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Error Correcting Codes

Basic Problem:

• want to store bits on magnetic storage device

• or send a message (sequence of zeros/ones)

• Bits get corrupted, 0→ 1 or 1→ 0, but rarely.

What happens when we store/send information and errors occur?

can we detect them? correct?
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The International Standard Book Number (ISBN)

It can be proved that all possible valid ISBN-10’s have at least two
digits different from each other.
ISBN-10:

x1 − x2x3x4 − x5x6x7x8x9 − x10

satisfy
10∑
i=1

ixi = 0 mod 11

For example, for an ISBN-10 of 0-306-40615-2:

s = (0× 10) + (3× 9) + (0× 8) + (6× 7)+

+ (4× 6) + (0× 5) + (6× 4) + (1× 3) + (5× 2) + (2× 1)

= 0 + 27 + 0 + 42 + 24 + 0 + 24 + 3 + 10 + 2

= 132 = 12× 11
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Sending/storing information: Naive solution

Repeat every bit three times

Message

1 1 0 1 · · · Encoding
=⇒

Codeword

111 111 000 111 · · ·

Received message

111 111 001 111 · · · Decoding
=⇒ 1 1 0 1 · · ·

• Good: Very easy Encoding / decoding

• Bad: Rate 1/3

Can we do better???
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Another Solution

• Break the message into 2 bits blocks m = u1 u2 ∈ F2

• Encode each block as follows:

u −→ uG
where

G =

(
1 0 1
0 1 1

)
;

(u1, u2)

(
1 0 1
0 1 1

)
= u1 u2 u1 + u2

• Better Rate 2/3

• I can detect 1 error...but I cannot correct.
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• Break the message into 3 bits blocks m = 1 1 0 ∈ F3

• Encode each block as follows:

u −→ uG G =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 ;

For example

(1, 1, 0)

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 = (1, 1, 0, 0, 1, 1);

(1, 0, 1)

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 = (1, 0, 1, 1, 0, 1);

etc...
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• Rate 3/6 = 1/2, better than before (1/3).

• Only 23 codewords in F6

C = {(1, 0, 0, 1, 1, 0), (0, 1, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1), (1, 1, 0, 0, 1, 1),

(1, 0, 1, 1, 0, 1), (0, 1, 1, 1, 1, 0), (1, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0)}

• In F6 we have 26 possible vectors

• Any two codewords differ at least in 3 coordinates. I can
detect and correct 1 error!!!
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Hamming distance

The intuitive concept of “closeness” of two words is well
formalized through Hamming distance h(x , y) of words x , y . For
two words x , y

h(x , y) = the number of symbols x and y differ.

A code C is a subset of Fn, F a finite field. An important
parameter of C is its minimal distance.

dist(C) = min{h(x , y) | x , y ∈ C, x 6= y},

Theorem (Basic error correcting theorem)

1. A code C can detected up to s errors if dist(C) ≥ s + 1.

2. A code C can correct up to t errors if dist(C) ≥ 2t + 1.
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Definition
An (n, k) block code C is a k-dimensional subspace of Fn and the
rows of G form a basis of C

C = ImFG =
{
uG : u ∈ Fk

}
(1)

Main coding theory problem

1. Construct codes that can correct a maximal number of errors
while using a minimal amount of redundancy (rate)

2. Construct codes (as above) with efficient encoding and
decoding procedures
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• Coding theory develops methods to protect information
against errors.

• Cryptography develops methods how to protect information
against an enemy (or an unauthorized user).

• Coding theory - theory of error correcting codes - is one of the
most interesting and applied part of mathematics and
informatics.

• All real systems that work with digitally represented data, as
CD players, TV, fax machines, internet, satelites, mobiles,
require to use error correcting codes because all real channels
are, to some extent, noisy.

• Coding theory methods are often elegant applications of very
basic concepts and methods of (abstract) algebra.
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Topics we are investigating

• (Convolutional) Codes over finite rings (Zpr ).

• Application of convolutional codes to Distributed Storage
Systems.

• Application of convolutional codes Network Coding, in
particular to Video Streaming.
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Distributed storage systems

• Fast-growing demand for large-scale data storage.

• Failures occur: Redundancy is needed to ensure resilience ⇒
Coding theory.

