

Soft Management of Internet and Learning

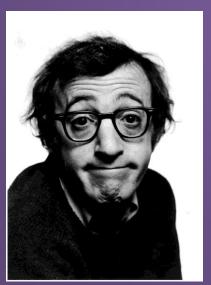
Análisis de Sentimientos y otros retos del aprovechamiento inteligente de los datos masivos

José A. Olivas

UCM, mayo, 2018

Soft Management of Internet and Learning

Desmontando a Harry, a Google y otros mitos de la era digital...



UCM, mayo, 2018

Soft Management of Internet and Learning

El aprendiz de Data Scientist...

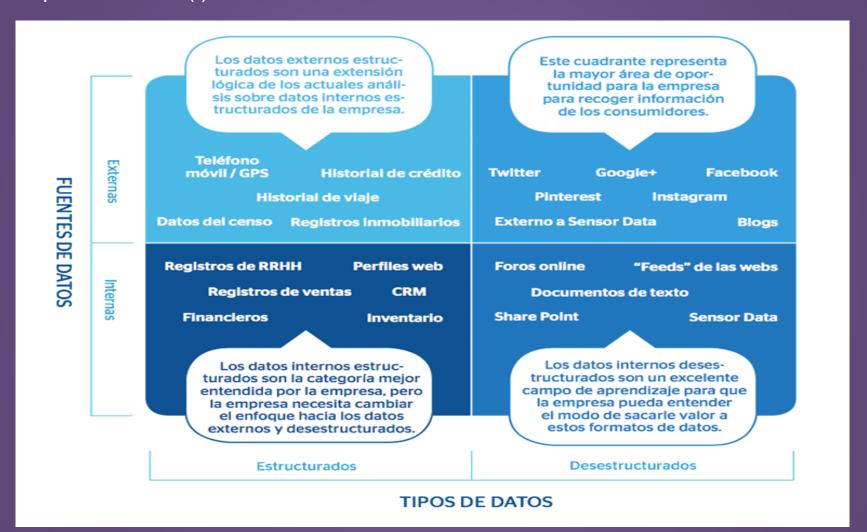
UCM, mayo, 2018

Comencemos por el final...

...los datos masivos

¿Qué son los datos?: DATOS / INFORMACIÓN /CONOCIMIENTO

Tipos de datos (I)



Tipos de datos (III)

Document Database	Graph Databases
Couchbase	Neo4j
■ MarkLogic mongoDB Wide Column Stores	InfiniteGraph The Distributed Graph Database Key-Value Databases
e redis	accumulo
amazon Dynamobb in rick	HYPERTABLE™ Cassandra FIBASE Amazon SimpleDB

¿ Dónde residen los datos ?

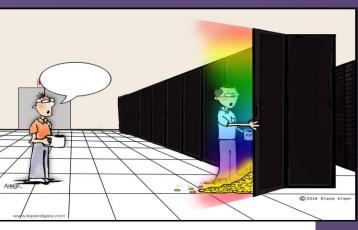
What is a data lake?

A repository for large quantities and varieties of data, both structured and unstructured.

Data generalists/ programmers can tap the stream data for real-time analytics.

The data lake accepts input from various sources and can preserve both the original data fidelity and the lineage of data

transformations Data



The lake can serve as a staging area for the data warehouse, the location of more carefully "treated" data for reporting and analysis in batch mode.

¿ Cómo se consiguen ?

- Sistemas Transaccionales (operadores que recogen las peticiones a través de Call-Centers)
- Transacciones que se generan en las Webs (ficheros weblogs)
- Los sensores permiten capturar las magnitudes físicas o químicas y convertirlas en datos, por ejemplo temperatura, luz, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, humedad, sonido, movimiento o el pH.
- IoT, Smart Cities...
- Redes sociales
- Etc, Etc...

¿ Cómo se consiguen ?

- Sistemas Transaccionales (operadores que recogen las peticiones a través de Call-Centers)
- Transacciones que se generan en las Webs (ficheros weblogs)
- Los sensores permiten capturar las magnitudes físicas o químicas y convertirlas en datos, por ejemplo temperatura, luz, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, humedad, sonido, movimiento o el pH.
- IoT, Smart Cities...
- Redes sociales
- Etc, Etc...

