
DMIF - University of Udine
email: demis.ballis@uniud.it

Debugging Maude
Programs

Demis Ballis

mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it

DMIF - University of Udine
email: demis.ballis@uniud.it

Debugging Maude
Programs

Demis Ballis

mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it

DMIF - University of Udine
email: demis.ballis@uniud.it

Towards the Automated
Debugging of

Maude Programs
Demis Ballis

mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it
mailto:demis.ballis@uniud.it

About this talk

Techniques for debugging Maude programs with an
increasing level of automation

Joint work with great people at UPV

María Alpuente
Francisco Frechina
Daniel Romero
Julia Sapiña

Talk plan

Rewriting logic and Maude (quick and dirty intro)

Exploring Maude computations

Debugging via backward trace slicing

Debugging via automatic, assertion-based trace slicing

Conclusion

Rewriting Logic
Rewriting Logic (RWL) is a logical and
semantic framework, which is particularly
suitable for implementing and analyzing highly
concurrent, complex systems

network protocols

biological systems

web apps

RWL has been efficiently implemented in the
programming language Maude.

RWL specifications
A signature (i.e. set of operators)

A set of equations

A set of algebraic axioms
(e.g. comm, assoc, unity)

⌃
�
B

R

Equational
Theory

A set of rewrite rules

�

(⌃,� [B,R)
A RWL specification
is a rewrite theory
(i.e., a Maude program)

 Bank Account Operation

 credit

 debit

 transfer

ID : Id

BAL : Int

STATUS :  
active | blocked

A banking system

< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 60)

System State (Account | Msg)*

A banking system
mod BANK is inc BANK-EQ .
 vars ID ID1 ID2 : Id .
 vars BAL BAL1 BAL2 M : Int .

 op empty-state : -> State [ctor] .
 op _;_ : State State -> State [ctor assoc comm id: empty-state] .
 ops credit debit : Id Int -> Msg [ctor] .
 op transfer : Id Id Int -> Msg [ctor] .

 rl [credit] : credit(ID,M) ; < ID | BAL | active > => updSt(< ID | BAL + M | active >) .

 rl [debit] : debit(ID,M) ; < ID | BAL | active > => updSt(< ID | BAL - M | active >) .

 rl [transfer] : transfer(ID1,ID2,M) ; < ID1 | BAL1 | active > ; < ID2 | BAL2 | active >
 => updSt(< ID1 | BAL1 - M | active >) ; updSt(< ID2 | BAL2 + M | active >) .

endm

A banking system
fmod BANK-EQ is inc BANK-INT+ID . pr SET{Id} .
 sorts Status Account PremiumAccount Msg State .
 subsort PremiumAccount < Account .
 subsorts Account Msg < State .

 var ID : Id . op <_|_|_> : Id Int Status -> Account [ctor] .
 var BAL : Int . op active : -> Status [ctor] .
 var STS : Status . op blocked : -> Status [ctor] .

 op Alice : -> Id [ctor] . op Bob : -> Id [ctor] .

 op PreferredClients : -> Set{Id} .
 eq PreferredClients = Bob . 
 cmb < ID | BAL | STS > : PremiumAccount if ID in PreferredClients .

 op secure : Account -> Account .

 ceq updSt(< ID | BAL | active >) = < ID | BAL | blocked > if BAL < 0 .
 eq updSt(< ID | BAL | STS >) = < ID | BAL | STS > [owise] .

endfm

An active account
is blocked  

if it is in the red

A banking system
fmod BANK-EQ is inc BANK-INT+ID . pr SET{Id} .
 sorts Status Account PremiumAccount Msg State .
 subsort PremiumAccount < Account .
 subsorts Account Msg < State .

 var ID : Id . op <_|_|_> : Id Int Status -> Account [ctor] .
 var BAL : Int . op active : -> Status [ctor] .
 var STS : Status . op blocked : -> Status [ctor] .

 op Alice : -> Id [ctor] . op Bob : -> Id [ctor] .

