
Two short talks on current topics
in Computer Science

Jan Prins

Department of Computer Science
University of North Carolina at Chapel Hill

1 Runtime Methods to Improve Energy Efficiency in
Supercomputing Applications

2 Computational Methods in Transcriptome Analysis

Runtime Methods to Improve Energy Efficiency in
HPC Applications

Sridutt Bhalachandra1, Robert Fowler2, Stephen Olivier3,
Allan Porterfield2, and Jan Prins1

1Department of Computer Science, University of North Carolina at Chapel Hill
2Renaissance Computing Institute, Chapel Hill

3Sandia National Laboratories

May 8, 2018

computing performance: 120 years of exponential growth!

Runtime methods to improve energy efficiency 2

What is driving performance growth?

Moore’s “law” - transistor density doubles every 18-24 months

Dennard scaling - total power remains the same and maximum
operating frequency increases
but look what has happened over the past two decades

Runtime methods to improve energy efficiency 3

What is driving performance growth?

Moore’s “law” - transistor density doubles every 18-24 months
Dennard scaling - total power remains the same and maximum
operating frequency increases

but look what has happened over the past two decades

Runtime methods to improve energy efficiency 3

What is driving performance growth?

Moore’s “law” - transistor density doubles every 18-24 months
Dennard scaling - total power remains the same and maximum
operating frequency increases
but look what has happened over the past two decades

Runtime methods to improve energy efficiency 3

The end of Dennard scaling and faster transistors

Consequences
additional transistors require additional area
power and heat increase commensurately
parallel computing is the only route to scaling performance

multicore processors
multiprocessor nodes

interconnection networks

Runtime methods to improve energy efficiency 4

Scalable parallel computing

Message Passing Interface (MPI) is used to coordinate computation
and communication among all processor cores

Runtime methods to improve energy efficiency 5

Current largest parallel computer

Source: http://www.nsccwx.cn/wxcyw

Sunway Taihulight
40,960 nodes

10,649,600 cores (256+4 per
node) at 1.45GHz

20PB storage
$273 million
Top500 #1

93.01 PFLOPS @ 15.4MW

1 PetaFLOPS (PFLOPS) = 1015 Floating Point Operations Per Second

1 MegaWatt (MW) can roughly power 1000 homes

Runtime methods to improve energy efficiency 6

Exascale (1018FLOPS) power requirements

System/Site Performance
(PFLOPS)

Power
(MW)

Energy Efficiency
(GFLOPS/W)

Exascale 1000 ? ?
Taihulight 93 15 6
Tianhe 2 34 18 2
Piz Daint 20 2 9

TSUBAME 3.0 2 0.14 14
kukai 0.46 0.03 14
AIST AI Cloud 0.96 0.08 13

Runtime methods to improve energy efficiency 7

Exascale (1018FLOPS) power requirements

System/Site Performance
(PFLOPS)

Power
(MW)

Energy Efficiency
(GFLOPS/W)

Exascale 1000 ? ?
Taihulight 93 15 6
Tianhe 2 34 18 2
Piz Daint 20 2 9
TSUBAME 3.0 2 0.14 14
kukai 0.46 0.03 14
AIST AI Cloud 0.96 0.08 13

Runtime methods to improve energy efficiency 7

Exascale (1018 FLOPS) power requirements

System/Site Performance
(PFLOPS)

Power
(MW)

Energy Efficiency
(GFLOPS/W)

Exascale 1000 20 50
Taihulight 93 15 6
Tianhe 2 34 18 2
Piz Daint 20 2 9
TSUBAME 3.0 2 0.14 14
kukai 0.46 0.03 14
AIST AI Cloud 0.96 0.08 13

5x - 10x improvement in energy efficiency required

Runtime methods to improve energy efficiency 8

Exascale (1018 FLOPS) power requirements

System/Site Performance
(PFLOPS)

Power
(MW)

Energy Efficiency
(GFLOPS/W)

Exascale 1000 20 50
Taihulight 93 15 6
Tianhe 2 34 18 2
Piz Daint 20 2 9
TSUBAME 3.0 2 0.14 14
kukai 0.46 0.03 14
AIST AI Cloud 0.96 0.08 13

5x - 10x improvement in energy efficiency required

Runtime methods to improve energy efficiency 8

breakdown of power use in a large parallel computer

Source: Use Case: Quantifying the Energy Efficiency of a Computing System -Hsu et al.