El Business Intelligence (BI)

definición de business intelligence (BI)

La capacidad de transformar datos en información para ayudar a gestionar una empresa es el dominio de la inteligencia empresarial de negocios (BI), que consiste en los procesos, aplicaciones y prácticas que apoyen la toma de decisiones ejecutivas

BI operacional

- soporta funciones al nivel operacional
- capacidad en tiempo real o cerca de real-time
- comprende y cubre los procesos.

Crítica...

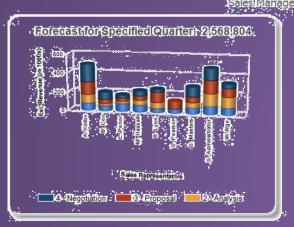
Demasiado restringido:

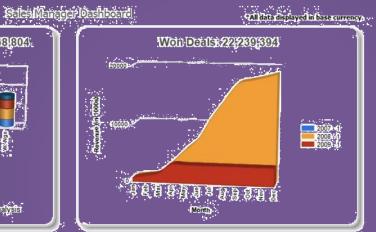
- …transformar datos en información…
- …apoyen la toma de decisiones…

¡¡ Hay muchas otras cosas que se pueden hacer !!

Veamos las posibles salidas...

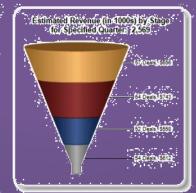
Outputs...





Top 10 Key Deals				
Account	Est. Close Date	Est. Revenue (in 1000s)	Recent Activity	
deWollie policies	<i>Piji</i> ws	\$74100	Q	
eyik eendi	E/[4]/20101	\$435570	Q.	
bikinine.	2//1/2010	\$434,30	øī.	
ilgii fioye	(8/25/2010)	\$431150	Ø.	
onsolidated essengen	5/j:(5/j:2010)	\$393,000	Ø:	
tycower@Ught	E[/E]/009	\$339.69	()	
ontoso Partis	E [/2009	\$338 (51	Ø	
akirkamilinay	4/20/2009	\$333512	Qi.	
ity Power (Allighi)	<i>5[19]</i> 2009	(55)263	Ø.	
adrona Solutions	13/9/x009	\$336,94	6 1	

Top 10 Sales Leaders in 2009			
Sales Representative	Actual Revenue (in 1000s)	Win Rate	
Anton Kiri by	\$ 7,510,15821	4723	
System Administrator	6 3)640(8966	493	
eimon Pearson	67/7 6007613	4373	
Mark Hassall	\$1 1,867 , 92774	451%	
Brian Cox	\$ 1129832422	461%	
William Ngo	(\$1\\$1515(\$228)	47%	
kokentiyon	(51) 454)(1014)	461%	
Lori Penor	(\$ 1\\3372).6267	45%	
Steve Masters	(\$11,359,97723	443%	
aoini¢i∈n	\$799.0690	41125	



Crítica...

De nuevo demasiado restringido:

- Esto es sólo visualización
- Conocimiento...
 - Sistemas de Ayuda a la Decisión (DSS).
 - Sistemas Recomendadores (Recommender Systems).
 - Análisis de series temporales (Predicción vs Pronóstico).
- Segmentación.

ii Patrones!!

- Las salidas condicionan todo el proceso.
- No se debe ir "a ciegas" hacia delante

Big Data

- Aproximación ingenua y crítica.
- Definición abierta de Big Data.

"Big Data" es en el sector de tecnologías de la información y la comunicación una referencia a los sistemas que manipulan grandes conjuntos de datos. Las dificultades más habituales en estos casos se centran en la captura, el almacenamiento, búsqueda, compartición, análisis y visualización. (Wikipedia)

"Big data" es un término aplicado a <u>conjuntos</u> <u>de datos</u> que superan la capacidad del <u>software</u> <u>habitual</u> para ser <u>capturados</u>, <u>gestionados</u> y <u>procesados</u> en un <u>tiempo razonable</u>. Los tamaños del "big data" se hallan constantemente en <u>aumento</u>. (Wikipedia)

