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About this talk

Techniques for debugging Maude programs  with an 
increasing level of automation

Joint work with great people at UPV 

María Alpuente 
Francisco Frechina 
Daniel Romero 
Julia Sapiña



Talk plan

Rewriting logic  and Maude (quick and dirty intro) 

Exploring Maude computations 

Debugging via backward trace slicing  

Debugging via automatic, assertion-based  trace slicing 

Conclusion  



Rewriting Logic
Rewriting Logic (RWL) is a logical and 
semantic framework, which is particularly 
suitable for implementing and analyzing highly 
concurrent, complex systems  

network protocols  

biological systems  

web apps  

RWL has been efficiently implemented in the 
programming language Maude.



RWL specifications
A signature (i.e. set of operators) 

A set of equations  

A set of algebraic axioms                
(e.g. comm, assoc, unity)

⌃
�
B

R

Equational 
Theory

A set of rewrite rules 

�

(⌃,� [B,R)
A RWL specification  
is a rewrite theory 
(i.e.,  a Maude program) 



     Bank Account                       Operation             

                                credit

                                                                debit

                                                                transfer

ID : Id

BAL : Int

STATUS :  
active | blocked

A banking system

< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 60)

System State  (Account | Msg)* 



A banking system
mod BANK is inc BANK-EQ .
  vars ID ID1 ID2 : Id .     
  vars BAL BAL1 BAL2 M : Int .
   
  op empty-state : -> State [ctor] .
  op _;_ : State State -> State [ctor assoc comm id: empty-state] .
  ops credit debit : Id Int -> Msg [ctor] .
  op  transfer : Id Id Int -> Msg  [ctor] .

  

       rl [credit] : credit(ID,M) ; < ID | BAL | active >  => updSt(< ID | BAL + M | active >) .

  rl [debit] :  debit(ID,M) ; < ID | BAL | active >  => updSt(< ID | BAL - M | active >) .

  rl [transfer] : transfer(ID1,ID2,M) ; < ID1 | BAL1 | active > ; < ID2 | BAL2 | active > 
         => updSt(< ID1 | BAL1 - M | active >) ; updSt(< ID2 | BAL2 + M | active >) .

endm



A banking system
fmod BANK-EQ is inc BANK-INT+ID . pr SET{Id} .
  sorts Status Account PremiumAccount Msg State .
  subsort PremiumAccount < Account .
  subsorts  Account Msg < State .

  var ID : Id .           op <_|_|_> : Id Int Status -> Account [ctor] . 
  var BAL : Int .         op active : -> Status [ctor] .
  var STS : Status .      op blocked : -> Status [ctor] .

  op Alice : -> Id [ctor] .        op Bob : -> Id [ctor] .
  
 op PreferredClients : -> Set{Id} .
  eq PreferredClients = Bob . 
       cmb < ID | BAL | STS > : PremiumAccount if ID in PreferredClients .
  
  op  secure : Account -> Account .

 ceq updSt(< ID | BAL | active >) = < ID | BAL | blocked > if BAL < 0 .
  eq  updSt(< ID | BAL | STS >) = < ID | BAL | STS > [owise] .

endfm

An active account 
is blocked  

if it is in the red



A banking system
fmod BANK-EQ is inc BANK-INT+ID . pr SET{Id} .
  sorts Status Account PremiumAccount Msg State .
  subsort PremiumAccount < Account .
  subsorts  Account Msg < State .

  var ID : Id .           op <_|_|_> : Id Int Status -> Account [ctor] . 
  var BAL : Int .         op active : -> Status [ctor] .
  var STS : Status .      op blocked : -> Status [ctor] .

  op Alice : -> Id [ctor] .        op Bob : -> Id [ctor] .
  
 op PreferredClients : -> Set{Id} .
  eq PreferredClients = Bob . 
        cmb < ID | BAL | STS > : PremiumAccount if ID in PreferredClients .
  