 op PreferredClients : -> Set{Id} .
 eq PreferredClients = Bob . 
 cmb < ID | BAL | STS > : PremiumAccount if ID in PreferredClients .

 op secure : Account -> Account . 

ceq secure(< ID | BAL | active >) = < ID | BAL | blocked > if BAL < 0 .
 eq secure(< ID | BAL | STS >) = < ID | BAL | STS > [owise] .
endfm

PreferredClients
own

PremiumAccounts
(allowed to be in

the red)

Rewriting modulo
equational theories

The evaluation mechanism is rewriting modulo
equational theory ()

Lifting the usual rewrite relation over terms to
the congruence classes induced by the
equational theory (⌃,� [B)

Unfortunately, is in general
undecidable since a rewrite step
involves searching through the possibly infinite
equivalence classes of and

!R/�[B

!R/�[B
t !R/�[B t0

t t0

rewrites terms using equations/axioms as
simplification rules

Rewriting modulo
equational theories

Maude implements using two much
simpler rewrite relations and that
use an algorithm of matching modulo

!R/�[B

!R,B!�,B

!�,B

For any term , by repeatedly applying the equations/
axioms, we eventually reach a canonical form to
which no further equations can be applied

B

t#�
t

 must be Church-Rosser and terminating!

Rewriting modulo equations
and axioms

Maude implements using two much
simpler rewrite relations and that
use an algorithm of matching modulo

rewrites terms using equations in as
simplification rules

!R/�[B

!R,B!�,B

�!�,B

B

rewrites terms using rewrite rules in !R,B R

Rewrite steps

a rewrite step modulo on a term can be
implemented by applying the following rewrite
strategy:

reduce w.r.t. until the canonical form
is reached;

!R,B

� [B

!�,B t#�1.

rewrite w.r.t. to .t#�2.

t

t0

t

 t !⇤
�,B t#� !R,B t0

RWL traces
A trace (computation) in the rewrite theory
is a (possibly infinite) rewrite sequence of the form:

(⌃,� [B,R)

s0 !⇤
�,B s0#� !R,B s1 !⇤

�,B s1#� . . .

that interleaves rewrite steps with equations and rules
following the reduction strategy previously mentioned.

the terms that appear in a computation are also called
states.

RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

rl [debit] : debit(ID,M) ; < ID | BAL | active > => updSt(< ID | BAL - M | active >) .

RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

 eq. simplification

debit(Alice, 30) ; < Alice | 50 | active > ; < Bob | 40 | active > ;

rl [debit] : debit(ID,M) ; < ID | BAL | active > => updSt(< ID | BAL - M | active >) .

RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

 eq. simplification

rl [debit] : debit(ID,M) ; < ID | BAL | active > => updSt(< ID | BAL - M | active >) .

debit(Alice, 30) ; < Alice | 50 | active > ; < Bob | 40 | active > ;

UpdSt(< Alice | 50 - 30 | active >) ; < Bob | 40 | active >

 debit application

RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

 eq. simplification

debit(Alice, 30) ; < Alice | 50 | active > ; < Bob | 40 | active > ;

UpdSt(< Alice | 50 - 30 | active >) ; < Bob | 40 | active >

 debit application

 < Alice | 20 | active > ; < Bob | 40 | active >
*

 eq. simplification

Computation trees

Given a rewrite theory , a
computation tree for a term is a tree-like
representation of all the possible computations that
originate from

TR(s)
R = (⌃,� [B,R)

s

s [Srv-A] & [Cli-A,Srv-A,7,na]
& [Cli-B,Srv-A,17,na]

S0

[Srv-A] & Srv-A <- {Cli-A,7} &
[Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S1 req
[Srv-A] & Srv-A <- {Cli-B,17}
& [Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S2 req

[Srv-A] & Cli-A <-
{Srv-A,f(Serv-A,Cli-A,
7)} & [Cli-A,Srv-A,7,
na] & [Cli-B,Srv-A,17,
na]