• Data is stored over a network of nodes: Peer-to-peer or data
centers ⇒ Distributed storage systems.
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Coding Theory

• A file u = (u1, . . . , uk) ∈ Fk
q is redundantly stored across n

nodes
v = (v1, . . . , vn) = uG ,

where G is the generator matrix of an (n, k)-code C.
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• What happens when nodes fail? The repair problem.

• Metrics:
• Repair bandwidth
• Storage cost
• Locality
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Locality

• The locality is the number of nodes necessary to repair one
node that fails.

Definition

An (n, k) code has locality r if every codeword symbol in a
codeword is a linear combination of at most r other symbols in
the codeword.

• Locality ≥ 2 (if the code is not a replication).

• There is a natural trade-off between distance and locality.

Theorem (Gopalan et. al,2012)

Let C be an (n, k) linear code with minimum distance d and
locality r . Then

n − k + 1− d ≥
⌊
k − 1

r

⌋
.
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Pyramid Codes are optimal with respect to this bound

• Pyramid codes were Implemented in Facebook and Windows
Azure Storage (release in 2007).

• But if two erasures occur .... how to repair multiple erasures?

• ....Next time... Today we focus in Video Streaming.
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Video Streaming

• Explosive growth of multimedia traffic in general and in video
in particular.

• Video already accounts for over 50 % of the internet traffic
today and mobile video traffic is expected to grow by a factor
of more than 20 in the next five years [1].

[1] Cisco: Forecast and Methodology 2012-2017.
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Video Streaming

• Strong demand for implementing highly efficient approaches
for video transmission.
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Network Coding

How is the best way to disseminate information over a network?

Linear random network coding

It has been proven that linear coding is enough to achieve the
upper bound in multicast problems with one or more sources. It
optimizes the throughput.
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Linear Network Coding

• During one shot the transmitter injects a number of packets
into the network, each of which may be regarded as a row
vector over a finite field Fqm .

• These packets propagate through the network. Each node
creates a random -linear combination of the packets it has
available and transmits this random combination.

• Finally, the receiver collects such randomly generated packets
and tries to infer the set of packets injected into the network



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

Linear Network Coding

• During one shot the transmitter injects a number of packets
into the network, each of which may be regarded as a row
vector over a finite field Fqm .

• These packets propagate through the network. Each node
creates a random -linear combination of the packets it has
available and transmits this random combination.

• Finally, the receiver collects such randomly generated packets
and tries to infer the set of packets injected into the network



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

Linear Network Coding

• During one shot the transmitter injects a number of packets
into the network, each of which may be regarded as a row
vector over a finite field Fqm .

• These packets propagate through the network. Each node
creates a random -linear combination of the packets it has
available and transmits this random combination.

• Finally, the receiver collects such randomly generated packets
and tries to infer the set of packets injected into the network



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

Rank metric codes are used in Network Coding

• Rank metric codes are matrix codes C ⊂ Fm×n
q , armed with

the rank distance

drank(X ,Y ) = rank(X − Y ), where X ,Y ∈ Fm×n
q .

• For linear (n, k) rank metric codes over Fqm with m ≥ n the
following analog of the Singleton bound holds,

drank(C) ≤ n − k + 1.

• The code that achieves this bound is called Maximum Rank
Distance (MRD). Gabidulin codes are a well-known class of
MRD codes.
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THE IDEA: Multi-shot

• Coding can also be performed over multiple uses of the
network, whose internal structure may change at each shot

• Creating dependencies among the transmitted codewords of
different shots can improve the error-correction capabilities

• Ideal coding techniques for video streaming must operate
under low-latency, sequential encoding and decoding
constrains, and as such they
must inherently have a convolutional structure.

• Although the use of convolutional codes is widespread, its
application to video streaming (or using the rank metric) is
yet unexplored.

• We propose a novel scheme that add complex dependencies to
data streams in a quite simple way
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Block codes vs convolutional codes

. . . u2, u1, u0
G

−−−−→ . . . v2 = u2G , v1 = u1G , v0 = u0G

represented in a polynomial fashion

· · ·+ u2D
2 + u1D + u0

G
−−−−→ · · ·+ u2G︸︷︷︸

v2

D2 + u1G︸︷︷︸
v1

D + u0G︸︷︷︸
v0

substitute G by G (D) = G0 + G1D + · · ·+ GsD
s?