  op  secure : Account -> Account . 

ceq secure(< ID | BAL | active >) = < ID | BAL | blocked > if BAL < 0 .
  eq  secure(< ID | BAL | STS >) = < ID | BAL | STS > [owise] .
endfm

PreferredClients 
own 

PremiumAccounts 
(allowed to be in 

the red)



Rewriting modulo 
equational theories  

The evaluation mechanism is rewriting modulo 
equational theory (                 )

Lifting the usual rewrite relation over terms to 
the congruence classes induced by the 
equational theory (⌃,� [B)

Unfortunately,                   is in general 
undecidable since a rewrite step                  
involves searching through the possibly infinite 
equivalence classes of     and 

!R/�[B

!R/�[B
t !R/�[B t0

t t0



rewrites terms using equations/axioms  as 
simplification rules

Rewriting modulo 
equational theories

Maude implements                    using two much 
simpler rewrite relations              and            that 
use an algorithm of matching modulo 

!R/�[B

!R,B!�,B

!�,B

For any term  , by repeatedly applying the equations/
axioms, we eventually reach a canonical form         to 
which no further equations can be applied

B

t#�
t

    must be Church-Rosser and terminating!



Rewriting modulo equations 
and axioms

Maude implements                    using two much 
simpler rewrite relations              and            that 
use an algorithm of matching modulo 

rewrites terms using equations in      as 
simplification rules

!R/�[B

!R,B!�,B

�!�,B

B

rewrites terms using rewrite rules  in      !R,B R



Rewrite steps

a rewrite step modulo             on a term    can be 
implemented by applying the following rewrite 
strategy:

reduce    w.r.t.            until the canonical form           
is reached;

!R,B

� [B

!�,B t#�1.

rewrite         w.r.t.              to    .t#�2.

t

t0

t

     t !⇤
�,B t#� !R,B t0



RWL traces
A trace (computation) in the rewrite theory                        
is a (possibly infinite) rewrite sequence of the form: 

(⌃,� [B,R)

s0 !⇤
�,B s0#� !R,B s1 !⇤

�,B s1#� . . .

that interleaves rewrite steps with equations and rules 
following the  reduction strategy previously mentioned. 

the terms  that appear in a computation  are also called 
states.



RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

rl [debit] :  debit(ID,M) ; < ID | BAL | active >  => updSt(< ID | BAL - M | active >) .



RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

            eq. simplification

debit(Alice, 30)  ; < Alice | 50 | active > ; < Bob | 40 | active > ;

rl [debit] :  debit(ID,M) ; < ID | BAL | active >  => updSt(< ID | BAL - M | active >) .



RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

            eq. simplification

rl [debit] :  debit(ID,M) ; < ID | BAL | active >  => updSt(< ID | BAL - M | active >) .

debit(Alice, 30)  ; < Alice | 50 | active > ; < Bob | 40 | active > ;

UpdSt(< Alice | 50 - 30 | active >) ; < Bob | 40 | active >

            debit application



RWL traces: example
< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 30)

            eq. simplification

debit(Alice, 30)  ; < Alice | 50 | active > ; < Bob | 40 | active > ;

UpdSt(< Alice | 50 - 30 | active >) ; < Bob | 40 | active >

            debit application

          < Alice |  20 | active > ; < Bob | 40 | active >
*

            eq. simplification



Computation trees

Given a rewrite theory                                  , a 
computation tree            for a term     is a tree-like 
representation of all the possible computations that 
originate from 

TR(s)
R = (⌃,� [B,R)

s

s [Srv-A] & [Cli-A,Srv-A,7,na] 
& [Cli-B,Srv-A,17,na]

S0

[Srv-A] & Srv-A <- {Cli-A,7} & 
[Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S1 req
[Srv-A] & Srv-A <- {Cli-B,17}
& [Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S2 req

