

Canada's Capital University

Discrete-Event Modeling and Simulation for Development of Embedded and Real-Time Systems

Gabriel Wainer

gwainer@sce.carleton.ca Department of Systems and Computer Engineering, Carleton University *Universidad Complutense de Madrid – Octubre 2021*

Carleton University Centre on Visualization and Simulation

Canada's Capital University

Interdisciplinary research

Systems Engineering Mechanical & Aerospace Cognitive Science Architecture

ARSLab

Advanced Real-Time Simulation Laboratory
SIMULATION EVERYWHERE

- 9 Faculty members (3 Invited Professors)
- 8 Postdoctoral Fellows
- 6 Ph.D. and 7 Masters students; 12 UG
- 8 Postdocs, 18 Ph.D. and 58 Masters Students graduated since 2000
- 120+ Engineering Capstone Projects since 2000

MASTERS IN MODELING AND SIMULATION

Motivation

Cyber-PhysicalSystems (CPS)

- Growing popularity; increasing heterogeneity and complexity.
- Tightly coupled hardware and software for a dedicated function.
- Logical and functional correctness + Timing correctness.
- critical applications

Formal Methods

- (+) Mathematical specification and analysis of the designs
- (+) Provable; Reliable
- (-) Too complex
- (-) Hard to prove when the design space scales up

Techniques focus on software only

- Models of the controlled **physical environment**?
- Decision-making, training, validation: no good visualization tools

Motivation

Development Methods

- No adequate and robust framework for design optimal solutions.
- Suggested solutions and shortcomings:
 - Formal Methods Hard to scale up
 - Modeling and Simulation (M&S) approaches Not formal

Key Issue: Model Continuity

- Models thrown away
- Development done from scratch

DE Modeling of Cyber-Physical Systems Methodology

Model Specification

Methodology (2 – Model Checking)

Model Transformation

Canada's Capital University

Preserve behavioural equivalency> Bi-simulation Equivalence

Elevator TA model in UPPAAL.

Carleton Methodology (3 – Controller simulation) UNIVERSITY **Canada's Capital University** (4)System of Interest Environment Model **DEVS** Specification Simulation: QSS/ Models (5) (3)RTS Cellular/Parallel **RTS Model** Environ RTS Requirements Simulation (8) ment Model (2)(6)16.7 (8) RTS in DEVS Physical Model-checking Executive Environment Engine

(9)

(6) (9)

RTOS

on target platform

RTS Deployed on Target Platform

CD++ Builder Environment

Methodology (4/5 – Physical Environment Simulation)

Carleton University

Advanced Laboratory for Real-time Simulation Cluster

Methodology (6 – Deploying in the target platform)

E-CD++

Canada's Capital University

Cyber-Physical toolkit based on DEVS Real-Time

- Use wall-clock time
- Handle inputs from the external environment
- Interact with hardware
- System design with DEVS:
 - Behavioral & Structural) models
 - Formal timing specification
- Hardware Interface
 - Port and Driver concepts

Canada's Capital University

ARM – based microcontrollers

- \blacktriangleright Models \rightarrow Processes
- Simulation: cost reduction for development
- Direct execution on a hardware platform

Complete model specification

Canada's Capital University

Modeling

Implementation

IDLE PREP_RX -sctrl_start_in?START_PROC-+ Infinity scRxPrepTime sctrl_start_outISTOP_PROC sctrl_mctrl_out!STOP_PROC sctrl_start_out!START_PROC PREP_STOP Os sctrl_light_in?ALL_DARK sctrl_start_in?STOP_PROC WAIT_DATA if (s_in==DARK) out_val = ON_TRACK; Infinity else if (s in==BRIGHT) out val = OFF TRACK; sctrl_start_in?START_PROC sctrl_mctrl_out!out_val sctrl_light_in?(DARK || BRIGHT) TX_DATA scTxTime

I/O Mapping

Port Name	Port Value	Hardware Command	Description
START_IN	10	START	Manual Start Command
	11	STOP	Manual Stop Command
LIGHT_IN	0	BRIGHT	No line detected
	1	DARK	Line detected
	2	ALL_DARK	Destination Reached
MOVER_OUT/ MOVEL_OUT	0 1 2	STOP FORWARD REVERSE	Stops the motor Spins Clockwise Spins Anticlockwise

State transitions

Methodology (7/8/9 – Validation and Training)

Architecture and Visualization

Canada's Capital University

Real Building Floor Plans

Cell-DEVs model

SUSTAIN

Methodology - Review

- Model-Based Engineering for software development
- Varied hardware, software and 3D visualization
- Models reused throughout the process => cost improved
- Collaborative environment
- Advanced visualization facilities (serious games; training)

- Bilateral doctoral enrolment/co-enrolment
- Two universities in different countries.
- Dissertation research collaboratively
- A faculty member from each of the universities
- Dissertation examined by a committee from both institutions
- Dual degree/diploma

https://gradstudents.carleton.ca/program-options/cotutelle/

Further information:

@ARSLab_CU

http://www.youtube.com/arslab