...u2D
2 + u1D + u0

G(D)

−−→ ...(u2G0 + u1G1 + u0G2)︸ ︷︷ ︸
v2

D2 +(u1G0 + u0G1)︸ ︷︷ ︸
v1

D +u0G0︸︷︷︸
v0

Block codes: C = {uG} = ImFG ∼ {u(D)G} = ImFG (D)
Convolutional codes: C = {u(D)G (D)} = ImF((D))G (D)
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Definition
A convolutional code C is a F((D))-subspace of Fn((D)).

A matrix G (D) whose rows form a bases for C is called an encoder.
If C has rank k then we say the C has rate k/n.

C = ImF((D))G (D) =
{
u(D)G (D) : u(D) ∈ Fk((D))

}
= KerF[D]H(D) = {v(D) ∈ Fn[D] : v(D)H(D) = 0}

where H(D) is called the parity-check of C.

Remark
One can also consider the ring of polynomials F[D] instead of
Laurent series F((D)) and define C as a F[D]-module of Fn[D].
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A convolutional encoder is also a linear device which maps

u(0), u(1), · · · −→ v(0), v(1), . . .

In this sense it is the same as block encoders. The difference is
that the convolutional encoder has an internal “storage vector” or
“memory”.

v(i) does not depend only on u(i) but also on the storage vector
x(i)

x(i + 1) = Ax(i) + Bu(i)

v(i) = Cx(i) + Eu(i) (2)

A ∈ Fδ×δ,B ∈ Fδ×k ,C ∈ Fn×δ,E ∈ Fδ×k .
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The encoder

G (D) =

(
D2 + 1

D2 + D + 1

)
has the following implementation

⊕ // //

...0, 1, 1 // 0 //

;;

##

0

��

// 0

bb

||
⊕ // //
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has the following implementation
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The encoder

G (D) =

(
D2 + 1

D2 + D + 1

)
has the following implementation

⊕ // // 1, 1, 1

// 0 //

<<

""

1

��

// 1

bb

||
⊕ // // 0, 0, 1
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Example

Let the convolutional code be given by matrices[
x1(i + 1)
x2(i + 1)

]
=

(
0 1
0 0

)[
x1(i)
x2(i)

]
+

(
1
0

)
u(i)[

v1(i)
v2(i)

]
=

(
1 0
1 1

)[
x1(i)
x2(i)

]
+

(
1
1

)
u(i)

We can compute an encoder

G (D) = E + B(D−1Im − A)−1C =
(

1 + D + D2 1 + D2
)
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Example

A physical realization for the encoder
G (D) =

(
1 + D + D2 1 + D2

)
. This encoder has degree 2 and

memory 2.
Clearly any matrix which is F(D)-equivalent to G (D) is also an
encoder.

G ′(D) =
(

1 1+D2

1+D+D2

)
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Example

A physical realization for the generator matrix G ′(D). This
encoder has degree 2 and infinite memory.
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Example

A physical realization for the catastrophic encoder
G ′′(D) =

(
1 + D3 1 + D + D2 + D3

)
. This encoder has

degree 3 and memory 3.
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Polynomial encoders

Two encoders G (D),G ′(D) generate the same code if there exist
an invertible matrix U(D) such that G (D) = U(D)G ′(D).

Definition
A generator matrix G (D) is said to be catastrophic if for every
v(D) = u(D)G (D)

supp(v(D)) is finite ⇒ supp(u(D)) is finite

Theorem
G (D) is non-catastrophic if G (D) admits a polynomial right
inverse.
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Example

The encoder

G (D) =

(
1 + D 0 1 D

1 D 1 + D 0

)
is noncatastrophic as an inverse is

H(D) =


0 1
0 0
0 0

D−1 1 + D−1


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Historical Remarks

• Convolutional codes were introduced by Elias (1955)

• The theory was imperfectly understood until a series of papers
of Forney in the 70’s on the algebra of the k × n matrices over
the field of rational functions in the delay operator D.

• Became widespread in practice with the Viterbi decoding.
They belong to the most widely implemented codes in
(wireless) communications.

• The field is typically F2 but in the last decade a renewed
interest has grown for convolutional codes over large fields
trying to fully exploit the potential of convolutional codes.
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In Applications

• In block coding it is normally considered n and k large.

