
Towards Extensible Symbolic Formal Methods

José Meseguer

University of Illinois at Urbana-Champaign

Meseguer Extensible Symbolic Methods



Motivation

The use of decision procedures for theories axiomatizing data
structures and commonly used functions is currently one of the
most effective methods at the heart of state-of-the art

model checkers; and

theorem provers

It can represent infinite sets of states symbolically as states
satisfying certain decidable constraints.

In this way it can scale up verification efforts to handle large
systems used in industrial practice.

Meseguer Extensible Symbolic Methods



Motivation

The use of decision procedures for theories axiomatizing data
structures and commonly used functions is currently one of the
most effective methods at the heart of state-of-the art

model checkers; and

theorem provers

It can represent infinite sets of states symbolically as states
satisfying certain decidable constraints.

In this way it can scale up verification efforts to handle large
systems used in industrial practice.

Meseguer Extensible Symbolic Methods



Motivation

The use of decision procedures for theories axiomatizing data
structures and commonly used functions is currently one of the
most effective methods at the heart of state-of-the art

model checkers; and

theorem provers

It can represent infinite sets of states symbolically as states
satisfying certain decidable constraints.

In this way it can scale up verification efforts to handle large
systems used in industrial practice.

Meseguer Extensible Symbolic Methods



Motivation

The use of decision procedures for theories axiomatizing data
structures and commonly used functions is currently one of the
most effective methods at the heart of state-of-the art

model checkers; and

theorem provers

It can represent infinite sets of states symbolically as states
satisfying certain decidable constraints.

In this way it can scale up verification efforts to handle large
systems used in industrial practice.

Meseguer Extensible Symbolic Methods



Motivation

The use of decision procedures for theories axiomatizing data
structures and commonly used functions is currently one of the
most effective methods at the heart of state-of-the art

model checkers; and

theorem provers

It can represent infinite sets of states symbolically as states
satisfying certain decidable constraints.

In this way it can scale up verification efforts to handle large
systems used in industrial practice.

Meseguer Extensible Symbolic Methods



Motivation II

This is great.

But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility.

For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories

and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms

and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter:

the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate,

the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Motivation II

This is great. But what are the current limitations?

One important limitation is lack of extensibility. For example:

A satisfiability modulo T (SMT) solver has a (usually small)
library of decidable theories and can only support
combinations of theories in the library, but no others.

A unification modulo T (UMT) solver has a (usually small)
library of T -unification algorithms and can only support
combinations of algorithms in its library, but no others.

Solving this extensibility problem is an eminently practical
matter: the more tasks we can automate, the more can we
scale up to solve harder and bigger problems.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as

languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as

constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ,

with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as

constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ,

with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in

an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:

automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and

UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Methods for Representing Infinite State Sets

The most common symbolic representation methods are:

1 Automata-Based Methods: infinite sets of states are
represented and manipulated as languages L(A) accepted
by a certain kind of automaton A.

2 SMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with t a term and φ a formula in
a decidable theory T .

3 UMT Solving: infinite sets of states are represented as
constrained patterns t | φ, with φ a positive QF formula in
an equational theory T having a unification algorithm.

Note that:
automata-based methods are less extensible; and
UMT solving is an important special case of SMT solving.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:

model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking,

e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving,

e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,

higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution,

and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:

model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking,

e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.

theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving,

e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,

programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves,

and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:

All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.

UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Symbolic Formal Methods

Besides automata-based infinite-state model checking, the
following symbolic formal methods are used:

1 UMT-Based:
model checking, e.g., narrowing-based model checkers.

theorem proving, e.g., superposition modulo T ,
higher-order resolution, and inductionless induction.

2 SMT-Based:
model checking, e.g., tuple-based, array-based, and
rewriting modulo SMT, model checkers.
theorem proving, e.g., traditional general-purpose,
programming-language theorem proves, and recent
general-purpose theorem provers.

Note that:
All of these methods will benefit from greater extensibility.
UMT methods and SMT methods should be combined.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily

user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable.

Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available

from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers.

To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T ,

e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories.

For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:

in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful.

Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Theory-Specific vs. Theory-Generic Procedures

The goal of extensible formal methods is that decision
procedures should be easily user-definable. Instead, now they
are only available from tool implementers. To achieve this, the
key distinction is between:

Theory-Specific procedures, that work for a single theory
T , e.g., AC unification, linear arithmetic, bit vectors, etc.,
and

Theory-Generic procedures, that work for an infinite class
of theories. For example, folding variant narrowing is a
theory-generic unification algorithm.

Note that:
in a theory-generic procedure the theory is easily defined
by the user as an input to the procedure.

a theory-generic SMT solving procedure would be very
useful. Variant-based satisfiability is such a procedure.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing

for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP)

as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to

variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability,

a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer

Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Plan of This Tutorial

In this tutorial I will:

1 briefly review folding variant narrowing for theories
satisfying the finite variant property (FVP) as a
theory-generic finitary unification algorithm.

2 show how folding variant narrowing can be extended to
variant-based satisfiability, a theory-generic SMT solving
procedure.

3 explain how folding variant narrowing supports formal
verification tools such as:

Maude-NPA Protocol Analyzer
Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Acknowledgements

The work on:

1 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

2 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

3 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Univ. of Illinois at Urbana-Champaign,
Technical University of Valencia, and University of Oslo;

4 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

Meseguer Extensible Symbolic Methods



Acknowledgements

The work on:

1 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

2 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

3 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Univ. of Illinois at Urbana-Champaign,
Technical University of Valencia, and University of Oslo;

4 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

Meseguer Extensible Symbolic Methods



Acknowledgements

The work on:

1 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

2 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

3 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Univ. of Illinois at Urbana-Champaign,
Technical University of Valencia, and University of Oslo;

4 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

Meseguer Extensible Symbolic Methods



Acknowledgements

The work on:

1 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

2 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

3 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Univ. of Illinois at Urbana-Champaign,
Technical University of Valencia, and University of Oslo;

4 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

Meseguer Extensible Symbolic Methods



Acknowledgements

The work on:

1 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

2 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

3 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Univ. of Illinois at Urbana-Champaign,
Technical University of Valencia, and University of Oslo;

4 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

Meseguer Extensible Symbolic Methods



Acknowledgements

The work on:

1 Folding Variant Narrowing is joint with S. Escobar and R.
Sasse;

2 Variant-Based satisfiability is joint with S. Skeirik and R.
Gutiérrez;

3 Maude-NPA is joint with C. Meadows, S. Escobar, and
Ph.D. students at Univ. of Illinois at Urbana-Champaign,
Technical University of Valencia, and University of Oslo;

4 Maude’s Symbolic LTL Model Checker is joint with K. Bae
and S. Escobar;

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B),

with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression

to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t

describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by

narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E

modulo axioms B.

Meseguer Extensible Symbolic Methods



Variants in a Nutshell

Consider an equational theory (Σ,E ∪ B), with B a set of
axioms and E equations oriented as confluent, terminating and
coherent rewrite rules.

Can think of a Σ-term t with variables as a functional
expression to be symbolically evaluated with E modulo B.

The Comon-Delaune notion of the E ,B-variants of t describes
the different symbolic results to which t can be evaluated.

Symbolic evaluation is performed by narrowing t with rules E
modulo axioms B.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′

is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);

a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and

a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ

such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t

can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing

is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP)

iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



Equational Narrowing in a Nutshell

For (Σ,E ∪ B) as above, the narrowing relation t ;E ,B t ′ is
defined iff there is:

a non-variable position p ∈ Pos(t);
a rule l → r in E ; and
a B-unifier σ such that σ(t |p) =B σ(l), and t ′ = σ(t [r ]p).

A complete set of variants of t can be computed as those t ′

such that t ;∗E ,B t ′ and t ′ is in E ,B-normal form.

Folding variant narrowing is a strategy to compute a complete
set of most general variants.

(Σ,E ∪ B) has the finite variant property (FVP) iff any term t
has a finite set of most general variants.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},

E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and

ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution

>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},

⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



An Example: Presburger Arithmetic is FVP

Let N+,> = (Σ,E ∪ ACU) be the Presburger arithmetic FVP
two-sorted equational specification with:

Σ = {0,1,+, >,>,⊥},
E two equations, defining >, oriented as rewrite rules
m + n + 1 > n→ > and n > n + m→ ⊥, and
ACU the axioms of associativity commutativity (AC) and
unit 0 (U) for +.

The initial algebra of N+,> is the Presburger natural numbers.

