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Permutation-based Problems

Travelling Salesman Problem (TSP)

Combinatorial Optimization Problems

Whose solutions are represented as
permutations

NP-Hard in most of the cases
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A robust and precise method for solving the permutation problem of frequency-

domain blind source separation
H Sawada, R Mukai, S Araki... - IEEE transactions on ..., 2004 - ieeexplore.ieee.org

Blind source separation (BSS) for convolutive mixtures can be solved efficiently in the
frequency domain, where independent component analysis (ICA) is performed separately in
each frequency bin. However, frequency-domain BSS involves a permutation problem: the ...

vy Y9 Cited by 613 Related articles All 17 versions

Solution of permutation problem in frequency domain ICA, using multivariate
probability density functions
A Hiroe - ... Conference on Independent Component Analysis and ..., 2006 - Springer

Abstract Conventional Independent Component Analysis (ICA) in frequency domain
inherently causes the permutation problem. To solve the problem fundamentally, we
propose a new framework for separation of the whole spectrograms instead of the ...

v¢ Y9 Cited by 97 Related articles All 8 versions

Modelling a permutation problem

BM Smith - 2000 - Citeseer

A problem is presented which can be formulated as a constraint satisfaction problem, and in
particular as a permutation problem, ie it has the same number of values as variables, all
variables have the same domain and each variable must be assigned a different value ...

v¢ Y9 Citedby 51 Related articles 99

A novel hybrid approach to the permutation problem of frequency domain blind
source separation
W Wang, JA Chambers, S Sanei - International Conference on ..., 2004 - Springer

We explore the permutation problem of frequency domain blind source separation (BSS).
Based on performance analysis of three approaches: exploiting spectral continuity,
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Revised approaches...

Branch & Bound

Branch & Cut

Linear Programming

Genetic Algorithms

Variable Neighborhood Search
Variable Neighborhood Descent
Memetic Algorithm

Estimation of Distribution Algorithms
Constructive Algorithms

Local Search

Ant Colony Optimization

Tabu Search

Scatter Search

Genetic Programming

Cutting Plane Algorithms
Particle Swarm Optimization
Simulated Annealing

Cuckoo Search

Differential Evolution

Artificial Bee Colony Algorithm



HEURISTIC PROBLEM SOLVING: THE NEXT
ADVANCE IN OPERATIONS RESEARCH*

Herbert A. Simon and Allen Newell

Carnegie Institute of Technology, Pittsburgh, Pennsylvania, and
The Rand Corporation, Santa Monica, California

‘ l IHE IDEA THAT the development of science and its application to

human affairs often requires the cooperation of many disciplines and
professions will not surprise the members of this audience. Operations
research and management science are young professions that are only now
beginning to develop their own programs of training; and they have mean-
while drawn their practitioners from the whole spectrum of intellectual
disciplines. We are mathematicians, physical scientists, biologists,
statisticians, economists, and political scientists.

In some ways it is a very new idea to draw upon the techniques and
fundamental knowledge of these fields in order to improve the everyday
operation of administrative organizations. The terms ‘operations re-
search’ and ‘management science’ have evolved in the past fifteen years, as
have the organized activities associated with them. But of course, our
professional activity, the application of intelligence in a systematic way to
administration, has a history that extends much farther into the past.
One of its obvious antecedents is the scientific management movement
fathered by FreoErick W. TayLor.

But for an appropriate patron saint for our profession, we can most
appropriately look back a full half century before Taylor to the remarkable
figure of CarLES BanBaGE. Perhaps more than any man since Leonardo
da Vinci he exemplified in his life and work the powerful ways in which

® Address at the banquet of the Twelfth National Meeting of the (
Resgarci Sociery or Auerica, Pittsburgh, Pennsy'vania, Novembe
Mr. Simon presented the paper; its content is a joint product of the
this, they rely on the precedent of Genesis 27:22, “The voice is Jacob’s ve
hands are the hands of Esau.”

1

“ ..propose that a theory of heuristic
(as opposed to algorithmic or exact)
problem-solving should focus on
intuition, insight and learning.”