• Convolutional codes are typically studied for n and k small and
fixed (n = 2 and k = 1 is common) and for several values of δ.

• Decoding over the symmetric channel is, in general, difficult.

• The field is typically F2. The degree cannot be too large so
that the Viterbi decoding algorithm is efficient.

• Convolutional codes over large alphabets have attracted much
attention in recent years.

• In [Tomas, Rosenthal, Smarandache 2012]: Decoding over the
erasure channel is easy and Viterbi is not needed, just linear
algebra.



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

In Applications

• In block coding it is normally considered n and k large.

• Convolutional codes are typically studied for n and k small and
fixed (n = 2 and k = 1 is common) and for several values of δ.

• Decoding over the symmetric channel is, in general, difficult.

• The field is typically F2. The degree cannot be too large so
that the Viterbi decoding algorithm is efficient.

• Convolutional codes over large alphabets have attracted much
attention in recent years.

• In [Tomas, Rosenthal, Smarandache 2012]: Decoding over the
erasure channel is easy and Viterbi is not needed, just linear
algebra.



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

In Applications

• In block coding it is normally considered n and k large.

• Convolutional codes are typically studied for n and k small and
fixed (n = 2 and k = 1 is common) and for several values of δ.

• Decoding over the symmetric channel is, in general, difficult.

• The field is typically F2. The degree cannot be too large so
that the Viterbi decoding algorithm is efficient.

• Convolutional codes over large alphabets have attracted much
attention in recent years.

• In [Tomas, Rosenthal, Smarandache 2012]: Decoding over the
erasure channel is easy and Viterbi is not needed, just linear
algebra.



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

In Applications

• In block coding it is normally considered n and k large.

• Convolutional codes are typically studied for n and k small and
fixed (n = 2 and k = 1 is common) and for several values of δ.

• Decoding over the symmetric channel is, in general, difficult.

• The field is typically F2. The degree cannot be too large so
that the Viterbi decoding algorithm is efficient.

• Convolutional codes over large alphabets have attracted much
attention in recent years.

• In [Tomas, Rosenthal, Smarandache 2012]: Decoding over the
erasure channel is easy and Viterbi is not needed, just linear
algebra.



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

In Applications

• In block coding it is normally considered n and k large.

• Convolutional codes are typically studied for n and k small and
fixed (n = 2 and k = 1 is common) and for several values of δ.

• Decoding over the symmetric channel is, in general, difficult.

• The field is typically F2. The degree cannot be too large so
that the Viterbi decoding algorithm is efficient.

• Convolutional codes over large alphabets have attracted much
attention in recent years.

• In [Tomas, Rosenthal, Smarandache 2012]: Decoding over the
erasure channel is easy and Viterbi is not needed, just linear
algebra.



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

MDS convolutional codes over F

The Hamming weight of a polynomial vector

v(D) =
∑
i∈N

viD
i = v0 + v1D + v2D

2 + · · ·+ vνD
ν ∈ F[D]n,

defined as wt(v(D)) =
∑ν

i=0wt(vi ).

The free distance of a convolutional code C is given by,

dfree(C) = min {wt(v(D)) | v(D) ∈ C and v(D) 6= 0}

• We are interested in the maximum possible value of dfree(C)

• For block codes (δ = 0) we know that maximum value is
given by the Singleton bound: n − k + 1

• This bound can be achieve if |F| > n
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Theorem
Rosenthal and Smarandache (1999) showed that the free distance
of convolutional code of rate k/n and degree δ must be upper
bounded by

dfree(C) ≤ (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (3)

A code achieving (3) is called Maximum Distance Separable (MDS)
and if it achieves it ”as fast as possible” is called strongly MDS.

• Allen conjecture (1999) the existence of convolutional codes
that are both sMDS and MDP when k = 1 and n = 2.

• Rosenthal and Smarandache (2001), provided the first
concrete construction of MDS convolutional codes

• Gluessing-Luerssen, et. al. (2006), provided the first
construction of strongly MDS when (n − k)|δ.