Runtime methods to improve energy efficiency 9

Opportunity to save energy

“Race to the end” in parallel regions
each processor core operates on data in its node
each processor maximizes speed while staying within thermal
limit
all processors spinwait on lock at end of the region
last processor to arrive releases the lock

Runtime methods to improve energy efficiency 10

Computational workload imbalance

could be inherent in application
could be due to system heterogeneity
exacerbated by the race to the end

Runtime methods to improve energy efficiency 11

Saving energy by mitigating workload imbalance

Challenges
each core is set to operate at a suitable frequency based on
previous phase observation
the frequency can change at every phase

Runtime methods to improve energy efficiency 12

Saving energy by mitigating workload imbalance

Challenges
each core is set to operate at a suitable frequency based on
previous phase observation
the frequency can change at every phase

Runtime methods to improve energy efficiency 12

Fine grained power control

Dynamic Duty Cycle Modulation (DDCM) – T-states

− Actual clock rate is not changed, DVFS and TurboBoost still operational
− Modulation range constant across architecture - 100% to 6.25%
− IA32_CLOCK_MODULATION MSR

DVFS - core specific (Haswell) – P-states
− Can slow only non-critical cores
− Operational range machine-dependent even for the same architecture
− acpi_cpufreq kernel module

Runtime methods to improve energy efficiency 13

Fine grained power control

Dynamic Duty Cycle Modulation (DDCM) – T-states

− Actual clock rate is not changed, DVFS and TurboBoost still operational
− Modulation range constant across architecture - 100% to 6.25%
− IA32_CLOCK_MODULATION MSR

DVFS - core specific (Haswell) – P-states
− Can slow only non-critical cores
− Operational range machine-dependent even for the same architecture
− acpi_cpufreq kernel module

Runtime methods to improve energy efficiency 13

Runtime control policy

Core-specific control
− match a core’s effective duty cycle to its workload

Duty cycle =
Time core in active state

Total time (clock cycles)

∗Change core active time using DDCM or clock cycles using DVFS

Work =
Compute time

Compute time + Idle time
(constant frequency)

Effective Work =
Compute time

Compute time + Idle time
∗

Max frequency

Current frequency

Runtime methods to improve energy efficiency 14

Runtime policy

Assumes similar
behavior across
successive phases

Policy calculation
local to core, no
communication

Combined policy
(PowerDVFS < PowerDDCM)

− Use DVFS policy until lowest frequency reached

− Thereafter, use DDCM policy

Runtime methods to improve energy efficiency 15

Runtime policy

Assumes similar
behavior across
successive phases

Policy calculation
local to core, no
communication

Combined policy
(PowerDVFS < PowerDDCM)

− Use DVFS policy until lowest frequency reached

− Thereafter, use DDCM policy

Runtime methods to improve energy efficiency 15

Adaptive Core-specific Runtime (ACR)

ACR = Runtime Policy + User Options

1 Can monitor performance degradation at the end of every
phase
− Rudimentary method to detect phase change

2 Can induce minimum phase length limit
− Useful in skipping start-up phases

3 Support for user-annotations
− However, not used in current experimentation

∗ Runtime is transparent, eliminating the need for code changes
to MPI applications

Runtime methods to improve energy efficiency 16

Experimental Setup

Mini-apps & Applications
Unstructured grids – MiniFE, HPCCG, AMG
Structured grids – MiniGhost
Mesh Refinement – MiniAMR
Hydrodynamics – CloverLeaf
− mini-apps representative of key production HPC applications

Dislocation Dynamics – ParaDis
System

32 Haswell node partition (Sandia Shepard) = 1024 cores
− Dell M420: two 16-cores Xeon E5-2698v3 128GB at 2.3GHz
− RHEL6.8, Slurm 2.3.3-1.18chaos and Linux 3.17.8 kernel
− Mpich 3.2

Results are average of 12 runs taken at stable temperatures (to promote
reproducibility)

Runtime methods to improve energy efficiency 17

ParaDis results

Runtime methods to improve energy efficiency 18

ParaDis results

Runtime methods to improve energy efficiency 18

ParaDis critical path on 24 nodes (768 cores) - Default

0.
5

1.
0

1.
5

2.
0

2.
5

Phase

C
om

pu
te

 T
im

e
(s

)

