
Automatic generation of hardware
memory architectures for HPC

Christian Pilato
Assistant Professor

christian.pilato@polimi.it

Universidad Complutense de Madrid – April 21, 2022

mailto:christian.pilato@polimi.it

©Christian Pilato, 2022 2

Assistant Professor (RTD-B - Ricercatore a Tempo Determinato Senior)

About Me

PhD Student
2008-2011

Research Assistant
2011-2013

Postdoc Research Scientist
2013-2016

Postdoc
Research Assistant

2016-2018
Assistant Prof.

2018-now

R&D
Internship
6 months

Visiting
Researcher

3 months

Visiting
Researcher

4 months

Visiting
Researcher

9 months

FP6 HARTES
FP7 SYNAPTIC

FP7 FASTER DARPA PERFECT
SRC CFAR

H2020 CERBERO
DARPA CRAFT

R&D Projects

Office: DEIB (Building 20 - 1st floor – Room 029) Website: http://pilato.faculty.polimi.it

https://github.com/sld-columbia/esp

H2020
EVEREST

http://pilato.faculty.polimi.it/
https://github.com/sld-columbia/esp

©Christian Pilato, 2022 3©EVEREST Consortium, 2020-2021

H2020 project funded under the call – "Big Data technologies and extreme-
scale analytics" [Kick-off on Oct 1, 2020] – http://www.everest-h2020.eu
Project Coordinator: Christoph Hagleitner, IBM Research Europe, Zurich, Switzerland
Scientific Coordinator: Christian Pilato, Politecnico di Milano, Italy

Key idea: a coordinated action with the appropriate technology areas (e.g., AI, analytics,
software engineering, HPC, Cloud technologies, IoT and edge/fog/ubiquitous computing) è Computing
continuum to enable cloud-to-edge integration
system engineering/tools to contribute to the co-design of federated/distributed systems è
EVEREST system development kit

EVEREST: Big Data Analytics on FPGA

We can use AI/ML to optimize data analytics and knowledge
extraction, but this is not strictly an AI/ML-related project!

standardized interconnection methods

architectures for collecting, managing and exploiting
data securityhardware acceleration

runtime management

domain-specific
extensions

virtualization

©Christian Pilato, 2022 4

EVEREST Partners
IBM Reseach Lab, Zurich (Switzerland)
Project administration, prototype of the target system
PI: Christoph Hagleitner

Politecnico di Milano (Italy)
Scientific coordination, high-level synthesis, flexible memory
managers, autotuning
PI: Christian Pilato

Università della Svizzera italiana (Switzerland)
Data security requirements and protection techniques
PI: Francesco Regazzoni

TU Dresden (Germany)
Domain-specific extensions, code optimizations and variants
PI: Jeronimo Castrillon

Centro Internazionale di Monitoraggio Ambientale (Italy)
Weather prediction models
PI: Antonio Parodi

IT4Innovations (Czech Republic)
Exploitation leaders, large HPC infrastructure, workflow
libraries
PI: Katerina Slaninova

Virtual Open Systems (France)
Virtualization techniques, runtime extensions to manage
heterogeneous resources
PI: Michele Paolino

Duferco Energia (Italy)
Application for prediction of renewable energies
PI: Lorenzo Pittaluga

Numtech (France)
Application for monitoring the air quality of industrial sites
PI: Fabien Brocheton

Sygic A/S (Slovakia)
Application for intelligent transportation in smart cities
PI: Radim Cmar

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2022 5

Three use cases provided by the application partners
Looking for hardware acceleration (intense data computation) with efficient and secure data
management (distributed data sources)
Possibility of AI/ML-based decision making
Combination of the tasks in different pipelines

Application Concepts

Weather-based prediction of
renewable energy production

Air-quality monitoring in industrial sites

Traffic modelling for intelligent
transportation

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2022 6

EVEREST Target System
Target prototype based on IBM products and internal projects
• Combination of CPU-managed systems with tightly-coupled bus-attached FPGAs and FPGA-

disaggregated systems with loosely-coupled network-attached FPGAs
Other platforms (e.g., from IT4I and NUM or existing SoCs)
• Combination of devices and architectures: Xilinx Alveo, cloudFPGA, Columbia ESP, …

Seamless integration of
additional EVEREST nodes

Standard communication
formats (e.g., OpenCAPI)

Virtualization of resources

Efficient communication
libraries with clear API

FPGA deviceFPGA deviceFPGA device

Acc

HW
Mem
Mgr. OCAPI

Ctrl.