[Srv-A] & Cli-A <- 
{Srv-A,f(Serv-A,Cli-A,
7)} & [Cli-A,Srv-A,7,
na] & [Cli-B,Srv-A,17,
na]

S3 reply
[Srv-A] & Srv-A <- 
{Cli-A,7} & Srv-A <- 
{Cli-A,7} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S4 req/dupl
[Srv-A] & Srv-A <- 
{Cli-A,7} & Srv-A <- 
{Cli-B,17} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S5 req
[Srv-A] & 
[Cli-A,Srv-A,
7,na] & [Cli-
B,Srv-A,17,
na]

S6 loss

[Srv-A] & Cli-A <- 
{Srv-A,8} & [Cli-A
,Srv-A,7,na] & 
[Cli-B,Srv-A,17,na]

S7 succ

･･
･

･･
･

･･
･

･･
･

･･
･



Observation
Computation trees are typically large (possibly 
infinite) and complex objects to deal with because 
of the  highly-concurrent, non-deterministic nature 
of Rewriting Logic theories.  

Inspecting computation trees using the Maude 
built-in program tracer could be painful 

textual output  

implicit axiom applications



Observation
where is 
the bug?



Exploring computations
Computations can be manually explored to detect 
program misbehaviours

To facilitate exploration…

use a graphical representation of the computation tree 
define a stepwise, user-driven, computation 
exploration technique



Exploring computations
Computations can be manually explored to detect 
program misbehaviours

To facilitate exploration…

use a graphical representation of the computation tree 
define a stepwise, user-driven, computation 
exploration technique

the ANIMA tool



ANIMA

ANIMA is a visual program animator  for Maude

Available as a web service at:

http://safe-tools.dsic.upv.es/anima/

States in a computation can be expanded/folded by a 
simple “point and click” strategy



ANIMA

ANIMA is a visual program animator  for Maude

Available as a web service at:

http://safe-tools.dsic.upv.es/anima/

States in a computation can be expanded/folded by a 
simple “point and click” strategy



ANIMA

Bob’s account  active  
current balance 50 euros



ANIMA

Bob’s account  active  
current balance 20 euros



ANIMA

Bob’s account  blocked  
current balance -10 euros

Error: Bob is a premium client and premium 
accounts cannot be blocked



ANIMA

Equational  
simplification that leads  

to the wrong state

updateStatus function call  
erroneously  

blocks bob’s account



Some remarks

Debugging via program animation

it’s ok for simple programs 
completely manual 
navigation through quite  a lot of 
information



Some remarks

Debugging via program animation

it’s ok for simple programs 
completely manual 
navigation through quite  a lot of 
information

Question: can we somehow reduce the size of the computations  to 
favor their inspection?



Trace slicing is a transformation technique that 
reduces the complexity of execution trace 

Based on tracking  origins/descendants 

It favors better analysis and debugging since 
irrelevant inspections can be eliminated 
automatically

Yes, we can: trace slicing



Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data 
we want to observe in the final state of the trace), 

          - traverse T  from back to front, and at each rewrite step, 
          - incrementally compute the origins of the observed data           
          - remove the irrelevant data 

Trace
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Backward trace slicing

Definition (Backward Trace Slicing)
Given an execution trace T and a slicing criterion O for the trace (i.e., data 
we want to observe in the final state of the trace), 

          - traverse T  from back to front, and at each rewrite step, 
          - incrementally compute the origins of the observed data          
          - remove the irrelevant data

Traceslice



Backward Trace slicing

Trace:

Trace slice



iJulienne

iJulienne is a backward trace slicer for Maude

Available as a web service at:

http://safe-tools.dsic.upv.es/ijulienne/



iJulienne: example

Let us feed iJulienne with the computation 

   < Alice | 50 | active > ; < Bob | 20 | active > ;    
   debit(Alice, 30) ; transfer(Bob, Charlie, 60) ;  
   debit(Alice, 40) ; transfer(Bob, Alice, 10)

*
< Alice | -20 | blocked > ; < Bob | 20 | active > ; 
transfer(Bob, Alice, 10) ; transfer(Bob, Charlie, 60)

Note: Alice’s account 
balance is negative and 
she is a regular client 



iJulienne: example

Select the suspicious 
symbols to trace back



iJulienne: example

The slice only contains 
Alice’s account data



iJulienne: example

Bad implementation of 
the debit rule!



