Investigación sobre el desarrollo del pensamiento computacional en la educación

Jesús Moreno León - KGBL3

Conferencias de investigación para posgrado Programa de doctorado en ingeniería informática

17/06/2021

Motivation Our first goals These davs...

(cc) 2021 Jesús Moreno León

3

Some rights reserved. This work licensed under Creative Commons Attribution-ShareAlike License. To view a copy of full license, see http://creativecommons.org/licenses/by-sa/4.0/ or write to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA,

> Some of the figures have been taken from the Internet Source, and author and licence if known, is specified. For those images, fair use applies. ・ロト ・ 同ト ・ ヨト ・ ヨト

Our first goals Main investigations Conclusions These days... Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

Motivation

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

Coding in schools

- One of the main trends in the educational landscape worldwide
- Code to learn vs learn to code
- Huge disparity of criteria in terms of target ages, approaches, methodologies...
- Lack of standarization due to the lack of research in this field
- Urgent attention from academia is required: assessment, transference and affecting factors

イロト 不得 とくき とくき とうきょう

Our first goals Main investigations Conclusions These days... Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

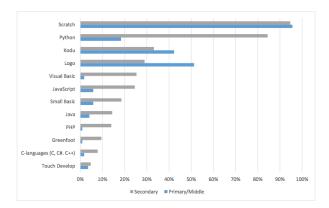
Five broad categories of technologies

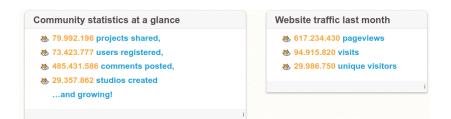
- Unplugged
- Arrow-based visual environments
- Block-based visual environments
- Textual programming languages
- Connected with the physical world

(日)

Our first goals Main investigations Conclusions These days... Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

Which technologies are using educators at schools?




Figure: Programming languages taught at primary and middle schools (blue) and secondary/high schools (gray) [Sentance, 2015].

イロト イポト イヨト イヨト

Our first goals Main investigations Conclusions These days...

Scratch statistics

Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

イロト 人間ト イヨト イヨト

Our first goals Main investigations Conclusions These days... Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

The pioneers

Logo programming language

- Developed in the 1960s
- Millions of students learnt to program at school during the 1970s and 80s
- "Disappeared" from the educational landscape since mid-90s

Seymour Papert's picture: jgora.net

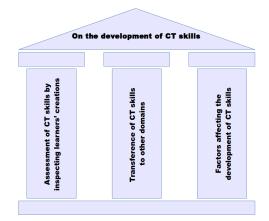
Our first goals Main investigations Conclusions These days... Computer programming and CT in schools Tools to introduce CT in education It's all just a little bit of history repeating?

Worrying signs from England

- "Only a small fraction of pupils choose, or have the option to choose, to take qualifications at GCSE (5.5%) or A level (1.7%)"
- "teachers just do not have the knowledge to teach this subject"
- "computer science could become a niche subject, taught in only a few schools"

ヘロン ヘ団 と ヘヨン ヘヨン

Our first goals


Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

€ 9Q@

10/86

The three pillars of our research

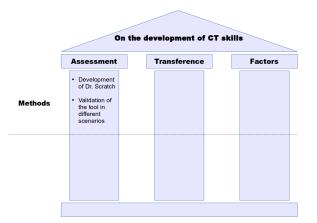
・ロト ・四ト ・ヨト ・ヨト

ъ

Research questions

- Is it possible to automatically assess the development of CT skills by inspecting learners' Scratch creations?
- Ooes the development of CT skills through programming activities with Scratch enhance the learning of other subjects?
- Are there social and non-cognitive factors affecting the development of CT skills when programming with Scratch?

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Main investigations

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

イロト イロト イヨト イヨト

Methodology

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

A formative assessment tool for Scratch projects

- Could we create a lint-like tool to support learners and educators?
- Dr. Scratch, inspired by Scrape and is based on Hairball

イロト イボト イヨト イヨト

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Free software - standing on the shoulders of giants

Total Physical Source Lines of Code	1,809
Dominant language	Python
Schedule Estimate, Months	4.42
Estimated Average Number of Developers	1.01
Total Estimated Cost to Develop	\$50,345

Table: Estimated effort for the development of the Hairball fork (using the *basic* COCOMO estimation model [Boehm et al., 2000]).