I/O

MEMMEMDRAM

HBMHBM

FPGA device

Acc

HW Mem
Mgr.

NC

I/O

MEMMEMDRAM

HBMHBM

POWER9

I/O MEMMEMDRAM

HBMCPU

HBMOn-chip AccOpenCAPI
25

Gb/s
x8

100
Gb/s x2

DC Network

EVEREST Heterogeneous Node
POWER9 CPU with bus-attached FPGA

EVEREST Node
Network-attached FPGA

OCAPI

TCP/UDP

EVEREST
Node

CPU, GPU,
FPGA, …

up to 4x per 2U node
(Wistron Mihawk)

up to 64x per 2U node
(cloudFPGA)

TCP/UDP

Acc

10
Gb/s

Dual-port Mellanox
ConnectX-5 100G

NC

TCP/UDP

10
Gb/s

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2022 7

EVEREST Programming Environment
1. Compilation Environment: analyzes

application and creates all "variants"
based on architecture abstraction and
application/data requirements

• Exploring unified IR framework (e.g., MLIR)
• Integration of non-functional properties

with domain-specific extensions
• Hardware acceleration and High-level

synthesis (Bambu, Vivado HLS)

EVEREST Runtime Environment

Unified IR
framework

Implemented with high-level
abstractions, e.g., in MLIR

Middle-
end Opt-IR/

C-code

SW HW
Multi-variant and optimized IR with
SW/HW components (memory managers)

Meta-data/Info: HW
interfaces, variants info

Front-end

Backend
Implementation (SYCL, C, HDL,

meta-data, EVEREST APIs)

SW-optimization HW-optimization
HW-info

Standard
compilers

Bin/bit-
stream

Use case description, e.g., Short-time
prediction in traffic simulations

Application high-level
dataflow

ML-KernelSimulation
kernel

auto A = Matrix(m, n),
B = Matrix(m, n),
C = Matrix(m, n);

auto u = Tensor<3>
(n, n, n);

auto v = (A*B*C)(u);

Kernel DSL-spec, e.g., using
C++ syntax from [RINK19]

Possibility of using different
(ML) frameworks

Interoperability with
different HLS tools

Standard IR format and
exchange files

Novel domain-specific
extensions (format)

System and resource description (format)

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2022 8

EVEREST Programming Environment

Autotuning API

Runtime API

Seamless execution when varying
the system configuration

(resources, nodes, data, etc.) Hiding communication latency
(e.g., prefetching)

How to collect system status and
expose it to the runtime?

2. Runtime Environment: implements
the selection of "variants" and the
hardware configuration based
on the system status

• Dynamic adaptation and autotuning
(mARGOt)

• Two-level runtime for (1) virtualization of
hardware resources regardless their distribution
and the low-level details of the platforms; (2) implement
functional decisions (VOSYS solutions, mARGOt, HyperLoom)

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2022 9

Hardware Compilation Flow

Annotated C code
/ LLVM IR / MLIR

HLS
(Vitis/Bambu)

Arch. Info

Mem. Gen.
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data
requirementsMem. Info

