurt am Main (2017).
- Escrow Service as a Smart Contract: The Business Logic. Jackson Ng. May 20, 2018. <u>https://jacksonng.org/Safe-Remote-Purchase-1</u>
- Gordijn, J., & Akkermans, H. (2001). Designing and evaluating e-business models. IEEE intelligent Systems, (4), 11-17.
- Xtext Documentation: <u>https://www.eclipse.org/Xtext/documentation/</u>
- Xu, X., Weber, I., & Staples, M. (2019). Architecture for blockchain applications (pp. 1-307). Berlin, Germany: Springer.