イロト イボト イヨト イヨト

-

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

First step: extending the features of Hairball

₽ pranc	ni master - Itali Dali / nali Dali / piugins / duplicate.py := 🖼	
		$\langle \rangle$
	ooe on Apr 15 Merge caching support.	
2 contrib	butors 🚮 🧕	()
		n
44 lines	s (34 sloc) 1.56 kb Blame History	
	Plug-ins to detect bad programming habits	4-
	from hairboard Characters that use the default, non-meaningful	alt
	name that Scratch assigns to new objects	
	Repetition of code	
	<pre>definit(self):</pre>	
	"""Initialize an instance of the DuplicateScripts plugin."""	
	<pre>super(DuplicateScripts, self)init() self.total duplicate = 0</pre>	
	self.list duplicate = []	
	def finalize(self):	
	"""Output the duplicate scripts detected."""	
19	if self.total_duplicate > 0:	17/86

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Bad/default naming of sprites

ъ

Repetition of code

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Example of repeated code

Solution to avoid repeated code

Blocks should be created to avoid repetition of code

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Scratch projects repository analysis

	Default names	Duplicated scripts	Defined blocks
Projects	79	62	17
Mean	5.94	7.23	1.11
Median	3	2	0
Maximum	67	71	25

Table: Analysis of 100 ramdonly downloaded Scratch projects

イロト イポト イヨト イヨト

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Second step: development of the CT assessment feature

Remixing other researchers' ideas

- New frameworks for studying and assessing the development of CT [Brennan and Resnick, 2012].
- Progression of Early CT Model [Seiter and Foreman, 2013].
- Evaluation of games to gauge understanding of programming concepts [Wilson et al., 2012].
- Towards the Automatic Recognition of CT for Adaptive Visual Language Learning [Koh et al., 2010].

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Assessment of CT

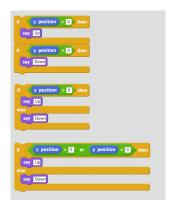

CT dimension	Basic	Developing	Proficient
Data representation	modifiers of sprites properties	operations on vars	operations on lists
Logical Thinking	if	if else	logic operations
User interactivity	green flag	key pressed, sprite clicked, ask and wait, mouse blocks	when %s is >%s, video, audio
Algotithmic notions of flow control	sequence of blocks	repeat, forever	repeat until
Abstraction and problem decomposi- tion	more than one script and more than one sprite	def block	when I start as clone
Parallelism	Two scripts on green flag	Two scripts on key pressed, two scripts on sprite clicked on the same sprite	Two scripts on when I receive message, two scripts when %s is >%s, two scripts on when backdrop change to
Synchronization	wait	Broadcast, when I re- ceive message, stop all, stop program, stop programs sprite	wait until, when backdrop change to, broadcast and wait

Table: Level of development for each CT dimension

Motivation Our first goals Main investigations These davs...

Development and validation of Dr. Scratch

Assessment of CT: Logical Thinking

Different levels of development of logical thinking: basic (top), developing (center) and proficient (bottom). ≣ ∽ ९ ペ 23/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Assessment of CT: an example

CT dimension	Basic	Developing	Proficient
Data representation	modifiers of sprites properties	operations on vars	operations on lists
Logical Thinking	if	if else	logic operations
User interactivity	green flag	key pressed, sprite clicked, ask and wait, mouse blocks	when %s is >%s, video, audio
Algotithmic notions of flow control	sequence of blocks	repeat, forever	repeat until
Abstraction and problem decomposi- tion	more than one script and more than one sprite	def block	when I start as clone
Parallelism	Two scripts on green flag	Two scripts on key pressed, two scripts on sprite clicked on the same sprite	Two scripts on when I receive message, two scripts when %s is >%s, two scripts on when backdrop change to
Synchronization	wait	Broadcast, when I re- ceive message, stop all, stop program, stop programs sprite	wait until, when backdrop change to, broadcast and wait

э

Evaluation of *Catch me if you can* (available at https://scratch.mit.edu/projects/138397021/)

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Assessment of CT: an example

chen@th:~\$ hairball -p mastery.Mastery Catch\ me\ if\ you\ can.sb2 Catch me if you can.sb2 ('Abstraction': 0, 'Parallelization': 0, 'Logic': 1, 'Synchronization': 0, 'FlowControl ': 2, 'UserInteractivity': 2, 'DataRepresentation': 1} Total mastery points: 6/21 Average mastery points: 0.86/3 Overall programming competence: Basic