Big Data

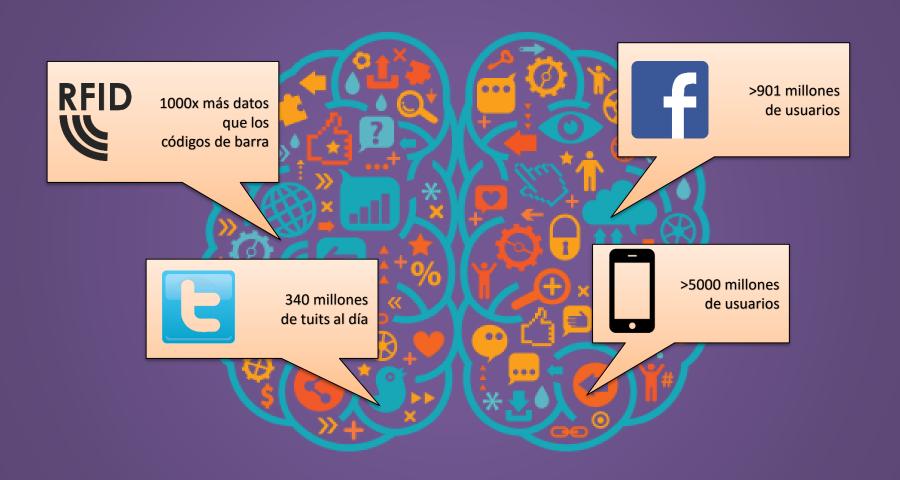
- Aproximación ingenua y crítica.
- Definición abierta de Big Data.

"Big Data" es en el sector de tecnologías de la información y la comunicación una referencia a los sistemas que manipulan grandes conjuntos de datos. Las dificultades más habituales en estos casos se centran en la captura, el almacenamiento, búsqueda, compartición, análisis y visualización. (Wikipedia)

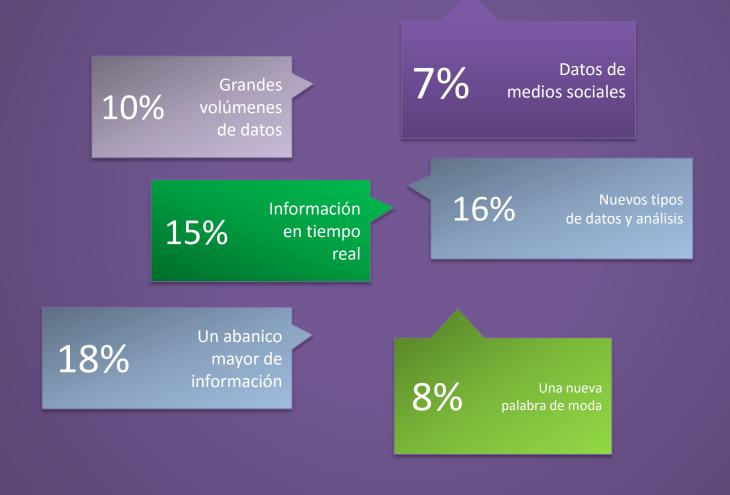
"Big data" es un término aplicado a <u>conjuntos</u> <u>de datos</u> que superan la capacidad del <u>software habitual</u> para ser <u>capturados</u>, <u>gestionados</u> y <u>procesados</u> en un <u>tiempo razonable</u>. Los tamaños del "big data" se hallan constantemente en <u>aumento</u>.

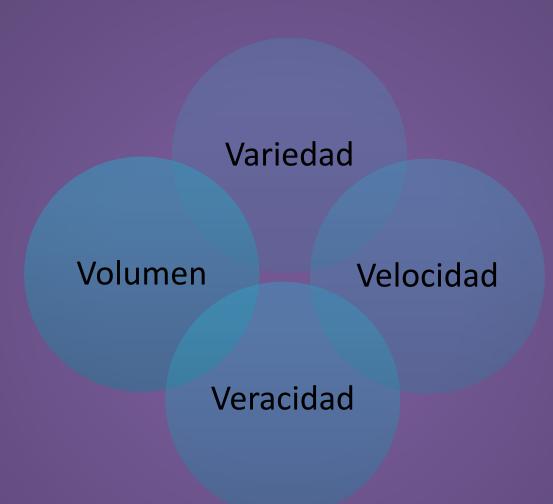
(Wikipedia)

¡El nudo Gordiano de Google!