“In order to design algorithms
practitioners should gain a deep
insight into the structure of the
problem that is to be

solved.” (Sorensen 2012).
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Permutation Flowshop Scheduling Problem
and Estimation of Distribution Algorithms

Example 1



Permutation Flowshop Scheduling Problem

Total flow time (TFT)
* n jobs n
* m machines .
- processing times p; ; flo) = Z Co(i),m
1=1

5x4 J1IJ2IJ3IJ4IJSI

o = 13254



Revised approaches...

Branch & Bound

Branch & Cut

Linear Programming

Genetic Algorithms

Variable Neighborhood Search
Variable Neighborhood Descent
Memetic Algorithm

Estimation of Distribution Algorithms

Constructive Algorithms
Local Search Why?

Ant Colony Optimization

Tabu Search

Scatter Search

Genetic Programming

Cutting Plane Algorithms
Particle Swarm Optimization
Simulated Annealing

Cuckoo Search

Differential Evolution

Artificial Bee Colony Algorithm



Estimation of distribution algorithms

Generate a set

of solutions
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Estimation of distribution algorithms

Generate a set
of solutions
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Estimation of distribution algorithms

Generate a set
of solutions

Q

oNe) Evaluate QO o sSelect
5 0f ° Q9 F% {28 o0
0O —> o — N
OO ® ® @

Q
e O
O e Q

11



Estimation of distribution algorithms

Generate a set
of solutions

ON©)
O 08 e Evaluate o e o Q Select / 0o S
o Q = ) Qoo @) O
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O PY Learn a probability

O o o) \ distribution
P(o)
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Estimation of distribution algorithms

Generate a set
of solutions

Q0
N ONe) o0 Evaluate o 5 9 O Select 00 o
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Estimation of distribution algorithms

Generate a set
of solutions

Q0
N ONe) o0 Evaluate o 5 9 O Select 00 3
® O ———> 0 C o\&
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o e © o

@ P Learn a probability

o N
O © o \ distribution
P(o)
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Estimation of distribution algorithms

Generate a set

of solutions
Q O Evaluate Q0O Select
0 "5 9F Q "o QY /S8 Qo
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o Q @ 0 e e e  Learnaprobability
Q . o \ distribution
Update the set P
of solutions (U)
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_____________________________________________________

Combinatorial Problems

UMDA [MUhlenbein, 1998] ._____'

MIMIC [DeBonet, 1997] ' Continuous Problems
FDA [Miinlenbein, 1999] | |

EBNA [Etxeberria, 1999] Q

BOA [Pelikan, 2000]

EHBSA [Tsutsui, 2003]

NHBSA [Tsutsui, 2006]
| TREE [pelikan, 2007] | |
REDA [Romero, 2009] n
R | | R

UM DAC [Larrafaga, 2000]
M| |\/||CC [Larranaga, 2000]
EGNA [Larranaga, 2000]
EMNA [Larranaga, 2001]
IDEA [Bosman, 2000]

______________________________________________________________________________________

EDAs reported

in the literature Permutation Problems

IDEA-ICE [Bosman, 2001]
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ExXperiments on

Permutation Flowshop Scheduling Problem

1 2 3 4 6 7 10 11 12 13 14
| | | | | ] | ] | |
EHBSA,, NHBSA,, MIMIC UMDA| TREE ICE REDA, ;. [EGNA.. UMDA,
NHBSA,, EBNA;;. EHBSA,, REDA,,, OmeGA

Univariate and bivariate models!!!
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ExXperiments on
Permutation Flowshop Scheduling Problem

« Node and Edge Histogram-based Sampling Algorithms (EHBSA & NHBSA)
(Tsutsui et al. 2002, Tsutsui et al. 2006)

Node Histogram

Population Position

1 2 3 4 5
54123
42357 1102 01 02 01 04
12354
24351 2104 03 0 0.2 0.1
31452
23415 § 3/01 03 03 01 02
23451
25431 4101 02 04 01 0.2

12543
53124 5102 01 01 L




ExXperiments on
Permutation Flowshop Scheduling Problem

« Node and Edge Histogram-based Sampling Algorithms (EHBSA & NHBSA)
(Tsutsui et al. 2002, Tsutsui et al. 2006)