0 200 400 600 800 1000 1200

25
00

30
00

35
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

Bimodal distribution of critical path times < 1.0s and > 1.0s
Successive phases are similar, with only occasional jumps
Average critical path frequency (Default) = 2507.4MHz

Runtime methods to improve energy efficiency 19

ParaDis critical path on 24 nodes (768 cores) - Default

0.
5

1.
0

1.
5

2.
0

2.
5

Phase

C
om

pu
te

 T
im

e
(s

)

0 200 400 600 800 1000 1200

25
00

30
00

35
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

Bimodal distribution of critical path times < 1.0s and > 1.0s
Successive phases are similar, with only occasional jumps
Average critical path frequency (Default) = 2507.4MHz

Runtime methods to improve energy efficiency 19

ParaDis critical path on 24 nodes (768 cores) - DVFS

0.
5

1.
0

1.
5

2.
0

Phase

C
om

pu
te

 T
im

e
(s

)

0 200 400 600 800 1000 1200

22
00

26
00

30
00

34
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

Average critical path frequency (Default) = 2467.3MHz

Runtime methods to improve energy efficiency 20

ParaDis critical path on 24 nodes (768 cores) - DDCM

0.
5

1.
0

1.
5

2.
0

Phase

C
om

pu
te

 T
im

e
(s

)

0 200 400 600 800 1000 1200

25
00

30
00

35
00

A
ve

ra
ge

 F
re

qu
en

cy
 (

M
H

z)

Very low frequency on non-critical cores for prolonged periods reduces
variation, and increases available thermal headroom for critical cores
Average critical path frequency (Default) = 2784.8MHz

Runtime methods to improve energy efficiency 21

Mitigating workload balance
average results across all experiments

Policy %Power reduced%Energy saved%Time increase Temp decrease (C)
DDCM 19.3 15.1 5.3 3.2
DVFS 20.5 20.2 0.5 3.3
Combined 24.9 22.6 2.9 4.2

ACR demonstrates that dynamic control of power at
runtime is possible

At Exascale, runtimes such as ACR will allow
− more work to be run at one time by using less power
− individual applications to run faster by allowing a higher

thermal headroom on critical cores

Energy optimization can also be performance optimization

Runtime methods to improve energy efficiency 22

Mitigating workload balance
average results across all experiments

Policy %Power reduced%Energy saved%Time increase Temp decrease (C)
DDCM 19.3 15.1 5.3 3.2
DVFS 20.5 20.2 0.5 3.3
Combined 24.9 22.6 2.9 4.2

ACR demonstrates that dynamic control of power at
runtime is possible

At Exascale, runtimes such as ACR will allow
− more work to be run at one time by using less power
− individual applications to run faster by allowing a higher

thermal headroom on critical cores

Energy optimization can also be performance optimization

Runtime methods to improve energy efficiency 22

Mitigating workload balance
average results across all experiments

Policy %Power reduced%Energy saved%Time increase Temp decrease (C)
DDCM 19.3 15.1 5.3 3.2
DVFS 20.5 20.2 0.5 3.3
Combined 24.9 22.6 2.9 4.2

ACR demonstrates that dynamic control of power at
runtime is possible

At Exascale, runtimes such as ACR will allow
− more work to be run at one time by using less power
− individual applications to run faster by allowing a higher

thermal headroom on critical cores

Energy optimization can also be performance optimization

Runtime methods to improve energy efficiency 22

Saving energy in memory-bound applications

Many HPC applications are memory-bound
Memory operations are seldom visible to OS/runtime
− Power wasted in CPU while waiting on memory

Approach
− sample table of request occupancy in memory subsystem
− use DVFS to slow non-critical cores

Published work
1 Improving Energy Efficiency in Memory-constrained

Applications Using Core-specific Power Control (E2SC 2017)

Runtime methods to improve energy efficiency 23

Acknowledgements

Ph.D. research of Sridutt Bha-
lachandra (Argonne National Labs
Exascale Group)

Published work
1 An Adaptive Core-specific Runtime for Energy Efficiency

(IPDPS 2017)
2 Using Dynamic Duty Cycle Modulation to improve energy

efficiency in High Performance Computing (HPPAC 2015)

Runtime methods to improve energy efficiency 24

	intro2
	main