Security/data
requirements

Memory
access patternsIP requirements

Synthesis Tools

©Christian Pilato, 2022 10

9LWLV2O\PSXV

&)'ODQJ

&)'ODQJ�
&RPSLOHU

&�.HUQHO

$UUD\
,QIR

6KDULQJ�
,QIR

([SORUH

0LQLPDO�&����
&8�:UDSSHU

+/6 5HVRXUFH�	��
/DWHQF\��
(VWLPDWHV

2SWLPL]H

2SWLPL]HG��
&���&8

+RVW�&��

6\VWHP�&)*

0QHPRV\QH Y��

J��

%LQDU\

�����
�������
������

%LWVWUHDP

�����
�������
������

0HPRU\
$UFKLWHFWXUH

+'/

3RUW�,QIR

$OYHR�)3*$

3&,H

+RVW�&38

'HVLJQ�6SDFH�([SORUDWLRQ

3ODWIRUP��
6SHFLILFDWLRQ

'6/�WR�& &�WR�6\VWHP 6\VWHP�WR�%LWVWUHDP ([HFXWLRQ

From DSL to Bitstream

kernel_body

PLM

void kernel_body(double S[11][11], double D[11][11][11], double u[11][11][11],
double v[11][11][11],
double t[11][11][11], double r[11][11][11], double t1[11][11][11],
double t3[11][11][11], double t0[11][11][11], double t2[11][11][11])

kernel_body

ctrl S D u v

t r t1 t3 t0 t2CE0 A0 Q0

kernel_body

PLM
CE1 A1 D1 WE1......

Read port Write port

S

D

r

u

v t3

t1 t0

t2

t

©Christian Pilato, 2022 11

High-Level Synthesis (HLS) to create the accelerator logic
• Definition of memory-related parameters

(e.g. number of process interfaces)

Generation of specialized PLMs
• Technology-related optimizations
• Possibility of system-level optimizations

across accelerators

PLM Customization for Heterogeneous SoCs

Accelerator Tile

DMA
Ctrl

Load

Compute 1

Store

Compute nke
rn
el
()

Private Local Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
2
3

45
6

…

1 2

in

out

Accelerator Logic

Memory LibraryPLM
Generation

High-Level
Synthesis

Data
Structures

High-Level
Description

(C/C++/SystemC)

©Christian Pilato, 2022 12

System-level methodology for PLM customization

PLM Customization

Data structures, access
patterns, …

HLS optimizations, number of
memory interfaces, …

Memory IPs, multi-bank
architectures, …

SystemC

SystemC + RTL

RTL

Designer

HLS tool Optimizations to reduce memory cost
Flexible memory controller to coordinate

memory accesses

Data Access
Requirements

Memory
LibraryPLM Generation

PLM architecture
(RTL)

Automatic Generation

Data
Structures

PLM Generation

Performance optimization: HLS defines how the accelerator logic accesses the
data structures (e.g. number of parallel accesses)

Cost optimization: PLM Customization defines the best PLM microarchitecture
to achieve the desired performance (e.g. number of banks, data allocation)

©Christian Pilato, 2022 13

Generally we can use one PLM unit (eventually composed of many
banks) for each data structure

“Two data structures are compatible if they can be
allocated to the same PLM unit (memory IPs)”

A common case: accelerators never executed at the same time
• Possible only at system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse What is not Used

Reuse the same memory IPs
for several data structures

©Christian Pilato, 2022 14

Accelerator(s) memory subsystem is defined during SoC integration
• Possibility for more optimizations

Optimization only at the System-Level

Logic
PLM

IP DESIGN

Logic
PLM

IP DESIGN

SOC INTEGRATION

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

Logic
IP DESIGN

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

SOC INTEGRATION

Memory Subsystem Design

Logic
IP DESIGN

Mem
Reqs

Mem
Reqs

Component-based Approach System-Level Approach

©Christian Pilato, 2022 15

PLM Optimization for Multiple Accelerators

HLS and DSE

Accelerator Design1
(SystemC)

Accelerator Logic1
(Verilog)

Memory
Requirements1 HLS and DSE

Accelerator Designk
(SystemC)

Accelerator Logick
(Verilog)

Memory
Requirementsk

Compatibility
Information Memory

IPs

Technology-unaware
Transformations1

Local Tech-aware
Transformations1

Memory
Subsystem
(Verilog)

Global Technology-aware Transformations

1 1

2

3

4

MNEMOSYNE Technology-unaware
Transformationsk

2

Local Tech-aware
Transformationsk

3

Generation of RTL Architecture
5

…	

©Christian Pilato, 2022 16

Let us assume to have the two following data structures that are never
alive at the same time
• A[1024] with data duplication over 4 parallel banks
• B[4096] with data distribution over 2 parallel banks