Edge Histogram

Population Itemj

1 2 3 4 5
54123
47351 1 - 04 03 03 04
12354
24351 2|1 04 - 0.5 0.3 0.3
31452 —
23415 § 3/03 05 - 05 04
23451 -
25431 4103 03 05
12543
53124 5104 03 04




The group of permutations as a subset

of integers group

111
112
113
121
122
123
131
132
133

211
212
213
221
222
223
231
232
233

311
312
313
321
322
323
331
332
333
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The group of permutations as a subset

of integers group

111
112
113
121
122
123
131
132
133

211
212
213
221
222
223
231
232
233

311
312
313
321
322
323
331
332
333

21




Probability Models on Rankings
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Probability Models on Rankings

Distance-based

Order statistics




Probability Models on Rankings

The Mallows Model

A distance-based exponential probability model

Central permutation 0 0.07

- Spread parameter 6 0.06

A distance on permutations sl

20.04f
E
e—QD(a,ao) £ 0.03
P(O-) — w(e) 0.02¢
ooxf e o
0.00L—

Distance to identity



Probability Models on Rankings

The Mallows Model

A distance-based exponential probability model

Central permutation 0 0.07

- Spread parameter 6 0.06

- 6=0.1
6=0.3 |-

A distance on permutations sl

2 0.04}
§
e—QD(a,ao) & 0.03¢
P(O-) — w(e) 0.02}
0.01} ___,_____._;"—_'—_."J\“:'—_i__.;.ﬂ___
0.00L— S

Distance to identity
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Probability Models on Rankings

The Mallows Model

A distance-based exponential probability model

Central permutation 0 0.07 | -
--- 9=0.1

« Spread parameter 6 0.06] . 9=03|
— 60=0.5

A distance on permutations sl

e—eD(U,UO) 20.037
P(O-) — w(e) 0.02f

0.01f

0.00

Distance to identity
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Probability Models on Rankings

Kendall's-T distance
« Kendall's-T distance: calculates the number of pairwise disagreements.

A OB
1-2 1<2 1<2
1-3 3<1 341 <&

o4 = 53412 1-4 4<1 441 &
2-3 3<2 342 &
DT(O-A7O-B) —R 2-4 4<2 44£2 &

2-5 5<2 BH A2 &
3-4 3<4 3<4

3-5 5<3 bH A3 €
4-5 5<4 H A4




Probability Models on Rankings

Configuration 500 x 20

—p— AGA

X 106
6.84 — .
( —6— HGM-EDA
6.82 - ——— Guided HGM-EDA
6.8
Improved state-
6781 of-the-art !!!
é 6.76 -

6.68
1 2
Evaluations ( times x max_eval )

J. Ceberio et al. (2013) A Distance-based Ranking Model EDA for the PFSP.
IEEE Transactions On Evolutionary Computation, vol 18, No. 2, Pp. 286-300 28



Linear Ordering Problem
and Neighborhood Topology

Example 2

29



Linear Ordering Problem (LOP)

0 16 11 15 I
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0

B = [bk.1]5x5

30



Linear Ordering Problem (LOP)

f(o) =138

0 16 | 11 | 15 | 7

21 0 | 14 | 15 | 9

26 | 23| 0 | 26 | 12

2 2 | 11 o0 | 13

30 | 28 | 25 | 24 | 0
o= 12345

n—1 n
F0)=>" > bo@).ol)

B = [bk.1]5x5

i=1 j=i+1
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Linear Ordering Problem (LOP)

flo) = 247

0 | 25 | 24 | 28 | 30

12 | 0 | 26 | 23 | 26

13 011 | 0 | 22 | 22

9 |14 15 | 0 | 21

701 15 16 | o0
o = 53421

n—1 n
F0)=>" > bo@).ol)

B = [bk.1]5x5

i=1 j=i+1

32



The insert neighborhood

Moving to Landscape Context...

«  Two solutions o and ¢’ are neighbors if ¢’ is obtained by moving an item
of o from position ¢ to position j

33



The insert neighborhood

Moving to Landscape Context...