Folding variant narrowing computes the following three most
general variants of the term x > y :

x > y itself, with identity substitution
>, with substitution {x 7→ 1 + n + m, y 7→ n},
⊥ with substitution {x 7→ n, y 7→ n + m}.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and

the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,>

are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,

i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Variant Unification as Folding Variant Narrowing

Unification modulo Presburger Arithmetic N+,> is computed by
folding variant narrowing by just:

adding a binary operator ≡ for solving equations and
the single rewrite rule x ≡ x → >.

Then the unifiers of two terms u, v modulo N+,> are precisely
the substitutions associated to the variants of the form > of the
term u ≡ v .

Since N+,> is FVP, there is a finite number of variants of u ≡ v ,
i.e., Presburger Arithmetic N+,>-unification is finitary.

For example, x > y ≡ y > x has the single unifier {x 7→ y}
modulo N+,>.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥.

Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant

is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.

For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y ,

but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v

is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v .

For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



Constructor Variants and Constructor Unifiers

In N+,> = (Σ,E ∪ ACU) the predicate > is a defined symbol: it
evaluates to either > or ⊥. Instead, the other operators
Ω = {0,1,+,>,⊥} are constructor symbols.

A constructor variant is variant that has constructor instances.
For example, > and ⊥ are constructor variants of x > y , but
x > y is not.

A constructor R,B-unifier of u ≡ v is a B-unifier of u′ ≡ v ′

where u′, v ′ are constructor variants of u, resp. v . For example,
{x 7→ y} is not a constructor unifier of x > z ≡ y > z.

Meseguer Extensible Symbolic Methods



OS-Compact Theories

An equational order-sorted theory (Ω,G) is OS-compact iff:

1 G-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/G iff
ui 6=G vi , 1 ≤ i ≤ n.

Theorem. If (Ω,G) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/G is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Extensible Symbolic Methods



OS-Compact Theories

An equational order-sorted theory (Ω,G) is OS-compact iff:

1 G-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/G iff
ui 6=G vi , 1 ≤ i ≤ n.

Theorem. If (Ω,G) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/G is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Extensible Symbolic Methods



OS-Compact Theories

An equational order-sorted theory (Ω,G) is OS-compact iff:

1 G-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/G iff
ui 6=G vi , 1 ≤ i ≤ n.

Theorem. If (Ω,G) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/G is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Extensible Symbolic Methods



OS-Compact Theories

An equational order-sorted theory (Ω,G) is OS-compact iff:

1 G-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/G iff
ui 6=G vi , 1 ≤ i ≤ n.

Theorem. If (Ω,G) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/G is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Extensible Symbolic Methods



OS-Compact Theories

An equational order-sorted theory (Ω,G) is OS-compact iff:

1 G-unification is finitary, and

2 a conjunction of disequalities
∧

1≤i≤n ui 6= vi where all
variables have infinite sorts is satisfiable in TΩ/G iff
ui 6=G vi , 1 ≤ i ≤ n.

Theorem. If (Ω,G) is OS-compact, then satisfiability of QF
Ω-formulas in TΩ/G is decidable.

Remark. The notion of OS-compact theory and the above
theorem generalize a similar notion and theorem by H. Comon.

Theorem. (Ω,B) is OS-compact for any Ω with B any
combination of associativity and/or commutativity and/or
identity axioms, except associativity without commutativity.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm,

and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B

(i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ
) and is

OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

)

and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D,

with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Variant-Based Satisfiability

Main Theorem Let (Σ,E ∪ B) be FVP with B having a finitary
unification algorithm, and such that (Ω,EΩ) specifies the
Ω-reduct algebra of TΣ/E∪B (i.e., TΣ/E∪B|Ω ∼= TΩ/EΩ

) and is
OS-compact.

Then satisfiability of QF Σ-formulas in TΣ/E∪B is decidable.

Algorithm: Given conjunction of literals
∧

G ∧
∧

D, with G
equalities and D disequalities:

1 compute constructor E ∪ B-unifiers α of
∧

G,

2 compute the constructor E ,B-variants
∧

D′ of
∧

Dα, and

3 for each u′ 6= v ′ in
∧

D′ check that u′ 6=EΩ
v ′.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability

Consider the quantifier-free formula:

head(l) > head(l ′) = >∧ head(l) > 1+1+1 = ⊥∧{(1+1); nil} ⊆ {l , l ′, ∅} 6= tt

in the composition of: (i) Presburger arithmetic N+,>, (ii) the
parameterized theory of lists L[X ], and (iii) the parameterized
theory of hereditarily finite (HF) sets H[Y ]. These three theories
and their composition are FVP and have decidable satisfiability.