Some remarks

Debugging via Backward trace slicing allows the 
information to be inspected to be (greatly) reduce 

but…



Some remarks

It requires the user to manually select the slicing 
criterion (i.e. the data to be observed)

It cannot be used to fully automatize debugging

Debugging via Backward trace slicing allows the 
information to be inspected to be (greatly) reduce 

but…



Assertion-based backward 
trace slicing

Backward trace slicing
coupled with 

Assertion checking

Assertion-based slicing technique that
automatically infers the slicing criterion 
and use it to automatically fire the slicer



Assertion language

We define assertions by using constrained terms S{φ},  
where

  S is a non-ground term (state template) 
  φ is a quantifier-free boolean formula 
 

φ = true | false | p(t1,…,tn) | φ and φ | not φ | φ implies φ



Assertion language

We define two groups of assertions: 

• System assertions    S {φ}    
  Var(φ) ⊆ Var(S)  
  
invariant properties of the system states t             “No employee is under age 18” 

• Functional assertions  I {φin} → O {φout}  
  Var(φin) ⊆ Var(I)  
  Var(φout) ⊆ Var(I) U Var(O)  
  
pre/post-conditions over equational simplification traces µ: t →* t↓∆,B  

                                                                                       “Sorting a list preserves its length” 

 



System assertion
“The account of a regular client can’t have a negative balance” 

  Θ = < C:Id | B:Int | S:Status >
        { not ( C : Id in PreferredClients ) implies B : Int >= 0 }

Then, Θ is satisfied in the state

< Alice | 50 | active > ; < Bob | 40 | active > ; debit(Alice, 60)

< Alice | -10 | blocked > ; < Bob | 40 | active >

but it is not satisfied in



    t  |=  S{φ}  

iff  

   for each position w of t and substitution σ 

     
 t|w =E Sσ  =>   φσ holds in the theory R 

Satisfaction for system 
assertions



ξsys: Any position w pointing to a subterm of t that              
-equationally matches the template S, but  
-the E-matcher produces a false instance of the formula φ      

<Alice | -10 | blocked>

    t  |=  S{φ}  

iff  

   for each position w of t and substitution σ 

     
 t|w =E Sσ  =>   φσ holds in R 

Satisfaction for system 
assertions

By-product:

System error symptom ξsys

-10 >= 0



< Alice | -10 | blocked > ; < Bob | 40 | active >

Satisfaction for system 
assertions

   Slicing criterion  <  Alice | -10 | blocked >  ;  l



Given µ = t →*∆,B  t ↓∆,B  

 

µ  |=  I {φin} → O {φout}    

iff   

for every substitution σ s.t.  

t =B Iσ and φinσ holds in R,  

there exists σ’  s.t.  

t↓∆,B =B O(σ↓∆,B)σ’  and φout(σ↓∆,B)σ’ holds in R

Satisfaction for functional 
assertion



t↓∆,B fails to fit the 
template O

Given µ = t →*∆,B  t ↓∆,B  

 

µ  |=  I {φin} → O {φout}    

iff   

for every substitution σ s.t.  

t =B Iσ and φinσ holds in R,  

there exists σ’  s.t.  