«  Two solutions o and ¢’ are neighbors if ¢’ is obtained by moving an item
of o from position ¢ to position j
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The insert neighborhood

Moving to Landscape Context...

«  Two solutions o and ¢’ are neighbors if ¢’ is obtained by moving an item
of o from position ¢ to position j

| 23@5
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The insert neighborhood

Moving to Landscape Context...

«  Two solutions o and ¢’ are neighbors if ¢’ is obtained by moving an item
of o from position ¢ to position j

How is the operation translated to the LOP?

36



Linear Ordering Problem (LOP)

An insert operation...

1 0 16 11 15 7
2 21 0 14 15 9
3 26 23 0 26 12
4 22 22 11 0 13
5 30 28 25 24 0

B = [bk.1]5x5

37



Linear Ordering Problem (LOP)

An insert operation...

1 0 16 11 15 7
2 21 0 14 15 9
3 26 23 0 26 12
4 22 22 11 0 13
5 30 28 25 24 0

B = [bk.1]5x5
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Linear Ordering Problem (LOP)

An insert operation...

1

2

3

4

1 0 16 11 15 I
2 21 0 14 15 9
3 26 23 0 26 12
4 22 22 11 0 13
5 30 28 25 24 0

B = [bk.1]5x5
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Linear Ordering Problem (LOP)

1

An insert operation...

»/2_\3@ :

1 0 16 11 15 7
2 21 0 14 15 9
3 26 23 0 26 12
22 22 11 0 13

5 30 28 25 24 0

B = [bk.1]5x5
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Linear Ordering Problem (LOP)

An insert operation...

1 0 15 16 11 I
4 22 0 22 11 13
2 21 15 0 14 9
3 26 26 23 0 12
5 30 24 28 25 0

B = [bk.1]5x5

41



Linear Ordering Problem (LOP)

An insert operation...

Before After

1 2 3 4 5 1 4 2 3 5
0 16 11 15 7 1 0 15 16 11 7
21 0 14 15 9 4 22 0 22 11 13
26 23 0 26 12 2 21 15 0 14 9
22 22 11 0 13 3 26 26 23 0 12
30 28 25 24 0 5 30 24 28 25 0

o= 12345 o' = 14235

f(o) =138 f(o) =130

42



Linear Ordering Problem (LOP)

An insert operation...

Before After
1 2 3 4 5 1 4 2 3 5
0 16 11 15 7 1 0 15 16 11 7
21 0 14 15 9 4 22 0 22 11 13
26 23 0 26 12 2 21 15 0 14 9
22 22 11 0 13 3 26 26 23 0 12
30 28 25 24 0 5 30 24 28 25 0
e ———— e —
o= 12345 o' = 14235
f(o) =138 f(o) =130

43



Linear Ordering Problem (LOP)

An insert operation...

(1-5>16 m |7

Before

1 2 3 4 5
1 0 16 11 15 T
2 21 0 15 9
3 26 26 12
4 22 22 11 @ 13
5 30 28 25 24 0

o= 12345

f(o) =138

Two pairs of entries associated to the item 4 exchanged their position.

22 @ 22 11 13
21 15 1 9
26 26 0 12
30 24 28 25 0

o = 14235
f(o) =130

44



Linear Ordering Problem (LOP)

An insert operation...

Before After

1 2 3 4 5 1 4 2 3 5

1 0 16 11 15 7 1 0 (1-5> 16 11 7
2 21 0 15 9 4 22 @ 22 11 13

3 | 26 %6 ) 12 2 | 1 (s w9

4 22 22 11 @ 13 3 26 26 0 12

s 130 | 28 | 25 (24) o0 s 130 (24)28 25 o
o = 12345 o' = 14235
f(o) =138 f(o) =130

The contribution of the item 4 to the objective function varied from 69 to 6145



Linear Ordering Problem (LOP)

The contribution of an item to f

0 16 11 15 I
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0

46



Linear Ordering Problem (LOP)

The contribution of an item to f

0 16 11 15 7
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0
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Linear Ordering Problem (LOP)