S3 reply
[Srv-A] & Srv-A <-
{Cli-A,7} & Srv-A <-
{Cli-A,7} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S4 req/dupl
[Srv-A] & Srv-A <-
{Cli-A,7} & Srv-A <-
{Cli-B,17} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S5 req
[Srv-A] &
[Cli-A,Srv-A,
7,na] & [Cli-
B,Srv-A,17,
na]

S6 loss

[Srv-A] & Cli-A <-
{Srv-A,8} & [Cli-A
,Srv-A,7,na] &
[Cli-B,Srv-A,17,na]

S7 succ

･･
･

･･
･

･･
･

･･
･

･･
･

Observation
Computation trees are typically large (possibly
infinite) and complex objects to deal with because
of the highly-concurrent, non-deterministic nature
of Rewriting Logic theories.

Inspecting computation trees using the Maude
built-in program tracer could be painful

textual output

implicit axiom applications

Observation
where is
the bug?

Exploring computations
Computations can be manually explored to detect
program misbehaviours

To facilitate exploration…

use a graphical representation of the computation tree
define a stepwise, user-driven, computation
exploration technique

Exploring computations
Computations can be manually explored to detect
program misbehaviours

To facilitate exploration…

use a graphical representation of the computation tree
define a stepwise, user-driven, computation
exploration technique

the ANIMA tool

ANIMA

ANIMA is a visual program animator for Maude

Available as a web service at:

http://safe-tools.dsic.upv.es/anima/

States in a computation can be expanded/folded by a
simple “point and click” strategy

ANIMA

ANIMA is a visual program animator for Maude

Available as a web service at:

http://safe-tools.dsic.upv.es/anima/

States in a computation can be expanded/folded by a
simple “point and click” strategy

ANIMA

Bob’s account active
current balance 50 euros

ANIMA

Bob’s account active
current balance 20 euros

ANIMA

Bob’s account blocked
current balance -10 euros

Error: Bob is a premium client and premium
accounts cannot be blocked

ANIMA

Equational
simplification that leads

to the wrong state

updateStatus function call
erroneously

blocks bob’s account

Some remarks

Debugging via program animation

it’s ok for simple programs
completely manual
navigation through quite a lot of
information

Some remarks

Debugging via program animation

it’s ok for simple programs
completely manual
navigation through quite a lot of
information

Question: can we somehow reduce the size of the computations to
favor their inspection?

Trace slicing is a transformation technique that
reduces the complexity of execution trace

Based on tracking origins/descendants

It favors better analysis and debugging since
irrelevant inspections can be eliminated
automatically

Yes, we can: trace slicing

Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data
we want to observe in the final state of the trace),

 - traverse T from back to front, and at each rewrite step,
 - incrementally compute the origins of the observed data
 - remove the irrelevant data

Trace

Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data
we want to observe in the final state of the trace),

 - traverse T from back to front, and at each rewrite step,
 - incrementally compute the origins of the observed data
 - remove the irrelevant data

Trace

Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data
we want to observe in the final state of the trace),

 - traverse T from back to front, and at each rewrite step,
 - incrementally compute the origins of the observed data
 - remove the irrelevant data

Trace

Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data
we want to observe in the final state of the trace),

 - traverse T from back to front, and at each rewrite step,
 - incrementally compute the origins of the observed data
 - remove the irrelevant data

Trace

Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data
we want to observe in the final state of the trace),

 - traverse T from back to front, and at each rewrite step,
 - incrementally compute the origins of the observed data
 - remove the irrelevant data

Trace

Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data
we want to observe in the final state of the trace),

 - traverse T from back to front, and at each rewrite step,
 - incrementally compute the origins of the observed data
 - remove the irrelevant data

Traceslice

Backward Trace slicing

Trace:

Trace slice

iJulienne

iJulienne is a backward trace slicer for Maude

Available as a web service at:

http://safe-tools.dsic.upv.es/ijulienne/

iJulienne: example

Let us feed iJulienne with the computation

 < Alice | 50 | active > ; < Bob | 20 | active > ;
 debit(Alice, 30) ; transfer(Bob, Charlie, 60) ;
 debit(Alice, 40) ; transfer(Bob, Alice, 10)

*
< Alice | -20 | blocked > ; < Bob | 20 | active > ;
transfer(Bob, Alice, 10) ; transfer(Bob, Charlie, 60)

Note: Alice’s account
balance is negative and
she is a regular client

iJulienne: example

Select the suspicious
symbols to trace back

iJulienne: example

The slice only contains
Alice’s account data

iJulienne: example

Bad implementation of
the debit rule!