t↓∆,B =B O(σ↓∆,B)σ’  or φout(σ↓∆,B)σ’ holds in R

Satisfaction for functional 
assertion

σ’  fails to verify the 
postcondition φout 



t↓∆,B =B O(σ↓∆,B)σ’  or φout(σ↓∆,B)σ’ holds in R

t↓∆,B fails to fit the 
template O

Satisfaction for functional 
assertion

σ’  fails to verify the 
postcondition φout 

ξfun: Position in t↓∆,B that disagrees with O or the  
       pointed subterm causes σ’ to falsify the  
       postcondition φout  

 By-product:
Functional error 

symptom ξfun



Satisfaction for functional 
assertion

“updSt is the identity function on premium accounts”

Φ = updSt(acc:Account) { isPremium(acc:Account) }
→ acc:Account { true }

updSt(< Bob | -5 | active >) →+ < Bob | -5 | blocked >

Φ is not satisfied in this equational simplification

Disagreement at position 3 of the wrong t↓∆,B  
✘



Satisfaction for functional 
assertion

Disagreements are computed via a least-general generalization 
algorithm modulo the equational theory E (antiunification modulo E)

updSt(< Bob | -5 | active >) →+ < Bob | -5 | blocked >

< Bob | -5 | x >

clash



Satisfaction for functional 
assertion

Disagreements are computed via a least-general generalization 
algorithm modulo the equational theory E (antiunification modulo E)

updSt(< Bob | -5 | active >) →+ < Bob | -5 | blocked >

< Bob | -5 | x >

clash

Slicing criterion  < l | l | blocked  >



Assertion-based slicing
Check incrementally processes the Maude steps of a trace,  
while checking 

• the functional assertions, at each state normalization s →*∆,B s↓∆,B 

• the sytem assertions, at each (normalized) state s↓∆,B 

check

…

A computation (trace) C for s0 in the conditional rewrite theory (⌃,� [ B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 !⇤
�,B s0#�,B !R,B s1 !⇤

�,B s1#�,B!R,B . . .

that interleaves !�,B rewrite steps and !R,B rewrite steps following the strategy mentioned
above. Note that, following this strategy, after each conditional rewriting step using !R,B ,
generally the resulting term si, i = 1, . . . , n, is not in canonical normal form and is thus
normalized before the subsequent rewrite step using !R,B is performed. Also, in the precise
strategy adopted by Maude, the last term of a finite computation is finally normalized before
the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed !R,B and !⇤
�,B

transitions, with an additional equational simplification !⇤
�,B (if needed) at the beginning of

the computation as depicted below.
z }| {
s0 !⇤

�,B s0#�,B !R,B s1 !⇤
�,B s1#�,B !R,B s2 !⇤

�,B s2#�,B . . .

| {z }
We define a Maude step from a given term s as any of the sequences s !⇤

�,B s#�,B !R,B

t !⇤
�,B t#�,B that head the non-deterministic Maude computations for s. Note that, for a

canonical form s, a Maude step for s boils down to s !R,B t !⇤
�,B t#�,B t. We define mS(s)

as the set of all such non-deterministic Maude steps stemming from s.

3. Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computations. The
instrumentation allows the relevant information of the rewrite steps, such as the selected redex
and the contractum produced by the step, to be traced explicitly despite the fact that terms
are rewritten modulo a set B of equational axioms that may cause their components to be
implicitly reordered. Given a computation C, let us show how C can be expanded into an
instrumented computation T in which each application of the matching modulo B algorithm
that is used in !R,B-steps and !�,B-steps is explicitly mimicked by the specific application
of a bogus equational axiom, which is oriented from left to right and then applied as a rewrite
rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term transformations
allow terms that contain operators obeying equational axioms to be rewritten into support-
ive B-normal forms that facilitate the matching modulo B. In the case of AC-theories, these
transformations allow terms to be reordered and correctly parenthesized in order to enable
subsequent rewrite steps. Basically, this is achieved by producing a single, auxiliary represen-
tative of their AC congruence class (i.e., the AC-normal form). An AC-normal form is typically
generated by replacing nested occurrences of the same AC operator by a flattened argument
list under a variadic symbol, sorting these arguments under some linear ordering and combin-
ing equal arguments using multiplicity superscripts (Eker, 2003). For example, the congruence
class containing f(f(↵, f(�,↵)), f(f(�,�),�)) where f is an AC symbol and subterms ↵, �,
and � belong to alien theories might be represented by f⇤(↵2,�3, �), where f⇤ is a variadic
symbol that replaces nested occurrences of f . A more formal account of this transformation is
given in (Eker, 1995).