• Napp and Smarandache (2016) provided the first construction
of strongly MDS for all rates and degrees.
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Definition
Another important distance measure for a convolutional code is
the jth column distance dc

j (C), (introduced by Costello), given by

dc
j (C) = min

{
wt(v[0,j](D)) | v(D) ∈ C and v0 6= 0

}
where v[0,j](D) = v0 + v1D + . . .+ vjD

j represents the j-th
truncation of the codeword v(D) ∈ C.
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The column distances satisfy

dc
0 ≤ dc

1 ≤ · · · ≤ lim
j→∞

dc
j (C) = dfree(C) ≤ (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

The j-th column distance is upper bounded as following

dc
j (C) ≤ (n − k)(j + 1) + 1, (4)

How do we construct MDP?

The construction of MDP convolutional boils down to the
construction of Superregular matrices
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LT-Superregular matrices

Definition [Gluesing-Luerssen,Rosenthal,Smadandache (2006)]

A lower triangular matrix

B =


a0
a1 a0
...

...
. . .

aj aj−1 · · · a0

 (5)

is LT-superregular if all of its minors, with no zeros in the diagonal,
are nonsingular.

Remark
Note that due to such a lower triangular configuration the
remaining minors are necessarily zero.
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Example

β3 + β + 1 = 0 ⇒


1
β 1
β3 β 1
β β3 β 1
1 β β3 β 1

 ∈ F5×5
23

is

LT-superregular

Example

ε5 + ε2 + 1 = 0 ⇒



1
ε 1
ε6 ε 1
ε9 ε6 ε 1
ε6 ε9 ε6 ε 1
ε ε6 ε9 ε6 ε 1
1 ε ε6 ε9 ε6 ε 1


∈ F7×7

25
is

LT-superregular
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Remarks

• Construction of classes of LT-superregular matrices is very
difficult due to their triangular configuration.

• Only two classes exist:

1. Rosenthal et al. (2006) presented the first construction. For
any n there exists a prime number p such that

(n
0

)(n−1
1

) (n
0

)
...

. . .
. . .(n−1

n−1
)
· · ·

(n−1
1

) (n
0

)
 ∈ Fn×n

p

is LT-superregular. Bad news: Requires a field with very large
characteristic.
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Remarks

2. Almeida, Napp and Pinto (2013) first construction over any
characteristic: Let α be a primitive element of a finite field F
of characteristic p. If |F| ≥ p2

M
then the following matrix

α20

α21 α20

α22 α21 α20

...
. . .

. . .

α2M−1 · · · · · · α20

 .

is LT-superregular. Bad news: |F| very large.



Introduction to Error-correcting codes Two challenges that recently emerged Block codes vs convolutional codes

Performance over the erasure channel

Theorem
Let C be an (n, k , δ) convolutional code and dc

j0
the j = j0 -th

column distance. If in any sliding window of length (j0 + 1)n at
most dc

j0
− 1 erasures occur then we can recover completely the

transmitted sequence.

Example

· · · vv |
60︷ ︸︸ ︷

? ? · · · ? ?
80︷ ︸︸ ︷

vvv · · · vv
60︷ ︸︸ ︷

? ? · ? ? vv |vv · · ·

A [202, 101] MDS blok code can correct 101 erasures in a window
of 202 symbols (recovering rate 101

202): ⇒ cannot correct this
window.
A (2, 1, 50) MDP convolutional code has also 50% error capability.
(L + 1)n = 101× 2 = 202. Take a window of 120 symbols, correct
and continue until you correct the whole window.
We have flexibility in choosing the size and position of the sliding
window.
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Fundamental Open Problems

• Come up with LT superregular matrices over small fields.

• How is the minimum field size needed to construct LT
superregular matrices?

• Typically convolutional codes are decoded via the Viterbi
decoding algorithm. The complexity of this algorithm grows
exponentially with the McMillan degree. New classes of codes
coming with more efficient decoding algorithms are needed.

• Good constructions of convolutional codes for rank metric

• Good constructions tailor made to deal with burst of erasures
(in both Hamming and Rank metric)
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Summary of the basics

• Convolutional codes are block codes with memory.
Convolutional codes generalize linear block codes in a natural
way.

• Convolutional codes are capable of decoding a large number
of errors per time interval require a large free distance and a
good distance profile.

• In order to construct good convolutional codes we need to
construct superregular matrices over F: Difficult.

• Convolutional codes treat the information as a stream: Great
potential for video streaming

• A lots of Mathematics are needed: Linear algebra, systems
theory, finite fields, rings/module theory, etc...
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Muchas gracias por la invitacion!
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