The contribution of an item to f

16

21

23

22

28

14

15
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Linear Ordering Problem (LOP)

The contribution of an item to f

21 0 14 15 9
23 16-21
23-14
22 22-15
28-9
28
Bl

Contrib

ution: 54

Vector of differences

5 122 | 9 7 ] 19
1) -5 | 9 7119

e S —
5 09 @23 7 | 19
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Linear Ordering Problem (LOP)

The contribution of an item to f

Vector of differences

16 -5 (2,2) 9 7 19
23
(2,1) -5 9 7 19
23_14 -5 9 (2,3) 7 19
28 22-15 5 9 |1 |4 19
28'9 ——————
21 14 15 9 o
-5 9 7 19 (2,5)

Contribution: 89

50



The vector of differences

Local optima

What happens in local optimal solutions?

There is no movement that improves the contribution of any item

19 | 9 7 (@4 | -5

“ _—

All the partial sums of >0 0<-5  Allthe partial sums of

differences to the left 94750 differences to the right

must be positive must be negative
19+9+7>0

Depends on the overall solution

51



The vector of differences

Local optima

But,

23 | <19 | <13 | (5.4) | -11

Positive sums Negative sums

In order to produce local optima,
item 5 must be placed in the first position

52



We propose an algorithm to calculate the restricted positions of the items:

16

The restrictions matrix

2. Sort differences

21

1. Vector of differences.

23

22

28

19 9 7 -5

3. Study the most favorable ordering
of differences in each positions

-5

(2.2)

9

7

19

(1)

>

All the partial sums of
differences to the right

must be negative
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We propose an algorithm to calculate the restricted positions of the items:

16

The restrictions matrix

2. Sort differences

21

1. Vector of differences.

23

22

28

19 9 7 -5

3. Study the most favorable ordering
of differences in each positions

-5

(2.2)

9

7

19

M | -5 7 9 19

>

All the partial sums of
differences to the right

must be negative
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The restrictions matrix

We propose an algorithm to calculate the restricted positions of the items:

16

2. Sort differences

21

1. Vector of differences.

23

22

28

-5

(2.2)

9

7

19

19 9 7 -5

3. Study the most favorable ordering
of differences in each positions

(1) -5 7 9

19

Non-local
optima

Possible local
optima

55



The restrictions matrix

0 16 11 15 7 1 0
21 0 14 15 9 2 0
26 23 0 26 12 3 1
22 22 11 0 13 4 0
30 28 25 24 0 5 1

Time complexity: O(n?)

56



The restricted insert neighborhood

* Incorporate the restrictions matrix to the insert neighborhood.

« Discard the insert operations that move items to the restricted positions.

Theorem

Given a non local optima solution o, for every item o(i), i = 1,...,n, the
insert movement that mazximises its contribution to the fitness function is not
given in a restricted position

57



The restricted insert neighborhood

Q
o¥e Q Q
Ingert O O O% O O O O O O
neighborhood O O O O Q
Q S Q0
Q
0 o 0
Q
0 o © ®
Restricted Insert Q 8 O ® Q Q O O Q
neighborhood 0 Q O Q Q O Q
® S S o

58



The restricted insert neighborhood

o 7.5
O O
Insert O O
neighborhood O\./%?O O O 0 O
&° O O O
Q \ O
O
Q O O
Evaluations: 10
\ : y
: O
Restricted Insert O
neighborhood /5/0)0 O Q oo O
O
O O -

Evaluations: 5
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The restricted insert neighborhood

O
Insert O O 8
ighborhood
neighborhoo o
O
Evaluations: 10
\ < y
: O
Restricted Insert O
neighborhood /}'S/M O Q = % O

Evaluations: 5
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The restricted insert neighborhood

O
O O Q O
Insert O O Q e Q O O O O
neighborhood Q O Q O O
Q O
O Q Q O -
O e O
Evaluations: 10
O
O O ® o o ¢ O
Restricted Insert O O @) O O O O
neighborhood Q Q o O
Q Q O
O O Q O .
O O O

Evaluations: 5
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The restricted insert neighborhood