Evaluation of *Catch me if you can* (available at https://scratch.mit.edu/projects/138397021/)

イロト 不得 とくほ とくほ とうほう

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Web-based service: Dr. Scratch


Doct	or Scratch (alpha version)		Username	Paseword	Sign in
Ana Wel area user This	br. Scratch (alph) Joze your Scratch verbiets, an andytical to the Dr. Scratch website, an andytical to the provide feedback on aspects such as a interactively and data representation. .analyzer is a helpful tool to evaluate your own analyzer is a helpful tool to evaluate your own and the second second second second second second second second second second second second second second second second second seco	tool that evaluates bstraction, logical th	your Scratch projects i inking, synchronizatio	n, parallelization, flow	
	Help States used in Scasch Conference, MT	Contact If you have any question or ideas to improve Dr feel free to contact us: jeaus moremo (al) prog	Scratch, please	Community Join us! Meet other users and s experiences	have

Alpha version of the tool, presented during the Scratch Conference 2014 at the MIT (Cambridge, MA, USA)

26/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Web-based service: Dr. Scratch

Present version of the tool, developed after the Google RISE Award 2015 < n > 4 =

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

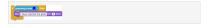
Web-based service: Dr. Scratch

y 🖻 Help	DR. SCRATCH(BETA VERSION)
Level up	Level
🗯 Flow control	2/3
🐞 Data representation	1/5
* Abstraction	275
🔆 User interactivity	2/3
🔆 Synchronization	5/s
🗯 Parallelism	673
🔆 Logic	1/3
	Level up * Flow control * Data representation * Abstraction * User interactivity * Synchronization * Parallelism

Feedback report

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Web-based service: Dr. Scratch

hoructions related to logical thinking can help your projects are dynamic, so that they behave differently depending on the situation. In the stories, for example, these instructions are not as important as they usually have a linear structure we always want to run the same way, but in other projects, such as video games are essential to perform different actions depending on the statution.

If you get 0 points...

The most basic block you can start working logical thinking is this:

How this block works? When execution reaches this point, the condition on the block is evaluated, and if this is true, the set of blocks that are within the if executed. In the example, if the character is touching the blue color, he says " reached the goal."

If you get 1 point...

Ideas to improve the score

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Validation Process

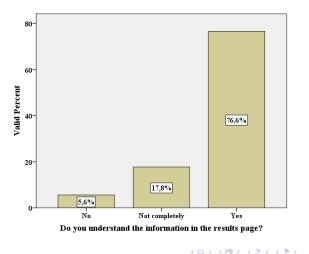
- Ecological validity
- Convergent validity
- Discriminant validity

< ロ > < 同 > < 回 > < 回 >

э

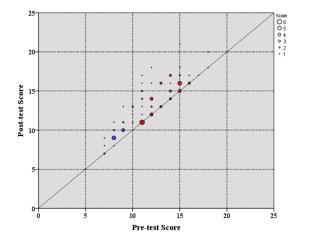
30/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Validation Process: Ecological Validity (I)

Ecological validity

- Are young learners able to analyze their projects and independently learn from the tips that the tool provides?
- Workshops with over 100 students (10 to 14 years) in 8 schools


Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Validation Process: Ecological Validity (II)

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Validation Process: Ecological Validity (and III)

< ロ > < 同 > < 回 > < 回 >

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Validation Process: Convergent Validity (I)

Convergent validity

- Comparison of the evaluations provided by Dr. Scratch with other measurements of similar constructs
 - (Human) expert evaluators
 - Software engineering complexity metrics

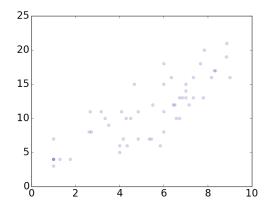
Background picture: Joanna Bourne

Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Validation Process: Convergent Validity (II)

Comparison with human experts


- Programming contest for students (Google, FECyT)
- Jury: 16 experts in computer science education
- 4 groups of evaluators, average years of experience with Scratch: 3.5 to 4 years
- 53 projects, 450 evaluations

Jesús Moreno León - KGBL3

Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

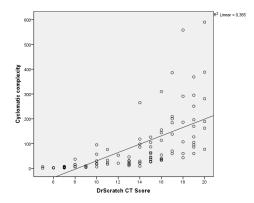
Validation Process: Convergent Validity (III)

Scatter plot for experts evaluation (x-axis) and Dr. Scratch assessment (y-axis).