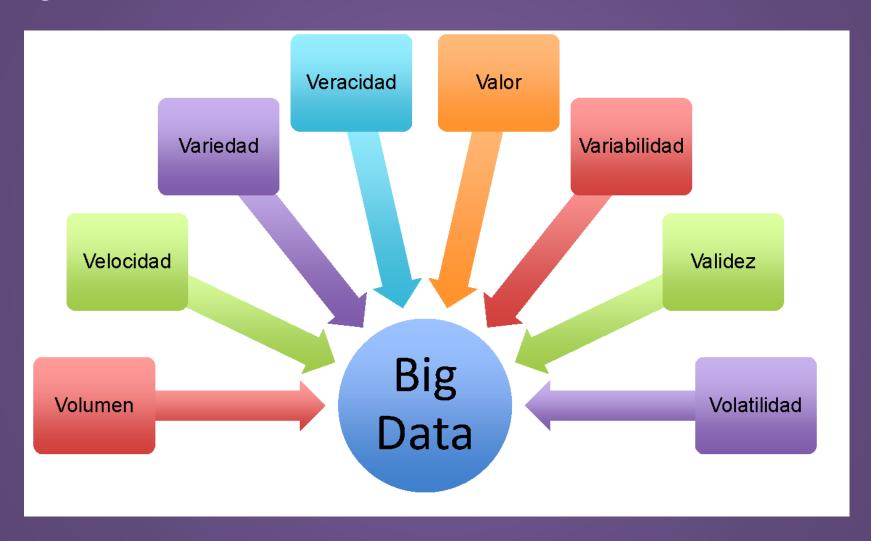


¿Cómo se percibe el Big Data?





¿O las 8 V's?...



Definición

- Datos...
- Información...
- ¿Conocimiento?
 - Abstracción-Patrones...
 - Dimensión humana...
 - La Web...
 - Google...

¡¡Explosión en la cantidad de datos!!

A380:

- Más de 1 billón de líneas de código.
- Cada motor genera 10 Tb cada media hora.
- Mas de 640 Tb de información por vuelo.
- Twitter genera más de 15 Tb de datos al día.
- Las principales bolsas generan más de 1 Tb al día.
- La capacidad de almacenamiento de ha doblado cada 3 años desde los 80s.

¡¡Explosión en la cantidad de datos!!

Historias Clínicas Electrónicas:

9.000.000.000 documentos sólo en España...

¡¡Problemas graves al gestionarlos!!

- A380 de Quantas (32-2009) ¡SATURACIÓN!
- A330 de Air France (447-2010) ¡INCONSISTENCIA!
- B777 Malayo (370-2014) ¡INCERTIDUMBRE!
- Twitter, ¡ANÁLISIS DE SENTIMIENTOS! PLN.
- No se usan las Historias Clínicas Electrónicas.

¡¡Explosión en la cantidad de datos!!

¿Habitualmente qué hacemos con todos estos datos?

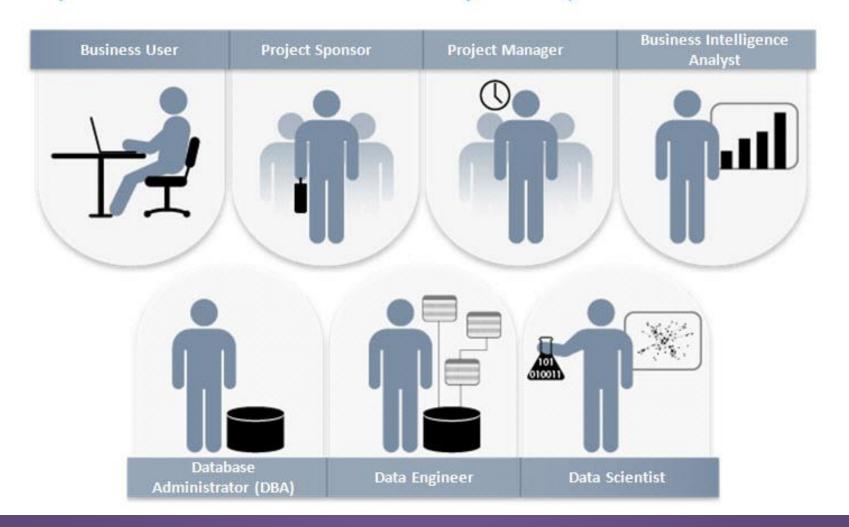
¡¡Explosión en la cantidad de datos!!