As for purely associative theories, we can get an A-normal form by just flattening nested
function symbol occurrences without sorting the arguments. This case has practical importance
because it corresponds to lists. C-normal forms are just obtained by properly ordering the

10

Maude step

A computation (trace) C for s0 in the conditional rewrite theory (⌃,� [ B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 !⇤
�,B s0#�,B !R,B s1 !⇤

�,B s1#�,B!R,B . . .

that interleaves !�,B rewrite steps and !R,B rewrite steps following the strategy mentioned
above. Note that, following this strategy, after each conditional rewriting step using !R,B ,
generally the resulting term si, i = 1, . . . , n, is not in canonical normal form and is thus
normalized before the subsequent rewrite step using !R,B is performed. Also, in the precise
strategy adopted by Maude, the last term of a finite computation is finally normalized before
the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed !R,B and !⇤
�,B

transitions, with an additional equational simplification !⇤
�,B (if needed) at the beginning of

the computation as depicted below.
z }| {
s0 !⇤

�,B s0#�,B !R,B s1 !⇤
�,B s1#�,B !R,B s2 !⇤

�,B s2#�,B . . .

| {z }
We define a Maude step from a given term s as any of the sequences s !⇤

�,B s#�,B !R,B

t !⇤
�,B t#�,B that head the non-deterministic Maude computations for s. Note that, for a

canonical form s, a Maude step for s boils down to s !R,B t !⇤
�,B t#�,B t. We define mS(s)

as the set of all such non-deterministic Maude steps stemming from s.

3. Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computations. The
instrumentation allows the relevant information of the rewrite steps, such as the selected redex
and the contractum produced by the step, to be traced explicitly despite the fact that terms
are rewritten modulo a set B of equational axioms that may cause their components to be
implicitly reordered. Given a computation C, let us show how C can be expanded into an
instrumented computation T in which each application of the matching modulo B algorithm
that is used in !R,B-steps and !�,B-steps is explicitly mimicked by the specific application
of a bogus equational axiom, which is oriented from left to right and then applied as a rewrite
rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term transformations
allow terms that contain operators obeying equational axioms to be rewritten into support-
ive B-normal forms that facilitate the matching modulo B. In the case of AC-theories, these
transformations allow terms to be reordered and correctly parenthesized in order to enable
subsequent rewrite steps. Basically, this is achieved by producing a single, auxiliary represen-
tative of their AC congruence class (i.e., the AC-normal form). An AC-normal form is typically
generated by replacing nested occurrences of the same AC operator by a flattened argument
list under a variadic symbol, sorting these arguments under some linear ordering and combin-
ing equal arguments using multiplicity superscripts (Eker, 2003). For example, the congruence
class containing f(f(↵, f(�,↵)), f(f(�,�),�)) where f is an AC symbol and subterms ↵, �,
and � belong to alien theories might be represented by f⇤(↵2,�3, �), where f⇤ is a variadic
symbol that replaces nested occurrences of f . A more formal account of this transformation is
given in (Eker, 1995).

As for purely associative theories, we can get an A-normal form by just flattening nested
function symbol occurrences without sorting the arguments. This case has practical importance
because it corresponds to lists. C-normal forms are just obtained by properly ordering the
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ulo B in order to guarantee the existence and unicity (modulo B) of a canonical
form w.r.t. � for any term [9].