< < p>< < p>

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

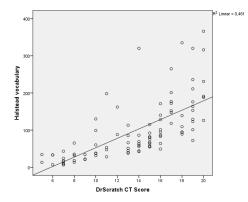
Validation Process: Convergent Validity (IV)


when 🔎 clicked	Metric	Value
set x pos y to 0	Cyclomatic complexity	3
repeat until touching Enemy ?	Vocabulary	14
change × pos v by 10	Length	14
if (x pos > 200) then	Volume	66.42
say I win!!	Difficulty	53.30
ady I will:	Effort	293.86

Implementation of CC and Halstead's analyzer for Scratch projects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Validation Process: Convergent Validity (V)

Scatter plot for Dr. Scratch assessment (x-axis) and Cyclomatic Complexity (y-axis).

Development and validation of Dr. Scratch

Validation Process: Convergent Validity (and VI)

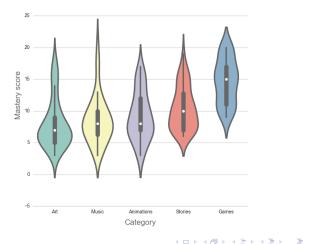
Scatter plot for Dr. Scratch assessment (x-axis) and Halstead's vocabulary (y-axis). э

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Validation Process: Discriminant Validity (I)

Discriminant validity

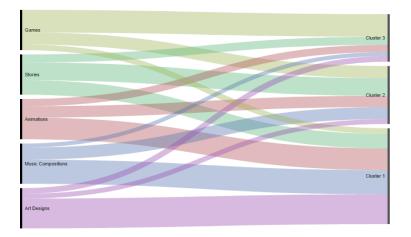
- Projects shared in the Scratch repository are categorized under one or more project types: games, animations, music, art and stories.
- Is Dr. Scratch able to detect differences in the CT dimensions developed when programming different types of projects?


Jesús Moreno León - KGBL3

Investigación sobre pensamiento computacional

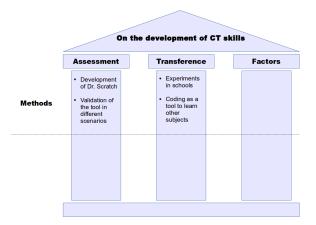
Background nicture: Bodie Py

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Validation Process: Discriminant Validity (II)

41/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Validation Process: Discriminant Validity (and III)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

42/86

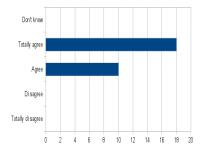
Methodology

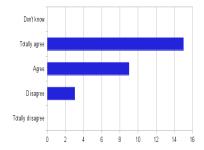
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

43/86

CT across the curriculum

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Coding in the English classroom (I)


The study

- Quasi-Experimental Design
- 65 students, 4th and 5th graders
- Control groups and experimental groups
- Pre and Post tests
- Surveys

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the English classroom (II)

Scratch helped me to learn English

Scratch made me want to learn more English

45/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the English classroom (III)

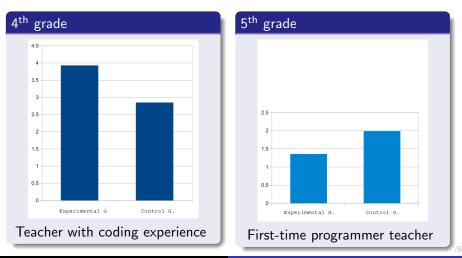

	Experimental group	Control group
Initial test	5.05	5.13
Final test	7.7	7.55
Improvement	2.65	2.42

Table: Pre-test and Post-test results

46/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the English classroom (and IV)

Jesús Moreno León - KGBL3

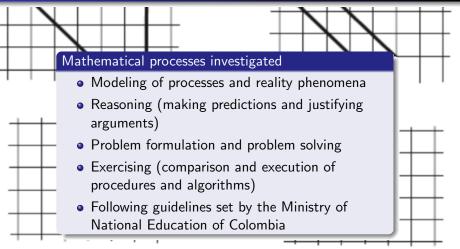
Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the Maths classroom (I)

The study

- Quasi-Experimental Design
- 42 students, 6th grade
- Control groups and experimental groups
- Pre and Post tests
- 3 months


< □

500

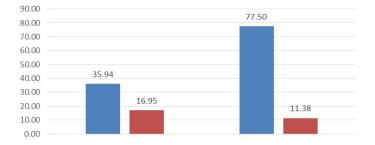
48/86

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the Maths classroom (II)

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the Maths classroom (III)

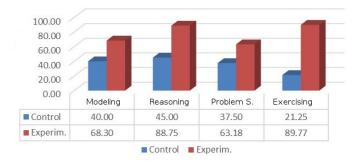


Pre-test. Mean and deviation for control (left) and experimental (right) groups.