Address-Space Compatibility

A0 A1 A2 A3+B0 B1

Memory footprint: 4x1024x32
+ 2x2048x32 = 254,485.68 um2

A0 A1 A2 A3

A0 A2

A1 A3

Reused to store B by
putting banks in “series” to
virtually increase capacity

Memory footprint: 4x1024x32
= 140,426.46 um2 (-44.8%)

©Christian Pilato, 2022 17

A classical example is the ping-pong buffer (two 2048x16 arrays – A0/A1)
• When process P writes A0 (A1), it never writes A1 (A0)
• When process C reads from A0 (A1), it never reads from A1 (A0)

Memory-Interface Compatibility

if (ping)
A0[i] = …

else
A1[i] = …

if (ping)
… = f(A0[i])

else
… = f(A1[i])

μ-architectural optimizations

P CP C

memory controller

valid

ready
A0 A1

A0
(odd)

A1
(even)

A0 A1

A0
(even)

A1
(odd)

Memory footprint: 4x1024x32 = 140,426 um2

P CP C

memory controller

valid

ready
A0 A1

A0
(even)

A1
(even)

A0
(odd)

A1
(odd)

A0 A1

Merged in the same IP, but in
a different memory space

Memory footprint: 2x2048x32 = 114,059.2 um2

Area reduced by 18% without any
performance overhead!

©Christian Pilato, 2022 18

Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data

footprint (after data allocation)
• Each edge represents compatibility between the two data structures

Memory Compatibility Graph (MCG)

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the
data structures are compatible and
can use the same memory IPs

b) Memory-interface compatibility:
the ports are never accessed at the
same time and the data structures
can stay in the same memory IP

©Christian Pilato, 2022 19

“A clique is a subset of the vertices of the memory
compatibility graph such that every two vertices are

connected by an edge”

Clique Definition

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

ab

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

We need two distinct configurations!
{A0,B0} and {A1} or {A1,B0} and {A0}?

a

A clique represents a set of
data structures that can

share the same memory IPs

©Christian Pilato, 2022 20

Memory Cost Minimization

To determine how to partition the MCG such that the total memory cost is minimized

Clique Characterization

To determine the memory architecture of all cliques and their memory cost

Clique Enumeration

To define the list of admissible cliques in the MCG

How to Determine the Memory Subsystem

©Christian Pilato, 2022 21

A lightweight PLM controller is created for each compatibility set
(clique) based on the bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

PLM Controller Generation

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom logic with negligible overhead, especially when
the number of banks and their size is a power of two

0x0 0x1

0x0

0x1

0x0

0x1

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

0x00
0x01
0x02
0x03

…

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

C
E
	

A
	

Q
	

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

…	

1 0010 1

100101

©Christian Pilato, 2022 22

Industrial 32nm CMOS
technology
• Memory library with 18 SRAMs

Impact of Optimizations

0

0.2

0.4

0.6

0.8

1.0
Compatibility Coloring Final

N
or

m
al

iz
ed

 a
re

a
of

 th
e

PL
M

Sort
FFT1D

FFT2D
Debayer

Lucas K
anade

Change Detection

Interpolation 1

Interpolation 2

Backprojection
Disparity PCA

RBM SRR

0

0.2

0.4

0.6

0.8

1.0
Compatibility Coloring Final

N
or

m
al

iz
ed

 a
re

a
of

 th
e

PL
M

Sort
FFT1D

FFT2D
Debayer

Lucas K
anade

Change Detection

Interpolation 1

Interpolation 2

Backprojection
Disparity PCA

RBM SRR

Xilinx Virtex-7 FPGA
• Memory library with 6

BRAM configurations

©Christian Pilato, 2022 23

Bram
Ctrl

PLM0 ACC0

Ctrl

ctrl

Creation of Parallel Architectures

PLM0

Ctrl

PLMm-1

…
ACC0

ctrl

Batch

Bram
Ctrl

A[MSBs]

PLM0

Ctrl

PLMm-1

…

ACCk-1

ctrl

ACC0

ctrl

A[MSBs]

