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computing performance: 120 years of exponential growth!
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What is driving performance growth?

Moore’s “law” - transistor density doubles every 18-24 months

Dennard scaling - total power remains the same and maximum
operating frequency increases
but look what has happened over the past two decades
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The end of Dennard scaling and faster transistors

Consequences
additional transistors require additional area
power and heat increase commensurately
parallel computing is the only route to scaling performance

multicore processors
multiprocessor nodes

interconnection networks
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Scalable parallel computing

Message Passing Interface (MPI) is used to coordinate computation
and communication among all processor cores
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Current largest parallel computer

Source: http://www.nsccwx.cn/wxcyw

Sunway Taihulight
40,960 nodes

10,649,600 cores (256+4 per
node) at 1.45GHz

20PB storage
$273 million
Top500 #1

93.01 PFLOPS @ 15.4MW

1 PetaFLOPS (PFLOPS) = 1015 Floating Point Operations Per Second

1 MegaWatt (MW) can roughly power 1000 homes
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Exascale (1018FLOPS) power requirements

System/Site Performance
(PFLOPS)

Power
(MW)

Energy Efficiency
(GFLOPS/W)

Exascale 1000 ? ?
Taihulight 93 15 6
Tianhe 2 34 18 2
Piz Daint 20 2 9

TSUBAME 3.0 2 0.14 14
kukai 0.46 0.03 14
AIST AI Cloud 0.96 0.08 13
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breakdown of power use in a large parallel computer

Source: Use Case: Quantifying the Energy Efficiency of a Computing System -Hsu et al.
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Opportunity to save energy

“Race to the end” in parallel regions
each processor core operates on data in its node
each processor maximizes speed while staying within thermal
limit
all processors spinwait on lock at end of the region
last processor to arrive releases the lock
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Computational workload imbalance

could be inherent in application
could be due to system heterogeneity
exacerbated by the race to the end
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Saving energy by mitigating workload imbalance

Challenges
each core is set to operate at a suitable frequency based on
previous phase observation
the frequency can change at every phase
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Fine grained power control

Dynamic Duty Cycle Modulation (DDCM) – T-states

− Actual clock rate is not changed, DVFS and TurboBoost still operational
− Modulation range constant across architecture - 100% to 6.25%
− IA32_CLOCK_MODULATION MSR

DVFS - core specific (Haswell) – P-states
− Can slow only non-critical cores
− Operational range machine-dependent even for the same architecture
− acpi_cpufreq kernel module
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Runtime control policy

Core-specific control
− match a core’s effective duty cycle to its workload

Duty cycle =
Time core in active state

Total time (clock cycles)

∗Change core active time using DDCM or clock cycles using DVFS

Work =
Compute time

Compute time + Idle time
(constant frequency)

Effective Work =
Compute time

Compute time + Idle time
∗

Max frequency

Current frequency
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Runtime policy

Assumes similar
behavior across
successive phases

Policy calculation
local to core, no
communication

Combined policy
(PowerDVFS < PowerDDCM)

− Use DVFS policy until lowest frequency reached

− Thereafter, use DDCM policy
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Adaptive Core-specific Runtime (ACR)

ACR = Runtime Policy + User Options

1 Can monitor performance degradation at the end of every
phase
− Rudimentary method to detect phase change

2 Can induce minimum phase length limit
− Useful in skipping start-up phases

3 Support for user-annotations
− However, not used in current experimentation

∗ Runtime is transparent, eliminating the need for code changes
to MPI applications
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Experimental Setup

Mini-apps & Applications
Unstructured grids – MiniFE, HPCCG, AMG
Structured grids – MiniGhost
Mesh Refinement – MiniAMR
Hydrodynamics – CloverLeaf
− mini-apps representative of key production HPC applications

Dislocation Dynamics – ParaDis
System

32 Haswell node partition (Sandia Shepard) = 1024 cores
− Dell M420: two 16-cores Xeon E5-2698v3 128GB at 2.3GHz
− RHEL6.8, Slurm 2.3.3-1.18chaos and Linux 3.17.8 kernel
− Mpich 3.2

Results are average of 12 runs taken at stable temperatures (to promote
reproducibility)
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ParaDis results
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ParaDis critical path on 24 nodes (768 cores) - Default
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Bimodal distribution of critical path times < 1.0s and > 1.0s
Successive phases are similar, with only occasional jumps
Average critical path frequency (Default) = 2507.4MHz
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ParaDis critical path on 24 nodes (768 cores) - DVFS
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ParaDis critical path on 24 nodes (768 cores) - DDCM
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Very low frequency on non-critical cores for prolonged periods reduces
variation, and increases available thermal headroom for critical cores
Average critical path frequency (Default) = 2784.8MHz
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Mitigating workload balance
average results across all experiments

Policy %Power reduced%Energy saved%Time increase Temp decrease (C)
DDCM 19.3 15.1 5.3 3.2
DVFS 20.5 20.2 0.5 3.3
Combined 24.9 22.6 2.9 4.2

ACR demonstrates that dynamic control of power at
runtime is possible

At Exascale, runtimes such as ACR will allow
− more work to be run at one time by using less power
− individual applications to run faster by allowing a higher

thermal headroom on critical cores

Energy optimization can also be performance optimization
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Saving energy in memory-bound applications

Many HPC applications are memory-bound
Memory operations are seldom visible to OS/runtime
− Power wasted in CPU while waiting on memory

Approach
− sample table of request occupancy in memory subsystem
− use DVFS to slow non-critical cores

Published work
1 Improving Energy Efficiency in Memory-constrained

Applications Using Core-specific Power Control (E2SC 2017)
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