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H2020 project funded under the call – "Big Data technologies and extreme-
scale analytics" [Kick-off on Oct 1, 2020] – http://www.everest-h2020.eu
Project Coordinator: Christoph Hagleitner, IBM Research Europe, Zurich, Switzerland 
Scientific Coordinator: Christian Pilato, Politecnico di Milano, Italy

Key idea: a coordinated action with the appropriate technology areas (e.g., AI, analytics, 
software engineering, HPC, Cloud technologies, IoT and edge/fog/ubiquitous computing) è Computing 
continuum to enable cloud-to-edge integration
system engineering/tools to contribute to the co-design of federated/distributed systems è
EVEREST system development kit

EVEREST: Big Data Analytics on FPGA

We can use AI/ML to optimize data analytics and knowledge
extraction, but this is not strictly an AI/ML-related project!

standardized interconnection methods

architectures for collecting, managing and exploiting
data securityhardware acceleration

runtime management

domain-specific
extensions

virtualization
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EVEREST Partners
IBM Reseach Lab, Zurich (Switzerland)
Project administration, prototype of the target system
PI: Christoph Hagleitner

Politecnico di Milano (Italy)
Scientific coordination, high-level synthesis, flexible memory
managers, autotuning
PI: Christian Pilato

Università della Svizzera italiana (Switzerland)
Data security requirements and protection techniques
PI: Francesco Regazzoni

TU Dresden (Germany)
Domain-specific extensions, code optimizations and variants
PI: Jeronimo Castrillon

Centro Internazionale di Monitoraggio Ambientale (Italy)
Weather prediction models
PI: Antonio Parodi

IT4Innovations (Czech Republic)
Exploitation leaders, large HPC infrastructure, workflow
libraries
PI: Katerina Slaninova

Virtual Open Systems (France)
Virtualization techniques, runtime extensions to manage
heterogeneous resources
PI: Michele Paolino

Duferco Energia (Italy)
Application for prediction of renewable energies
PI: Lorenzo Pittaluga

Numtech (France)
Application for monitoring the air quality of industrial sites
PI: Fabien Brocheton

Sygic A/S (Slovakia)
Application for intelligent transportation in smart cities
PI: Radim Cmar

©EVEREST Consortium, 2020-2021
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Three use cases provided by the application partners
Looking for hardware acceleration (intense data computation) with efficient and secure data 
management (distributed data sources)
Possibility of AI/ML-based decision making
Combination of the tasks in different pipelines

Application Concepts

Weather-based prediction of 
renewable energy production

Air-quality monitoring in industrial sites

Traffic modelling for intelligent
transportation

©EVEREST Consortium, 2020-2021
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EVEREST Target System
Target prototype based on IBM products and internal projects
• Combination of CPU-managed systems with tightly-coupled bus-attached FPGAs and FPGA-

disaggregated systems with loosely-coupled network-attached FPGAs
Other platforms (e.g., from IT4I and NUM or existing SoCs)
• Combination of devices and architectures: Xilinx Alveo, cloudFPGA, Columbia ESP, …

Seamless integration of 
additional EVEREST nodes

Standard communication 
formats (e.g., OpenCAPI)

Virtualization of resources

Efficient communication 
libraries with clear API

FPGA deviceFPGA deviceFPGA device

Acc

HW 
Mem
Mgr. OCAPI

Ctrl.

I/O

MEMMEMDRAM

HBMHBM

FPGA device

Acc

HW Mem
Mgr.

NC

I/O

MEMMEMDRAM

HBMHBM

POWER9

I/O MEMMEMDRAM

HBMCPU

HBMOn-chip AccOpenCAPI
25

Gb/s
x8

100
Gb/s x2

DC Network

EVEREST Heterogeneous Node 
POWER9 CPU with bus-attached FPGA

EVEREST Node 
Network-attached FPGA

OCAPI

TCP/UDP

EVEREST
Node

CPU, GPU, 
FPGA, …

up to 4x per 2U node 
(Wistron Mihawk)

up to 64x per 2U node 
(cloudFPGA)

TCP/UDP

Acc

10 
Gb/s

Dual-port Mellanox
ConnectX-5 100G

NC

TCP/UDP

10 
Gb/s

©EVEREST Consortium, 2020-2021
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EVEREST Programming Environment
1. Compilation Environment: analyzes 

application and creates all "variants" 
based on architecture abstraction and 
application/data requirements

• Exploring unified IR framework (e.g., MLIR)
• Integration of non-functional properties 

with domain-specific extensions
• Hardware acceleration and High-level 

synthesis (Bambu, Vivado HLS)

EVEREST Runtime Environment

Unified IR 
framework

Implemented with high-level 
abstractions, e.g., in MLIR

Middle-
end Opt-IR/ 

C-code

SW HW
Multi-variant and optimized IR with 
SW/HW components (memory managers)