To decide satisfiability we:
1 first solve the sytem of equations

head(l) > head(l ′) = > ∧ head(l) > 1 + 1 + 1 = ⊥ modulo
the composed theory. There are six constructor unifiers.
The first is: α = {l 7→ (1 + 1 + 1); l1, l ′ 7→ (1 + 1); l2}.

2 This shows that the formula is satisfiable, because
{(1 + 1); nil} ⊆ {(1 + 1 + 1); l1, (1 + 1); l2, ∅} 6= tt , is
irreducible by the equations for ⊆ modulo ACU.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page,

yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed;

here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories:

no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:

(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact;

(ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types;

(iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types;

(iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Example of Variant-Based Satisfiability II

Although this is a simple example, it illustrates the extensible
nature of variant-based satisfiability because:

1 HF sets do not seem to be supported by any of the SMT
solvers in the Wikipedia SMT solver page, yet HF sets and
the three theories are easily definable by rewrite rules.

2 Even if Presburger arithmetic, lists, and HF sets were
available in a standard SMT solver, a Nelson-Oppen (NO)
combination procedure would have been needed; here we
just take the union of the three theories: no NO
combination is needed.

Many other theories can be made decidable this way, including:
(i) any FVP theory whose constructor subspecification is
OS-compact; (ii) all constructor-selector parameterized data
types; (iii) sets, multisets and HF sets parameterized types; (iv)
various numeric functions; and (v) many cryptographic theories.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:

Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and

Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems and also logics.

A concurrent system is specified as rewrite theory
R = (Σ,E ∪ B,R) where:

Σ is signature defining the syntax of the system and of its
states

E ∪ B is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E ∪ B.

Maude provides several model checkers based on narrowing
with rules R modulo and FVP theory E ∪ B such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by:

(i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and

(ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B,

where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′

is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and

a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ

such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff

t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



Rule Narrowing in a Nutshell

We can model check a concurrent system specified by a
topmost rewrite theory R = (Σ,E ∪ B,R) with E ∪ B FVP by: (i)
representing sets of states as terms with variables, and (ii)
performing narrowing with rules R modulo E ∪ B, where the
narrowing relation t ;R/E∪B t ′ is defined iff there is:

a rule l → r in R; and
a E ∪ B-variant unifier σ such that σ(t) =(E∪B) σ(l), and
t ′ = σ(r).

This method is complete for reachability analysis: an instance
of the states described by t can reach an instance of those
described by t ′ in the system specified by R iff t ;R/E∪B t ′.

Note that narrowing happens at two levels:
with rules R modulo E ∪ B to perform symbolic transitions
with oriented equations E modulo B to compute
E ∪ B-unifiers by folding variant narrowing.

Meseguer Extensible Symbolic Methods



The Maude-NPA Crypto Protocol Analyzer

The Maude-NPA tool of Escobar, Meadows and Meseguer,
analyzes crypto protocols modeled as P = (Σ,G ∪ B,R) by
narrowing with rules R modulo FVP equations G ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

The tool is available at http://maude.cs.illinois.edu/
w/index.php?title=Maude_Tools:_Maude-NPA

Meseguer Extensible Symbolic Methods

http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA


The Maude-NPA Crypto Protocol Analyzer

The Maude-NPA tool of Escobar, Meadows and Meseguer,
analyzes crypto protocols modeled as P = (Σ,G ∪ B,R) by
narrowing with rules R modulo FVP equations G ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

The tool is available at http://maude.cs.illinois.edu/
w/index.php?title=Maude_Tools:_Maude-NPA

Meseguer Extensible Symbolic Methods

http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA


The Maude-NPA Crypto Protocol Analyzer

The Maude-NPA tool of Escobar, Meadows and Meseguer,
analyzes crypto protocols modeled as P = (Σ,G ∪ B,R) by
narrowing with rules R modulo FVP equations G ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

The tool is available at http://maude.cs.illinois.edu/
w/index.php?title=Maude_Tools:_Maude-NPA

Meseguer Extensible Symbolic Methods

http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA


The Maude-NPA Crypto Protocol Analyzer

The Maude-NPA tool of Escobar, Meadows and Meseguer,
analyzes crypto protocols modeled as P = (Σ,G ∪ B,R) by
narrowing with rules R modulo FVP equations G ∪ B.