Some remarks

Debugging via Backward trace slicing allows the
information to be inspected to be (greatly) reduce

but…

Some remarks

It requires the user to manually select the slicing
criterion (i.e. the data to be observed)

It cannot be used to fully automatize debugging

Debugging via Backward trace slicing allows the
information to be inspected to be (greatly) reduce

but…

Assertion-based backward
trace slicing

Backward trace slicing
coupled with

Assertion checking

Assertion-based slicing technique that
automatically infers the slicing criterion
and use it to automatically fire the slicer

Assertion language

We define assertions by using constrained terms S{φ},  
where

 S is a non-ground term (state template)
 φ is a quantifier-free boolean formula 
 

φ = true | false | p(t1,…,tn) | φ and φ | not φ | φ implies φ

Assertion language

We define two groups of assertions:

• System assertions S {φ}  
 Var(φ) ⊆ Var(S)  
  
invariant properties of the system states t “No employee is under age 18”

• Functional assertions I {φin} → O {φout}  
 Var(φin) ⊆ Var(I)  
 Var(φout) ⊆ Var(I) U Var(O)  
  
pre/post-conditions over equational simplification traces µ: t →* t↓∆,B  

 “Sorting a list preserves its length”

System assertion
“The account of a regular client can’t have a negative balance”

 Θ = < C:Id | B:Int | S:Status >
 { not (C : Id in PreferredClients) implies B : Int >= 0 }

Then, Θ is satisfied in the state

< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 60)

< Alice | -10 | blocked > ; < Bob | 40 | active >

but it is not satisfied in

 t |= S{φ}

iff

 for each position w of t and substitution σ

 t|w =E Sσ => φσ holds in the theory R

Satisfaction for system
assertions

ξsys: Any position w pointing to a subterm of t that
-equationally matches the template S, but
-the E-matcher produces a false instance of the formula φ

<Alice | -10 | blocked>

 t |= S{φ}

iff

 for each position w of t and substitution σ

 t|w =E Sσ => φσ holds in R

Satisfaction for system
assertions

By-product:

System error symptom ξsys

-10 >= 0

< Alice | -10 | blocked > ; < Bob | 40 | active >

Satisfaction for system
assertions

 Slicing criterion < Alice | -10 | blocked > ; l

Given µ = t →*∆,B t ↓∆,B

 

µ |= I {φin} → O {φout}

iff

for every substitution σ s.t.

t =B Iσ and φinσ holds in R,

there exists σ’ s.t.

t↓∆,B =B O(σ↓∆,B)σ’ and φout(σ↓∆,B)σ’ holds in R

Satisfaction for functional
assertion

t↓∆,B fails to fit the
template O

Given µ = t →*∆,B t ↓∆,B

 

µ |= I {φin} → O {φout}

iff

for every substitution σ s.t.

t =B Iσ and φinσ holds in R,

there exists σ’ s.t.

t↓∆,B =B O(σ↓∆,B)σ’ or φout(σ↓∆,B)σ’ holds in R

Satisfaction for functional
assertion

σ’ fails to verify the
postcondition φout

t↓∆,B =B O(σ↓∆,B)σ’ or φout(σ↓∆,B)σ’ holds in R

t↓∆,B fails to fit the
template O

Satisfaction for functional
assertion

σ’ fails to verify the
postcondition φout

ξfun: Position in t↓∆,B that disagrees with O or the
 pointed subterm causes σ’ to falsify the
 postcondition φout