イロト (日本) (日本) (日本) (日本) (日本)

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the Maths classroom (IV)



Post-test. Mean and deviation for control (left) and experimental (right) groups.

イロン 不得 とくほ とくほ とうほう

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Coding in the Maths classroom (and V)

Post-test comparison. Means obtained for the control and experimental groups by mathematical process.

・ロット (雪) (日) (日) (日)

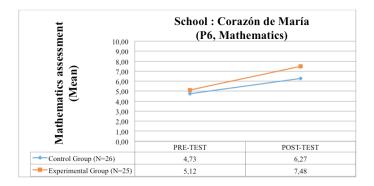
Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Comparing three quasi-experimental research designs (I)

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

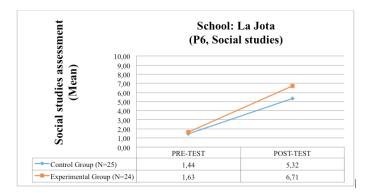
Comparing three quasi-experimental research designs (II)


School	Grade	n (control)	n (exp.)	Subject
Corazón de María	6th	26	25	Math
La Jota	6th	25	24	Social studies
La Inmaculada	2nd	15	14	Language arts

(日)

54/86

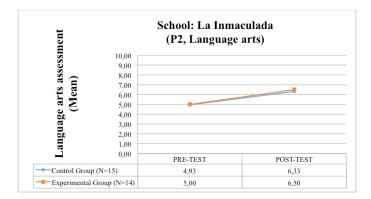
Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Comparing three quasi-experimental research designs (III)

< ロ > < 同 > < 回 > < 回 >

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

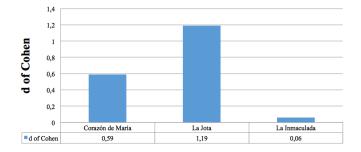
Comparing three quasi-experimental research designs (IV)



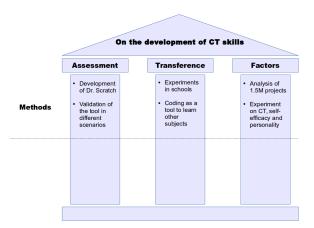
(a)

ъ

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


Comparing three quasi-experimental research designs (V)

(a)


Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Comparing three quasi-experimental research designs (and VI)

イロト イボト イヨト イヨト

Methodology

3

Social and non-cognitive factors of CT

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

How socialization affects the learning of coding skills (I)

Data set of public activity in the Scratch online community during its first five years of activity (2007–2012)

- 1,056,951 users
- 1,928,699 projects
- 120,097 galleries
- 1,313,200 friends
- 7,788,414 comments in projects

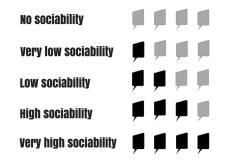
Background picture: xkl

• • • • • • • • • • •

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

How socialization affects the learning of coding skills (II)

Measuring the sophistication of the projects from three points of view:


- Breadth: range of different features that programmers use
- **Depth**: amount with which programmers use those features
- **Finesse**: user's ability to solve programming problems effectively and creatively

(日)

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

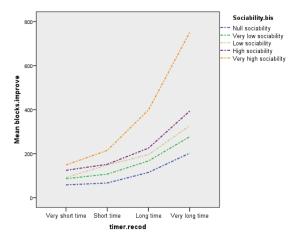
How socialization affects the learning of coding skills (III)

Sociability is measured as the sum of the social actions: number of favorites, galleries, friends and comments

イロト イポト イヨト イヨト

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

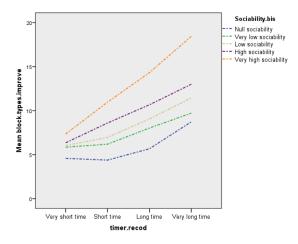
How socialization affects the learning of coding skills (IV)