O
O 0O Q O
Insert O O Q ® Q O O O O
neighborhood Q O O O O
Q O
O Q Q O .
O O O
Evaluations: 20
O
O O ® o o ¢ O
Restricted Insert O O @) O O o O
neighborhood Q Q o O
Q © O
O O Q O -
O O O

Evaluations: 11
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The restricted insert neighborhood

00 o O
O
Insert O O Q Q Q O o O
neighborhood O O O O Q o O
O O
O @) o
O O O
Evaluations: 30
O
00 o O Q O
Restricted Insert O O @) Q Q ® o O
neighborhood o O O @, O O
® ® =
O Q o
O O O

Evaluations: 17

63



The restricted insert neighborhood

00 o5 o O Q O
Insert O O Q Q O O
Q
neighborhood O O O O Q o O
O O
O O °
O O O T
Evaluations: 30
Same final
O solution
00 e Q O
Restricted Insert O O @) Q Q O O O
neighborhood o O o @) O O
O O v ©
O Q °
O O O

Evaluations: 17

J. Ceberio et al. (2014) The Linear Ordering Problem Revisited. European Journal of Operational Research.



Experiments

———t=——""he-art algorithms
Iterated Local Search

prdering problem: instances, search space analysis
odelling and Algorithms.

—

Memetic Algorithm

10000N?

evals. 300

MA, vs MA 43 (7)

ILS, vs ILS 46 (4) 42 (8) 43(7)

278 instances




Quadratic Assignment Problem
and Elementary Landscapes

Example 3

66



Quadratic Assignment Problem (QAP)




Quadratic Assignment Problem (QAP)

6 D = [di jlnxn, H=[hii]lnxn

fo) =) dijhogi)ei)

i=1 j=1

o = 87625341
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Elementary landscapes

Definitions

A landscape is

(Sn, f, N)

An elementary landscape fulfills

avg {f(m)} = f(o) + wGy (f — f(0))

meEN (o)

Groover's wave equation

69



Elementary landscape decomposition
.. of the QAP

According to Chicano etal. 2010

If the neighborhood N is

Regular Symmetric

IN(o)|]=d>0foralloc €S, forallo,me€S,,me N(c)< o¢e N(n)

then the landscape can be decomposed as a sum of elementary landscapes

70



Elementary landscape decomposition
.. of the QAP

According to Chicano etal. 2010

QAP

flo) =Y dijhogiyet)

i=1 j=1
\A Generalized QAP

9(0) = > Yijpg®ij)ma) ()

1,7,p,q=1
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Elementary landscape decomposition
.. of the QAP

According to Chicano etal. 2010

Generalized QAP
n

g(o) = Z wiquw(i,j)(p,q)(@

1,7,p,q=1

Under the interchange neighborhood

g(o) = Z Wi Q(i,j)(p,qr)((j) X Q(z‘,j)(p,q)(a) N Q(i,j)(p,q)(a)
o t)prq I 2(77, — 2) n(n — 2)
%,J,.p;éq =1
P FJ

p#q Landscape 1 Landscape 2 Landscape 3

|

72



Elementary landscape decomposition

..of the QAP
n 1 9 3
g(o') — Z ¢ Q(iaj)(P,Q) (0) i Q(i,j)(p,q) (U) X Q(i,j)(p,q) (0')
o tprq I 2(n — 2) n(n — 2)
%%@Qél
‘7 Landscape 1 Landscape 2 Landscape 3
PF£q

In the classic QAP the matrix D = [d; j|nxn IS Symmetric, as a result

n QQ. . (O') n QS. . (0.)
(4,5)(P,q) (4,5)(P,q)
— )\ y y
f(o) + N E :_'1 Vijpq 2(n — 2) + N E :__1 Vijpq n(n — 2)
%L%ﬁf %%2&—
1% ] )
P # q P #q

Decomposed QAP
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Multi-objectivization

.. of the QAP

O_*

Single-objective
Problem

= arg max f (o) —>

oES,,

n

E : w@'qu
©,J,P,q =1

i F£

P #q

Multi-objective
Problem

maximize F'(0),0 € S,

where

F(o) = [fi(0);- s fm(0)]