 By-product:
Functional error

symptom ξfun

Satisfaction for functional
assertion

“updSt is the identity function on premium accounts”

Φ = updSt(acc:Account) { isPremium(acc:Account) }
→ acc:Account { true }

updSt(< Bob | -5 | active >) →+ < Bob | -5 | blocked >

Φ is not satisfied in this equational simplification

Disagreement at position 3 of the wrong t↓∆,B
✘

Satisfaction for functional
assertion

Disagreements are computed via a least-general generalization
algorithm modulo the equational theory E (antiunification modulo E)

updSt(< Bob | -5 | active >) →+ < Bob | -5 | blocked >

< Bob | -5 | x >

clash

Satisfaction for functional
assertion

Disagreements are computed via a least-general generalization
algorithm modulo the equational theory E (antiunification modulo E)

updSt(< Bob | -5 | active >) →+ < Bob | -5 | blocked >

< Bob | -5 | x >

clash

Slicing criterion < l | l | blocked >

Assertion-based slicing
Check incrementally processes the Maude steps of a trace,
while checking

• the functional assertions, at each state normalization s →*∆,B s↓∆,B

• the sytem assertions, at each (normalized) state s↓∆,B

check

…

A computation (trace) C for s0 in the conditional rewrite theory (⌃,� [B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 !⇤
�,B s0#�,B !R,B s1 !⇤

�,B s1#�,B!R,B . . .

that interleaves !�,B rewrite steps and !R,B rewrite steps following the strategy mentioned
above. Note that, following this strategy, after each conditional rewriting step using !R,B ,
generally the resulting term si, i = 1, . . . , n, is not in canonical normal form and is thus
normalized before the subsequent rewrite step using !R,B is performed. Also, in the precise
strategy adopted by Maude, the last term of a finite computation is finally normalized before
the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed !R,B and !⇤
�,B

transitions, with an additional equational simplification !⇤
�,B (if needed) at the beginning of

the computation as depicted below.
z }| {
s0 !⇤

�,B s0#�,B !R,B s1 !⇤
�,B s1#�,B !R,B s2 !⇤

�,B s2#�,B . . .

| {z }
We define a Maude step from a given term s as any of the sequences s !⇤

�,B s#�,B !R,B

t !⇤
�,B t#�,B that head the non-deterministic Maude computations for s. Note that, for a

canonical form s, a Maude step for s boils down to s !R,B t !⇤
�,B t#�,B t. We define mS(s)

as the set of all such non-deterministic Maude steps stemming from s.

3. Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computations. The
instrumentation allows the relevant information of the rewrite steps, such as the selected redex
and the contractum produced by the step, to be traced explicitly despite the fact that terms
are rewritten modulo a set B of equational axioms that may cause their components to be
implicitly reordered. Given a computation C, let us show how C can be expanded into an
instrumented computation T in which each application of the matching modulo B algorithm
that is used in !R,B-steps and !�,B-steps is explicitly mimicked by the specific application
of a bogus equational axiom, which is oriented from left to right and then applied as a rewrite
rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term transformations
allow terms that contain operators obeying equational axioms to be rewritten into support-
ive B-normal forms that facilitate the matching modulo B. In the case of AC-theories, these
transformations allow terms to be reordered and correctly parenthesized in order to enable
subsequent rewrite steps. Basically, this is achieved by producing a single, auxiliary represen-
tative of their AC congruence class (i.e., the AC-normal form). An AC-normal form is typically
generated by replacing nested occurrences of the same AC operator by a flattened argument
list under a variadic symbol, sorting these arguments under some linear ordering and combin-
ing equal arguments using multiplicity superscripts (Eker, 2003). For example, the congruence
class containing f(f(↵, f(�,↵)), f(f(�,�),�)) where f is an AC symbol and subterms ↵, �,
and � belong to alien theories might be represented by f⇤(↵2,�3, �), where f⇤ is a variadic
symbol that replaces nested occurrences of f . A more formal account of this transformation is
given in (Eker, 1995).