Formally, !R,B and !�,B are defined as follows: given a rewrite rule [r] :
(� ) ⇢) 2 R (resp., an equation [e] : (� = ⇢) 2 �), a substitution �, a term

t, and a position w of t, t
r,�,w!R,B t0 (resp., t

e,�,w!�,B t0) i↵ �� =B t|w and
t0 = t[⇢�]w. When no confusion can arise, we simply write t !R,B t0 (resp.

t!�,Bt0) instead of t
r,�,w!R,B t0 (resp. t

e,�,w!�,B t0).
Under appropriate conditions on the rewrite theory, a rewrite step s !R/E t

modulo E on a term s can be implemented without loss of completeness by
applying the following rewrite strategy [11]:

1. Equational simplification of s in � modulo B, that is, reduce s using
!�,B until the canonical form w.r.t. � modulo B (s #�,B) is reached;

2. Rewrite (s #�,B) in R modulo B to t0 using !R,B , where t0 2 [t]E .

A computation (trace) C for s0 in the rewrite theory (⌃,� [ B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 !⇤
�,B s0#�,B !R,B s1 !⇤

�,B s1#�,B!R,B . . .

that interleaves !�,B rewrite steps and !R,B rewrite steps following the strat-
egy mentioned above. Note that, following this strategy, after each rewriting step
using !R,B , generally the resulting term si, i = 1, . . . , n, is not in canonical nor-
mal form and is thus normalized before the subsequent rewrite step using !R,B

is performed. Also in the precise strategy adopted by Maude, the last term of a
finite computation is finally normalized before the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed
!R,B and !⇤

�,B transitions, with an additional equational simplification !⇤
�,B

(if needed) at the beginning of the computation, as depicted below.

z }| {
s0 !⇤

�,B s0#�,B !R,B s1 !⇤
�,B s1#�,B !R,B s2 !⇤

�,B s2#�,B . . .

| {z }

We define a Maude step from a given term s as any of the sequences s !⇤
�,B

s#�,B!R,B t !⇤
�,B t#�,B that head the non-deterministic Maude computations

for s. Note that, for a canonical form s, a Maude step for s boils down to
s !R,B t !⇤

�,B t#�,B t. We definemS(s) as the set of all such non-deterministic
Maude steps stemming from s.

3.1 Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computa-
tion traces. The instrumentation allows the relevant information of the rewrite
steps, such as the selected redex and the contractum produced by the step, to
be traced despite the fact that terms are rewritten modulo equational axioms



Assertion-based slicing
‣ The checker proceeds from front to back 

‣ In the event that an assertion is falsified, it automatically halts

assertion not satisfied

Trace: check check check

assertion not satisfied



Assertion-based slicing
‣ The checker proceeds from front to back 

‣ In the event that an assertion is falsified, it automatically halts  

assertion not satisfied

Trace: check check check

assertion not satisfied

1. The error symptoms are distilled and translated into suitable slicing criteria 



Assertion-based slicing
‣ The checker proceeds from front to back 

‣ In the event that an assertion is falsified, it automatically halts  

assertion not satisfied

Trace: check check check

assertion not satisfied

1. The error symptoms are distilled and translated into suitable slicing criteria 
2. The slicer is run to compute the smallest fragment of the trace that 

highlights the wrong behavior



The ABETS system

• Written in (a custom version of) Maude 2.7, with a web GUI  
        Several maude operations have been directly coded into native C functions. 

• Available as a web application at  
http://safe-tools.dsic.upv.es/abets/ 

• Synchronous (on-line) and asynchronous (off-line) analysis  

• Extended to (full) Maude computations

http://safe-tools.dsic.upv.es/abets/


Conclusions

• Dynamic techniques and tools that helps developers 
understand and debug (Full) Maude programs 

• program animation 

• backward trace slicing 

• assertion-driven backward trace slicing



Future work

• Work on static methodologies to enforce safety 
constraints on Maude programs

Assertions + Program specialization

to infer safe Maude programs
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