¿Habitualmente qué hacemos con todos estos datos?

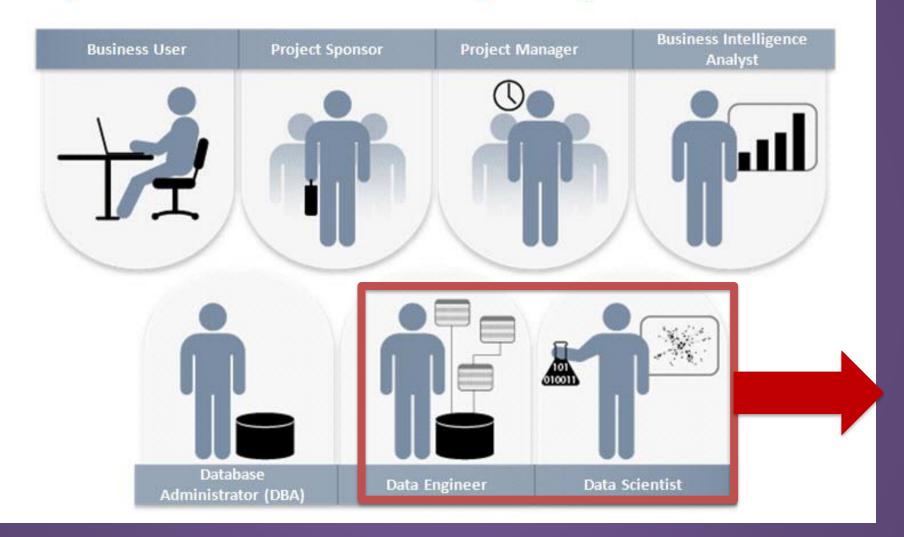
ilGNORARLOS!