…

Bram
Ctrl

©Christian Pilato, 2022 24

• Xilinx Zynq UltraScale+ MPSoC ZCU106 board
• CFD simulation of 50,000 elements

• Memory sharing allows us to fit more
kernels

Preliminary Evaluation

©Christian Pilato, 2022 25

DSL for representing the kernel

Moving to a system-level representation
• Simple example for a massively parallel architecture:

LOOP ~ KERNEL(S, D, u, v)
Possibility to decide the memory layout and configure DMA/prefetchers

based on the target architecture/platform

Next Step: System-Level DSL

©Christian Pilato, 2022 26

We are building a compilation flow based on
LLVM MLIR for automatic specialization:
• MLIR Input – From DSL descriptions of the system

functionality
• Data Organization – Determine which data resides

off chip (also based on user/compiler annotations)
• Layout – Reorganize communication to exploit local

memories (cache/PLM)
• Communication – Configure prefetcher to hide

transfer latency
• Local Partitioning – Determine multi-bank PLM

architecture (Mnemosyne1)
• HLS – Generate computation part (interfacing with

existing HLS tools, e.g., open-source Vitis HLS
frontend)

• HDL Output – Automated code generation and
system-level integration based on the target platform

Next Step: Let’s Put Memory First

S. Soldavini and C. Pilato. "Compiler Infrastructure for Specializing
Domain-Specific Memory Templates" LATTE’21

External Memory

Kernel

Logic to Resolve Addr
and Reduce Delay

Cache

DMA

Prefetcher

Multi-Channel
Controller

DRAM

HBM

Remote

PLM PLM

Multi port
(based on access

patterns)

Data Org Layout Communication
Local

Partitioning Kernel Gen

System-Level
Description

HDL

Intelligent Memory Logic
(Latency Insensitive)

Direct Access Memory
(Fixed Latency)

©Christian Pilato, 2022 27

We are developing a complete hardware architecture generation flow
based on MLIR description of the system functionality

Platform-specific description
• HBM-based Xilinx Alveo
• IBM CloudFPGA
• …

Host code generation
• Based on platform libraries

to be developed for the specific
target

Olympus – Automated System-Level Integration

©Christian Pilato, 2022 28

• Determines the system-level architectures based on:
• Algorithm parallelism
• Characteristics of the target platform(s)
• Interfaces of the modules (HLS tools)

• Produces
• Synthesizable C++ code that includes:

• Accelerators and PLM generated with HLS
• Communication modules to match interfaces

• Standard AXI interfaces to the system (either cloudFPGA SHELL or HBM channels)
• May include “intelligent” policies to coordinate data transfers

• System configuration file to create the overall architecture
• Support for multiple computing units executing in parallel
• Interfacing with Xilinx HLS and synthesis tools

Olympus – System generation flow

©Christian Pilato, 2022 29

Automatic integration of memory optimizations for high-performance
data transfers, such as:
• Double buffering to hide latency of host-FPGA data transfers
• Bus optimization (and data interleaving) for maximizing bandwidth (e.g., 256-bit

AXI channels) – algorithms for efficient data layout on the bus
• Dataflow execution model to enable kernel pipelining – automatic (pre-HLS) code

transformations

From MLIR to System Architecture

Double buffering Bus optimization Dataflow

©Christian Pilato, 2022 30

Results on HBM FPGA

Best performance: 103 GOPS
(118x faster than our "starting point")

Results are 6x better than HPC ones
(~25x more energy efficient)

Possibility of integrating custom
data formats and configure memories
and data transfers accordingly

©Christian Pilato, 2022 31

Data management optimizations are becoming the key element for the
creation of efficient FPGA architectures

HLS is now used not only to create accelerator kernels but also to
generate the system-level architecture
• Portable solutions across multiple target platforms

Novel HBM architectures offer high bandwidth (that’s why are called
high-bandwidth memory architectures… J) but their design is complex:
• Necessary to match application requirements and technology characteristics

Conclusions

Thank you!

Christian Pilato, christian.pilato@polimi.it

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269

Work done in collaboration with Stephanie Soldavini (Politecnico di
Milano), Jeronimo Castrillon (TU Dresden), Karl F. A. Friebel (TU

Dresden), and Gerald Hempel (TU Dresden)

mailto:christian.pilato@polimi.it