As for purely associative theories, we can get an A-normal form by just flattening nested
function symbol occurrences without sorting the arguments. This case has practical importance
because it corresponds to lists. C-normal forms are just obtained by properly ordering the

10

Maude step

A computation (trace) C for s0 in the conditional rewrite theory (⌃,� [B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 !⇤
�,B s0#�,B !R,B s1 !⇤

�,B s1#�,B!R,B . . .

that interleaves !�,B rewrite steps and !R,B rewrite steps following the strategy mentioned
above. Note that, following this strategy, after each conditional rewriting step using !R,B ,
generally the resulting term si, i = 1, . . . , n, is not in canonical normal form and is thus
normalized before the subsequent rewrite step using !R,B is performed. Also, in the precise
strategy adopted by Maude, the last term of a finite computation is finally normalized before
the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed !R,B and !⇤
�,B

transitions, with an additional equational simplification !⇤
�,B (if needed) at the beginning of

the computation as depicted below.
z }| {
s0 !⇤

�,B s0#�,B !R,B s1 !⇤
�,B s1#�,B !R,B s2 !⇤

�,B s2#�,B . . .

| {z }
We define a Maude step from a given term s as any of the sequences s !⇤

�,B s#�,B !R,B

t !⇤
�,B t#�,B that head the non-deterministic Maude computations for s. Note that, for a

canonical form s, a Maude step for s boils down to s !R,B t !⇤
�,B t#�,B t. We define mS(s)

as the set of all such non-deterministic Maude steps stemming from s.

3. Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computations. The
instrumentation allows the relevant information of the rewrite steps, such as the selected redex
and the contractum produced by the step, to be traced explicitly despite the fact that terms
are rewritten modulo a set B of equational axioms that may cause their components to be
implicitly reordered. Given a computation C, let us show how C can be expanded into an
instrumented computation T in which each application of the matching modulo B algorithm
that is used in !R,B-steps and !�,B-steps is explicitly mimicked by the specific application
of a bogus equational axiom, which is oriented from left to right and then applied as a rewrite
rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term transformations
allow terms that contain operators obeying equational axioms to be rewritten into support-
ive B-normal forms that facilitate the matching modulo B. In the case of AC-theories, these
transformations allow terms to be reordered and correctly parenthesized in order to enable
subsequent rewrite steps. Basically, this is achieved by producing a single, auxiliary represen-
tative of their AC congruence class (i.e., the AC-normal form). An AC-normal form is typically
generated by replacing nested occurrences of the same AC operator by a flattened argument
list under a variadic symbol, sorting these arguments under some linear ordering and combin-
ing equal arguments using multiplicity superscripts (Eker, 2003). For example, the congruence
class containing f(f(↵, f(�,↵)), f(f(�,�),�)) where f is an AC symbol and subterms ↵, �,
and � belong to alien theories might be represented by f⇤(↵2,�3, �), where f⇤ is a variadic
symbol that replaces nested occurrences of f . A more formal account of this transformation is
given in (Eker, 1995).

As for purely associative theories, we can get an A-normal form by just flattening nested
function symbol occurrences without sorting the arguments. This case has practical importance
because it corresponds to lists. C-normal forms are just obtained by properly ordering the

10

7

ulo B in order to guarantee the existence and unicity (modulo B) of a canonical
form w.r.t. � for any term [9].

Formally, !R,B and !�,B are defined as follows: given a rewrite rule [r] :
(�) ⇢) 2 R (resp., an equation [e] : (� = ⇢) 2 �), a substitution �, a term

t, and a position w of t, t
r,�,w!R,B t0 (resp., t

e,�,w!�,B t0) i↵ �� =B t|w and
t0 = t[⇢�]w. When no confusion can arise, we simply write t !R,B t0 (resp.

t!�,Bt0) instead of t
r,�,w!R,B t0 (resp. t

e,�,w!�,B t0).
Under appropriate conditions on the rewrite theory, a rewrite step s !R/E t

modulo E on a term s can be implemented without loss of completeness by
applying the following rewrite strategy [11]:

1. Equational simplification of s in � modulo B, that is, reduce s using
!�,B until the canonical form w.r.t. � modulo B (s #�,B) is reached;

2. Rewrite (s #�,B) in R modulo B to t0 using !R,B , where t0 2 [t]E .

A computation (trace) C for s0 in the rewrite theory (⌃,� [B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 !⇤
�,B s0#�,B !R,B s1 !⇤

�,B s1#�,B!R,B . . .

that interleaves !�,B rewrite steps and !R,B rewrite steps following the strat-
egy mentioned above. Note that, following this strategy, after each rewriting step
using !R,B , generally the resulting term si, i = 1, . . . , n, is not in canonical nor-
mal form and is thus normalized before the subsequent rewrite step using !R,B

is performed. Also in the precise strategy adopted by Maude, the last term of a
finite computation is finally normalized before the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed
!R,B and !⇤

�,B transitions, with an additional equational simplification !⇤
�,B

(if needed) at the beginning of the computation, as depicted below.

z }| {
s0 !⇤

�,B s0#�,B !R,B s1 !⇤
�,B s1#�,B !R,B s2 !⇤

�,B s2#�,B . . .

| {z }

We define a Maude step from a given term s as any of the sequences s !⇤
�,B

s#�,B!R,B t !⇤
�,B t#�,B that head the non-deterministic Maude computations

for s. Note that, for a canonical form s, a Maude step for s boils down to
s !R,B t !⇤

�,B t#�,B t. We definemS(s) as the set of all such non-deterministic
Maude steps stemming from s.

3.1 Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computa-
tion traces. The instrumentation allows the relevant information of the rewrite
steps, such as the selected redex and the contractum produced by the step, to
be traced despite the fact that terms are rewritten modulo equational axioms

Assertion-based slicing
‣ The checker proceeds from front to back 

‣ In the event that an assertion is falsified, it automatically halts

assertion not satisfied

Trace: check check check

assertion not satisfied

Assertion-based slicing
‣ The checker proceeds from front to back 

‣ In the event that an assertion is falsified, it automatically halts

assertion not satisfied

Trace: check check check

assertion not satisfied

1. The error symptoms are distilled and translated into suitable slicing criteria

Assertion-based slicing
‣ The checker proceeds from front to back 

‣ In the event that an assertion is falsified, it automatically halts

assertion not satisfied

Trace: check check check

assertion not satisfied

1. The error symptoms are distilled and translated into suitable slicing criteria
2. The slicer is run to compute the smallest fragment of the trace that

highlights the wrong behavior

The ABETS system

• Written in (a custom version of) Maude 2.7, with a web GUI
 Several maude operations have been directly coded into native C functions.

• Available as a web application at
http://safe-tools.dsic.upv.es/abets/ 

• Synchronous (on-line) and asynchronous (off-line) analysis  

• Extended to (full) Maude computations

http://safe-tools.dsic.upv.es/abets/

Conclusions

• Dynamic techniques and tools that helps developers
understand and debug (Full) Maude programs

• program animation

• backward trace slicing

• assertion-driven backward trace slicing

Future work

• Work on static methodologies to enforce safety
constraints on Maude programs

Assertions + Program specialization

to infer safe Maude programs

References

• M. Alpuente, D. Ballis, F. Frechina, D. Romero:
 Using conditional trace slicing for improving Maude programs.
 SCP 80: 385-415 (2014)

• M. Alpuente, D. Ballis, F. Frechina, J. Sapiña:
 Exploring conditional rewriting logic computations.
 JSC 69: 3-39 (2015)

• M. Alpuente, D. Ballis, F. Frechina, J. Sapiña:
 Debugging Maude programs via runtime assertion checking and trace slicing.
 JLAMP 85(5): 707-736 (2016)

• M. Alpuente, F. Frechina, J. Sapiña, D. Ballis:
 Assertion-based analysis via slicing with ABETS.
 TPLP 16(5-6): 515-532 (2016)