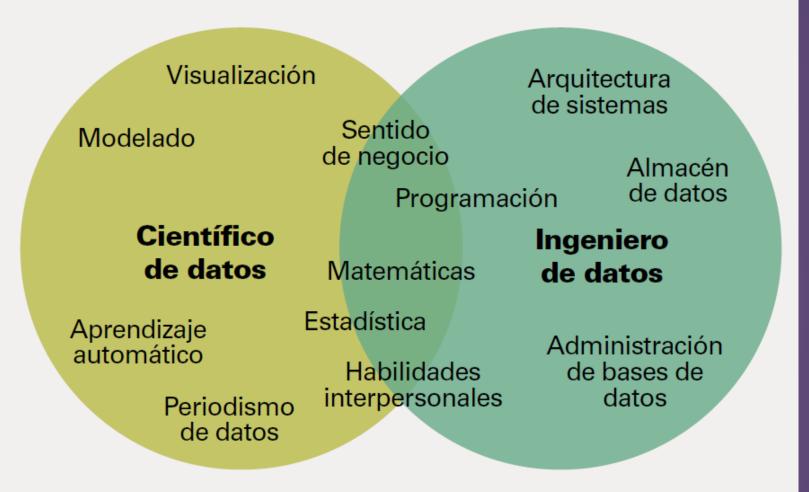
...el aprovechamiento inteligente

Key Roles for a Successful Analytic Project

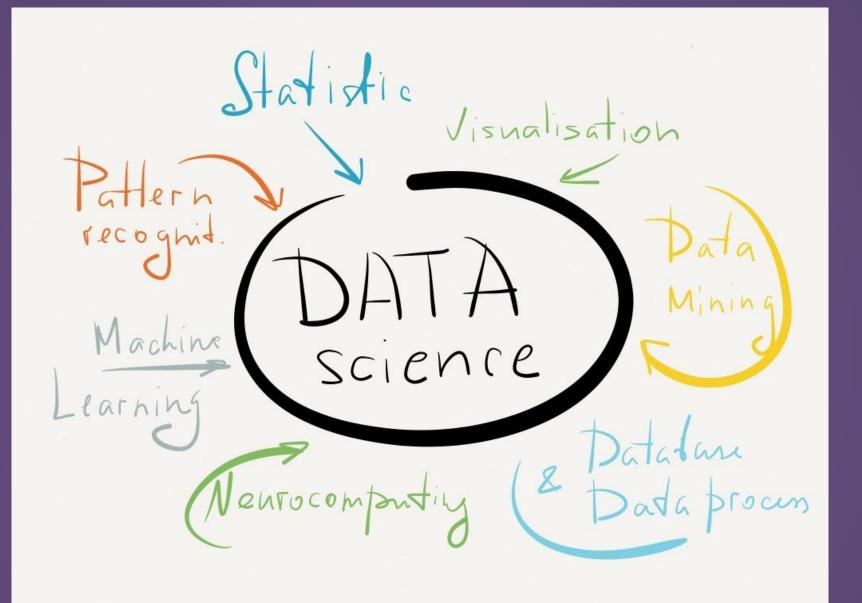


Key Roles for a Successful Analytic Project





Fuente: Universitat Oberta de Catalunya. Máster en Business Intelligence y Big Data (2016)



Métodos basados en la estadística

- Técnicas de Regresión y correlación
 - Lineal
 - Múltiple
 - Logística
 - CART (Classification And Regression Trees, Leo Breiman)
- Técnicas de extrapolación de funciones.
- Técnicas de aproximación y ajuste de funciones.
- Técnicas de agrupamiento basadas en medidas estadísticas (clustering).
- Etc.

Métodos de Machine Learning (Aprendizaje automático)

Aprendizaje por Analogía.

(Transformacional, derivacional, Razonamiento basado en Casos...)

Paradigma Inductivo.

Árboles de decisión, algoritmos de inducción pura...

Paradigma Conexionista.

Redes Neuronales Artificiales...

Paradigma Evolutivo.

 Algoritmos Genéticos, otros métodos de optimización, colonias de insectos, descenso estocástico del gradiente...

Modelos gráficos probabilistas.

Bayesianos, cadenas de Markov, Filtros de Kalman, redes de creencia,
 Máquinas de Soporte Vectorial (SVM), Metaheurísticas...

Técnicas de Clustering: EJEMPLOS

- Clustering Jerárquico.
- Paradigma Conexionista.
 - Redes Neuronales Artificiales: SOM (Self Organized Maps,
 Mapas de Kohonen). Toolbox de Matlab SOM.
 - Etc.

Técnicas de Clustering: EJEMPLOS

- Modelos estadísticos y probabilistas.
 - K-means, c-means,
 - K-nearest neighbours (KNN),
 - Mean shift (ventanas circulares con un centroide),
 - Dirichlet process (estocásticos basados en distribuciones de probabilidad). LDA (Latent Dirichlet Allocation),
 - Modelos Gaussianos,
 - Etc.

Técnicas de Clustering: EJEMPLOS

- Extensiones basadas en Lógica Borrosa.
 - Fuzzy K-means,
 - Fuzzy c-means,
 - Isodata,
 - Etc.

Técnicas de Clasificación: EJEMPLOS

- Paradigma Inductivo. Árboles de decisión:
 - ID3,
 - CART,
 - C4.5,
 - See5,
 - Random Forest (de moda en Big Data), Leo Breiman 2001,
 - Etc.