Many protocols have been analyzed modulo non-trivial theories
such as: (i) encryption-decryption; (ii) exclusive or; (iii)
Diffie-Hellman exponentiation; (iv) homomorphic encryption,
and combinations of such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

The tool is available at http://maude.cs.illinois.edu/
w/index.php?title=Maude_Tools:_Maude-NPA

Meseguer Extensible Symbolic Methods

http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA
http://maude.cs.illinois.edu/w/index.php?title=Maude_Tools:_Maude-NPA


The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In joint work with Yang et al., several FVP theories of
homomorphic encryption have been used with protocols in
Maude-NPA by trading accuracy and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X ) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X ). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X ); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [ Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X )s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X ) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Extensible Symbolic Methods



The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In joint work with Yang et al., several FVP theories of
homomorphic encryption have been used with protocols in
Maude-NPA by trading accuracy and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X ) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X ). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X ); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [ Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X )s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X ) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Extensible Symbolic Methods



The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In joint work with Yang et al., several FVP theories of
homomorphic encryption have been used with protocols in
Maude-NPA by trading accuracy and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X ) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X ). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X ); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [ Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X )s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X ) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Maude’s Narrowing-Based LTL Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions by
narrowing with rules modulo FVP equations.

State space reduction using state subsumption

Further reduction using equational abstractions

bounded model checking, which can detect a finite
symbolic state space to provide full verification.

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,

j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,

[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml ,

either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml ]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic Methods



Lamport’s Bakery Example (II)

The commands below show the results of the bounded model
checking with depth 10, and of full model checking using an
equational abstraction, for an arbitrary number of processes.

Maude> (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical model check in BAKERY-SAFETY-SATISFACTION :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
no counterexample found within bound 10

Maude> (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical folding model check in BAKERY-SAFETY-SATISFACTION-ABS :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
true

The tool is available at
http://maude.cs.uiuc.edu/tools/lmc/

Meseguer Extensible Symbolic Methods

http://maude.cs.uiuc.edu/tools/lmc/


Lamport’s Bakery Example (II)

The commands below show the results of the bounded model
checking with depth 10, and of full model checking using an
equational abstraction, for an arbitrary number of processes.

Maude> (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical model check in BAKERY-SAFETY-SATISFACTION :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
no counterexample found within bound 10

Maude> (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical folding model check in BAKERY-SAFETY-SATISFACTION-ABS :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
true

The tool is available at
http://maude.cs.uiuc.edu/tools/lmc/

Meseguer Extensible Symbolic Methods

http://maude.cs.uiuc.edu/tools/lmc/


Lamport’s Bakery Example (II)

The commands below show the results of the bounded model
checking with depth 10, and of full model checking using an
equational abstraction, for an arbitrary number of processes.

Maude> (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical model check in BAKERY-SAFETY-SATISFACTION :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
no counterexample found within bound 10

Maude> (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical folding model check in BAKERY-SAFETY-SATISFACTION-ABS :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
true

The tool is available at
http://maude.cs.uiuc.edu/tools/lmc/

Meseguer Extensible Symbolic Methods

http://maude.cs.uiuc.edu/tools/lmc/


Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and

Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:

Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and

Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker

can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to

deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems

in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods



Conclusion: Towards Extensible Formal Methods

I have emphasized the importance of theory-generic symbolic
methods such as:

Folding Variant Narrowing and
Variant-Based Satisfiability

to make formal methods much more extensible.

I have also shown how symbolic model checkers such as:
Maude-NPA and Maude’s Symbolic LTL Model Checker can
benefit from narrowing with rules R modulo and FVP equational
theory E ∪ B to verify infinite-state systems.

Variant satisfiability has already been implemented in Maude
and has been applied to deductive verification of concurrent
systems in the Reachability Logic Theorem Prover of S.
Skeirik, A. Stefanescu, and J. Meseguer.

Using varian satisfiability in model checking remains ahead.

Meseguer Extensible Symbolic Methods