2
Q(i,j)(p,Q)(J) 4
2(n —2)

Decomposed QAP

n 3
Z by Q(i,J')(JD,Q)(O)
y U n(n ~2)
t,7,p,qg =1
T F£ g
P F#q
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9.081
Algorithms:
* SGA 9.06 0
- NSGA2 o 3
o B % O
 SPEA2
9.04 1
. 9.02-
Movies !! 0.08]
9.06 1
< %
N [}
8 Z
9.041
OO
9.02-
9.081 @
J. Ceberio et al. 2018) Multi- > @
objectivising Combinatorial 2
Optimization Problems by
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Algorithms:

* E(ééPQ Benchmarks Instances NSGA-II ' AVSSPEAZ
[ ] 1 .
Burkard 8 7 2, 7 2 1 1
* SPEA2 Christofides 4| 11 o0 14 8| 0o o0
Drezner 12 8 20 1 9 1 0
Elshafei 1 1 0, 1 1 0 0
Eschermann 5(20) 3 0, 3 0 2 0
c o 11 Hadley 5 1 0 3 0 0 0
Movies !! Krarup 3 2 0' 3 2| 0 0
Li 18 15 3, 16 11 11
Nugent 18(1) 17 0, 18 11 0 0
Roucairol 4 3 21 4 4 0 0
Scriabin 4 3 0! 4 4 0 0
Skorin 13 8 0 : 13 8 0 0
Steinberg 3 3 0, 3 3 0 0
Taillard 52(2) 47 10 51 40 1 0
Taixxeyy 100 89 45" 85 32 9 2
Thonemann 3 1 0 : 3 2 0 0
Wilhelm 2 2 0, 2 1 0 0
Total Instances 265(23) | 224 64, 241 138 15 4

J. Ceberio et al. (2018) Multi-
objectivising Combinatorial
Optimization Problems by
means of Elementary
Landscape Decomposition.
Evolutionary Computation.
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Multi-objectivization

.. of other problems?

Problem Neighborhood Comp. Reference

Quadratic Assignment interchange 3 Chicano et al. (2010)

Linear Ordering interchange 2 (*)

DNA Fragment Assembly interchange 3 Chicano et al. (2010)

Subset Sum bit-flip 2 Chicano et al. (2011b)

Max k-sat bit-flip k Rana et al. (1998)

Test Suite Minimization bit-flip n+1  Chicanoetal. (2011a)

NK-landscapes bit-flip k+1  Sutton etal. (2009)

0-1 Unconstrained Quadratic Opt. bit-flip 2 Chicano and Alba (2013)
- General Frequency Assignment Hamming 2 Chicano et al. (2011¢)
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Future Research Possibilities

Other Considerations
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Possible Future Lines

Benchmarking and difficulty:

* Random generation of
instances

» Difficulty of instances.

« Distribution of instances.

'« Vector of integers
'« \ector of continuous values

Possible codifications:

O .« Matrices
i+ Cycles |
Permutation  “rrrmmmssmessssssnsssnssnnnes '
Problems
Problem Types: s

- Problems with constrains Non-Standard Permutation Problems:

- Multi-objective
- Deceptive problems
- Dynamic Problems

« Partially Permutation Problems
 » Quasi Permutation Problems '
'« Multi Permutation Problems

_________________________________________________________
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Are We Generating Instances
Uniformly At Random?

Instances as Rankings of Solutions: Linear Ordering Problem

n—1 n -
F@) =Y D bot)ol)

i=1 j=i+1 =3 123
ogES, \ 213
- 132

231

How many rankings

( ‘Sn | ) ! p— (n!) ! can be generated? 312

321

(31)! = 720

80




Are We Generating Instances
Uniformly At Random?

10° LOPinstances; n=3 - 720 possible rankings ; b,, sampled from [0,100] u.a.r

4000
Only 48 different
rankings...
3000 -
2 2000 el
O
'IOOO NI S 5 FESS § N W S V) GE S S G | Sy | SN SV S | GEE G S S W |l S W Wy U S— L S
0
TRYEE-BBESR
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Are We Generating Instances
Uniformly At Random?