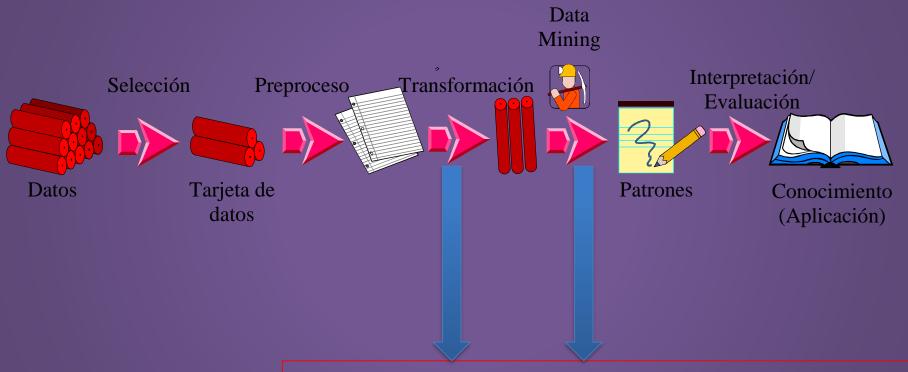
Técnicas de Clasificación: EJEMPLOS

- Paradigma Conexionista. Redes Neuronales Artificiales:
 - Perceptrón Multicapa (con backpropagation),
 - Convolucionales,
 - Neocognitrones,
 - Redes de Hopfield,
 - Redes recurrentes,
 - Adaline,
 - Deep Learning (de moda en Big Data),
 - Etc.

Técnicas de Clasificación: EJEMPLOS

- Modelos estadísticos y probabilistas.
 - Redes Bayesianas,
 - Naive-Bayes,
 - Máquinas de Soporte Vectorial (SVM),
 - Metaheurísticas,
 - Etc.

La importancia del KDD



Consisten habitualmente en convertir un proceso de 'Clustering' en uno de 'clasificación'.

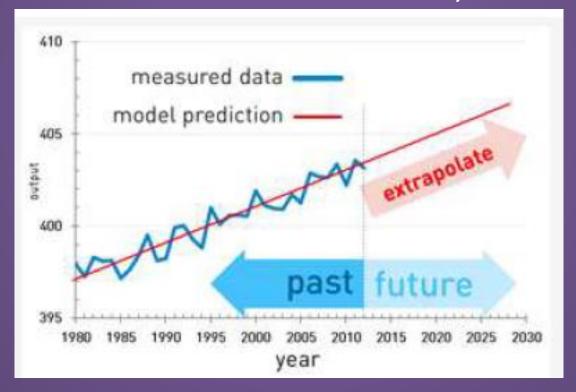
Adecuación de los métodos a los problemas.

Análisis Predictivo

- Extrapolación de funciones (Tendencia para el futuro, pero no hay capacidad de pronóstico – hechos/cambios puntuales-).
- Correlaciones entre variables (Demasiado evidente, no suele funcionar de forma muy fina).
- Encontrar 'patrones' en los datos que puedan ser aplicados a situaciones futuras (KDD y Data Mining).
- Métodos de CLUSTERING Y CLASIFICACIÓN.

Análisis Predictivo

• Extrapolación de funciones (Por ejemplo Estimaciones o Líneas de Tendencia).



Análisis Prescriptivo

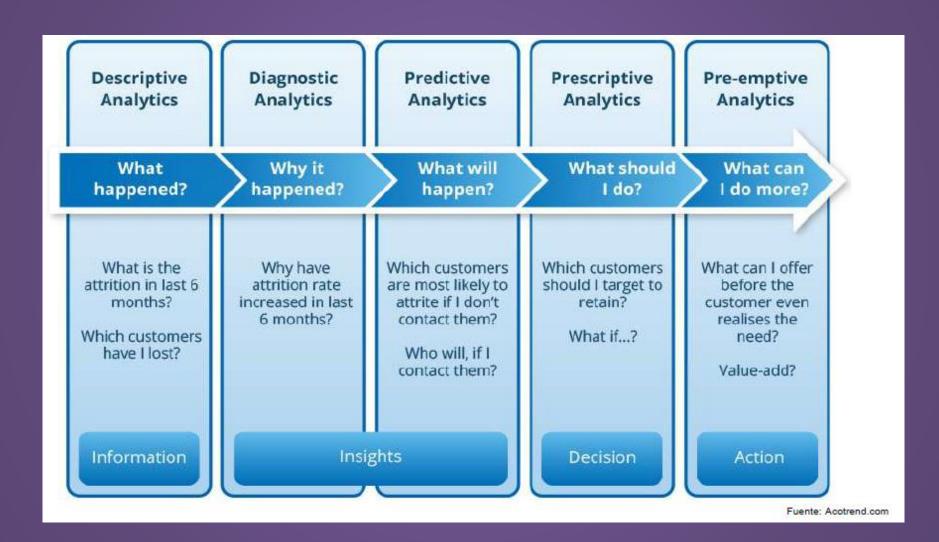
- El análisis predictivo se centra en **un escenario** futuro.
- El prescriptivo se centra en múltiples alternativas.
- Por lo tanto, un modelo prescriptivo puede ser considerado como una combinación de modelos predictivos (uno por cada posible escenario), que se ejecutan en paralelo.
- El objetivo es encontrar la mejor opción posible: **OPTIMIZACIÓN**.