4 groups of users using the quartiles of the the number of days that they spend in the community

Very short time	short time	Long time	Very long time
0-21	22-79	80-264	> 264
	Days in the c	Days in the community	

< ロ > < 同 > < 回 > < 回 >

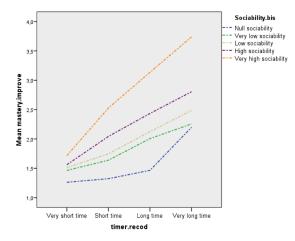
Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT


How socialization affects the learning of coding skills (V)

< ロ > < 同 > < 回 > < 回 >

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

How socialization affects the learning of coding skills (VI)



イロト イポト イヨト イヨト

ъ

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

How socialization affects the learning of coding skills (VII)

(日)

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Non-cognitive factors of CT (I)

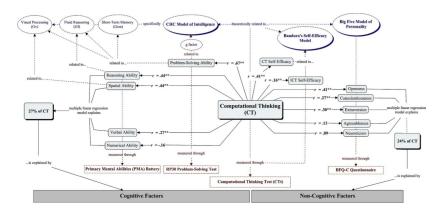
The study

- Correlations between CT, self-efficacy and the dimensions of the Big Five model of personality: Openness to Experience, Conscientiousness, Extroversion, Agreeableness, and Neuroticism.
- $\bullet~1,251$ students from 24 schools, enrolled in CS from 5th to $10^{\rm th}~{\rm grade}$
- CTt [Román-González, 2015] and some additional self-efficacy items
- 99 students took the Big Five Questionnaire-Children version [Barbaranelli et al., 2003]

イロト イポト イヨト イヨト

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Non-cognitive factors of CT (II)

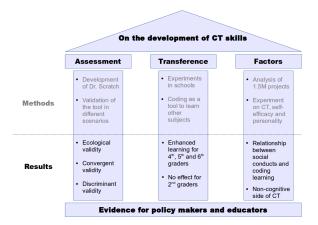

- As expected, positive correlations with Openness and Conscientiousness
- Unexpectedly, positive correlation with Extraversion
- Positive correlation with CT-Self efficacy (medium size difference in favor of males)

(日) (得) (日) (日) (日)

Motivation Our first goals Main investigations These davs...

Social and non-cognitive factors of CT

Non-cognitive factors of CT (and III)



Nomological network of CT including cognitive and non-cognitive factors < ロ > < 同 > < 回 > < 回 >

> Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

Development and validation of Dr. Scratch CT across the curriculum Social and non-cognitive factors of CT

Summary of results

イロト イポト イヨト イヨト

3

An assessment tool for the community Evidence for educators and policy makers Impact Future research

Conclusions

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An assessment tool for the community Evidence for educators and policy makers Impact Future research

Who is using Dr. Scratch?

- Learners and educators from all over the world: over 500,000 analyzed projects since August 2015
- Scholars:
 - To analyze students' performance
 - To assess teachers' CT and programming skills
 - To find code smells and quality issues
 - To validate other tools
 - As part of an evaluation framework

イロン 不得 とくほ とくほ とうほう

An assessment tool for the community Evidence for educators and policy makers Impact Future research

Transference of CT across the K-12 curriculum

- School level: differences based on the age of the students
- School subject: simple vs complex subjects
- Teacher training: great impact

An assessment tool for the community Evidence for educators and policy makers Impact Future research

Social and non-cognitive factors affecting CT

- Educators could choose between platforms for learning to program based on their social and software evolution features
- The one-size-fits-all approach is leaving some students, especially adolescent girls, behind
- A diversity of computing contexts must be offered

Motivation Conclusions These days...

Impact

Main publications

Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. Towards Data-Driven Learning Paths to Develop Computational Thinking with Scratch. IEEE Transactions on Emerging Topics in Computing. 2020.