Linear Ordering Problem

> 01 :(14235)
oy = (32514)

Reverse

Onpl—1 — (41523)
L o = (53241)

n!/2

DEC



Are We Generating Instances
Uniformly At Random?

4000

10° LOPinstances; n=3 - 720 possible rankings ; b,, sampled from [0,100] u.a.r

3000 -

2000 -

Count

Only 48 different
rankings...

'I OOO I 5 SN § N S B )

—r—r—r —

The rankings were not
uniformly sampled:

XL: 3560 * 84
L: 2531 +62
M: 1268 + 63
S: 752125
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21 0 14
26 23 0
S ——

123 — 7112 + T13 + T23)
132 = Ty3 + Ty9 + T30
213 = 191 +T23 + T13
312 = 131 + T32 + T12
231 — 193 + T21 + Ta1
321 — T39 + Tay + Toy )

321 — T3z + Ta1 + T21)
132 = 243 + T19 + Taa
312 — 31 + T32 + T12
213 = 21 + T23 + T13
231 — 23 + T21 + T3

Experiment
Constraints among consecutive solutions

123 — Ti9 + T1a + Taa )

T12 > T2 .
Toa > Tag Defined over all
T12 + T2 > Tt In XL Ranking the parameters
To1+ T3 +T1a > Tai + Ta2 + T2
Tra2 + T2 > Toa+ I
Ta3 > [Taa
213 = 113 +Toy + T23) [29; + 223 >J T12 + T30
123 - 129 + T1a + T23 | | T2 T2
. 132 = 113 + T12 + Tao | LX23 e e
L Ranking » Tzt Tia+ T > Tt Tat1
231 — Tog + Toy + T3y Toa > oy
321 — T30 + T3y +To1 | To1 > T2
312 — 131 + Ta2 + T12 )
T21 > T2
Ta1 + T2 > T3+ T12
Tya > Tay
Ta1 +Ta2 +T1a > T+ T+ Tia M Ranking
Tia > Tra
Tay + Toy > T3+ Tia
213 = 79y + Tz + T13) To1 + To3 > T2+ 32
321 — 32 + Ta1 + T21 Taa + T1a3 > Tgg + Tay
. 132 — 713 + T1a 4+ Tag | [ T3 T T2 > Tia+ T2
S Ranking 931 Tia+Ti2+Taa > Taa+In+ITam
TIa T It T gy, +oxy, = Tiat+Tia
123 =+ 719 + Tya + Toa | Tia + Toa > a1+ Ta
312 — 31 + Ta2 + T12)
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Are We Generating Instances

123

213
132
231
312

321

XL ranking

Uniformly At Random?

Analysis of Local Optima

123

-

213
231
132
312

321

L ranking

M ranking

231 D

S ranking

Within each group equal number of local optima were found!
And at the same ranks!

85



Are We Generating Instances
Uniformly At Random?

350

10°instances QAP; n=3 - 720 possible rankings ; parameters sampled from [0,100] u.a.r.

300 _
250 _
200 : |

e}

c

3

o
150 ‘ i
oo M % W
50
0
TN O NNEAMLD OO N TN OOONNEAD NN AWM OOMONASWNOMmDNN

N NOANSODAT OO AMUOUNOMUMOOOANLNOANSNO
A A AN AN NN OO OO N T T DD WND WM O OO OO
Ranking ID
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Are We Generating Instances
Uniformly At Random?

10° instances PFSP; n=3 xm=10 - 720 possible rankings ; parameters sampled from [0,100] u.a.r.

Count

1600

All the possible rankings
1400 were created (720)

1200

Symmetry can be observed

1000

Large variance

800 - %1 R

600 4+ B W L S S -

400 - B B

200  m S & = AN A B G By I G G S B A N 00 b S e .
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1.

To take home...

Study the problem and gain insight
2. Algorithm design

3. Alotofresearch to do yet
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Permutation-based Combinatorial
Optimization Problems under the Microscope

Josu Ceberio

Thankyou for your attention!

Intelligent -
Systems v
o G rou p Universidad  Euskal Herriko

del Pais Vasco Unibertsitatea
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