Análisis Prescriptivo

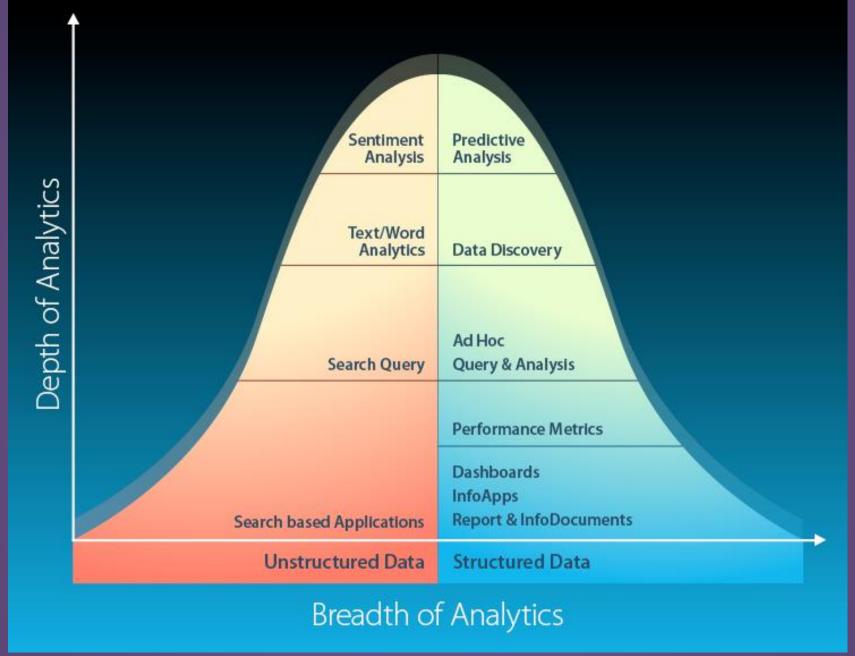
Técnicas:

- Técnicas de Investigación Operativa,
- Algoritmos Genéticos,
- Técnicas estocásticas,
- Metaheurísticas,
- Etc.

Análisis Prescriptivo



...análisis de sentimientos y otros retos



Acceso y la búsqueda de información digital.

- Los buscadores son eficientes, pero no eficaces.
- Ejemplos: sinonimia, veracidad (reputación), variedades diatópicas, operadores, tendencias...

"Búsqueda eficaz de información en la Web" (EDULP, 2011)

 El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

• El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

• ¡Dimensión Humana!

• El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

¡Dimensión Humana! CONTEXTO

• El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

¡Dimensión Humana! CONTEXTO

• El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

- ¡Dimensión Humana! CONTEXTO
- El gran reto: PLN

• El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

- ¡Dimensión Humana! CONTEXTO
- El gran reto: PLN
- Análisis de Sentimientos.

[&]quot;Sentiment analysis: A review and comparative analysis of web services" (Information Sciences, 2015)

• El nuevo reto del análisis inteligente en Internet y las redes sociales:

"asíncrono" vs. "síncrono"

Reflexión/preparación vs. Inmediatez/visceralidad

- ¡Dimensión Humana! CONTEXTO
- El gran reto: PLN
- Análisis de Sentimientos. ¿SIRI?

"Sentiment analysis: A review and comparative analysis of web services" (Information Sciences, 2015)

Lógica Borrosa Lotfi A. Zadeh 1921-2017

Soft Management of Internet and Learning

Análisis de Sentimientos y otros retos del aprovechamiento inteligente de los datos masivos

iiMUCHAS GRACIAS!!

José A. Olivas

UCM, mayo, 2018

Joseangel.olivas@uclm.es

¡Hasta siempre Lotfi!