DOI: 10.1109/TETC.2017.2734818. JCR Q1

Marcos Román-González, Juan-Carlos Pérez-González, Jesús Moreno-León and Gregorio Robles, Extending the nomological network of computational thinking with non-cognitive factors. Computers in Human Behavior, 2018. DOI:10.1016/i.chb.2017.09.030, JCR Q1

- Jesús Moreno-León, Marcos Román-González, Casper Harteveld, and Gregorio Robles. On the automatic assessment of computational thinking skills: A comparison with human experts. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA '17, pages 2788-2795, New York, NY, USA, 2017, ACM, DOI: 10.1145/3027063.3053216. GGS Conference Rating: CORE A++
- Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. Examining the relationship between socialization and improved software development skills in the Scratch code learning environment. Jounal of Universal Computer Science, 22(12):1533-1557, 2016. DOI: 10.3217/jucs-022-12-1533. JCR Q4

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

An assessment tool for the community Evidence for educators and policy makers Impact Future research

Google Scholar

Total Desde 2016 Citas 1420 1393 Índice h 20 20 Índice i10 26 26 420 315 210 105 2015 2016 2017 2018 2019 2020 2021

Citado por

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

・ロト (四) () (日) (日)

3

An assessment tool for the community Evidence for educators and policy makers Impact Future research

Lots of things to be done...

(Really) big samples Artificial Intelligence

These days...

Jesús Moreno León - KGBL3 Investigación sobre pensamiento computacional

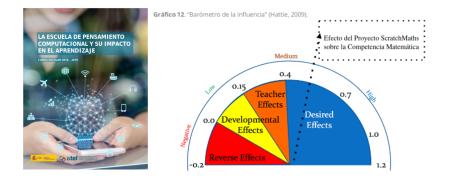
イロト イロト イヨト イヨト

æ

(Really) big samples Artificial Intelligence

Replication of the Scratch Maths project

ScratchMaths


Contact us

UCL Knowledge Lab Department of Culture. Communication and

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 善臣 のへで、

(Really) big samples Artificial Intelligence

Replication of the Scratch Maths project

イロト イポト イヨト イヨト

э

Motivation Our first goals These days...

Artificial Intelligence

Learning Machine Learning

Recopila textos o imágenes sobre algo que guieras clasificar de forma automática y añádelos a LearningML indicando a qué clase pertenece cada uno de ellos. Estos datos constituyen el conjunto de entrenamiento.

Construve con LearningML un modelo capaz de clasificar correctamente otros datos distintos, aunque similares, a los del conjunto de entrenamiento

Exporta tu modelo de Machine Learning a Scratch y programa una aplicación con capacidad para clasificar datos sobre el tema que hayas elegido. ¡Enhorabuena! ¡has incorporado Inteligencia Artificial a tu programa Scratch!.

э

イロト イロト イヨト イヨト

(Really) big samples Artificial Intelligence

At SIGCSE 2021

RESEARCH-ARTICLE

イロト 不得 トイヨト イヨト 二日

(Really) big samples Artificial Intelligence

Al investigation with over 6K students

Investigación sobre el desarrollo del pensamiento computacional en la educación

Jesús Moreno León - KGBL3

Conferencias de investigación para posgrado Programa de doctorado en ingeniería informática

17/06/2021

(日)

Motivation Our first goals These days...

References I

Barbaranelli, C., Caprara, G. V., Rabasca, A., and Pastorelli, C. (2003). A questionnaire for measuring the big five in late childhood. Personality and Individual Differences, 34(4):645-664. . Boehm, B. W., Madachy, R., Steece, B., et al. (2000). Software cost estimation with Cocomo II with Cdrom. Prentice Hall PTR. Brennan, K. and Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research Association, Vancouver, Canada, pages 1-25. ī. Koh, K. H., Basawapatna, A., Bennett, V., and Repenning, A. (2010). Towards the automatic recognition of computational thinking for adaptive visual language learning. In 2010 IEEE Symposium on Visual Languages and Human-Centric Computing, pages 59-66.

Román-González, M. (2015).

Computational thinking test: Design guidelines and content validation. In Proceedings of the 7th Annual International Conference on Education and New Learning Technologies (EDULEARN 2015), pages 2436-2444.

イロト イポト イヨト イヨト

э

References II

Seiter, L. and Foreman, B. (2013).

Modeling the learning progressions of computational thinking of primary grade students. In Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research, ICER '13, pages 59–66, New York, NY, USA. ACM.

Sentance, S. (2015).

Annual national survey 2015: Results. Technical report, Computing At School.

Wilson, A., Hainey, T., and Connolly, T. (2012).

Evaluation of computer games developed by primary school children to gauge understanding of programming concepts.

In European Conference on Games Based Learning, page 549. Academic Conferences International Limited.

イロト イポト イヨト イヨト 三日