Meta-data/Info: HW 
interfaces, variants info

Front-end

Backend
Implementation (SYCL, C, HDL, 

meta-data, EVEREST APIs)

SW-optimization HW-optimization
HW-info

Standard 
compilers

Bin/bit-
stream

Use case description, e.g., Short-time 
prediction in traffic simulations

Application high-level 
dataflow

ML-KernelSimulation 
kernel

auto A = Matrix(m, n), 
B = Matrix(m, n), 
C = Matrix(m, n); 

auto u = Tensor<3>
(n, n, n); 

auto v = (A*B*C)(u); 

Kernel DSL-spec, e.g., using 
C++ syntax from [RINK19]

Possibility of using different 
(ML) frameworks

Interoperability with 
different HLS tools

Standard IR format and 
exchange files

Novel domain-specific 
extensions (format)

System and resource description (format)

©EVEREST Consortium, 2020-2021
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EVEREST Programming Environment

Autotuning API

Runtime API

Seamless execution when varying 
the system configuration 

(resources, nodes, data, etc.) Hiding communication latency 
(e.g., prefetching)

How to collect system status and 
expose it to the runtime?

2. Runtime Environment: implements
the selection of "variants" and the
hardware configuration based 
on the system status 

• Dynamic adaptation and autotuning 
(mARGOt)

• Two-level runtime for (1) virtualization of 
hardware resources regardless their distribution 
and the low-level details of the platforms; (2) implement 
functional decisions (VOSYS solutions, mARGOt, HyperLoom) 

©EVEREST Consortium, 2020-2021
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Hardware Compilation Flow

Annotated C code 
/ LLVM IR / MLIR

HLS 
(Vitis/Bambu)

Arch. Info

Mem. Gen. 
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data 
requirementsMem. Info

Security/data 
requirements

Memory 
access patternsIP requirements

Synthesis Tools
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From DSL to Bitstream

kernel_body

PLM

void kernel_body(double S[11][11], double D[11][11][11], double u[11][11][11], 
double v[11][11][11], 
double t[11][11][11], double r[11][11][11], double t1[11][11][11], 
double t3[11][11][11], double t0[11][11][11], double t2[11][11][11])

kernel_body

ctrl S D u v

t r t1 t3 t0 t2CE0 A0 Q0

kernel_body

PLM
CE1 A1 D1 WE1......

Read port Write port

S

D

r

u

v t3

t1 t0

t2

t
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High-Level Synthesis (HLS) to create the accelerator logic
• Definition of memory-related parameters 

(e.g. number of process interfaces)

Generation of specialized PLMs
• Technology-related optimizations 
• Possibility of system-level optimizations 

across accelerators

PLM Customization for Heterogeneous SoCs

Accelerator Tile

DMA
Ctrl

Load

Compute 1

Store

Compute nke
rn
el
()

Private Local Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
2
3

45
6

…

1 2

in

out

Accelerator Logic

Memory LibraryPLM 
Generation

High-Level 
Synthesis

Data 
Structures

High-Level 
Description 

(C/C++/SystemC)
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System-level methodology for PLM customization

PLM Customization

Data structures, access 
patterns, …

HLS optimizations, number of 
memory interfaces, …

Memory IPs, multi-bank 
architectures, …

SystemC

SystemC + RTL

RTL

Designer

HLS tool Optimizations to reduce memory cost
Flexible memory controller to coordinate 

memory accesses

Data Access 
Requirements

Memory
LibraryPLM Generation

PLM architecture 
(RTL)

Automatic Generation

Data 
Structures

PLM Generation

Performance optimization: HLS defines how the accelerator logic accesses the 
data structures (e.g. number of parallel accesses)

Cost optimization: PLM Customization defines the best PLM microarchitecture 
to achieve the desired performance (e.g. number of banks, data allocation)
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Generally we can use one PLM unit (eventually composed of many 
banks) for each data structure

“Two data structures are compatible if they can be 
allocated to the same PLM unit (memory IPs)”

A common case: accelerators never executed at the same time
• Possible only at system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse What is not Used

Reuse the same memory IPs 
for several data structures
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Accelerator(s) memory subsystem is defined during SoC integration
• Possibility for more optimizations

Optimization only at the System-Level

Logic
PLM

IP DESIGN

Logic
PLM

IP DESIGN

SOC INTEGRATION

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

Logic
IP DESIGN

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

SOC INTEGRATION

Memory Subsystem Design

Logic
IP DESIGN

Mem 
Reqs

Mem 
Reqs

Component-based Approach System-Level Approach
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PLM Optimization for Multiple Accelerators

HLS and DSE 

Accelerator Design1 
(SystemC) 

Accelerator Logic1 
(Verilog) 

Memory 
Requirements1 HLS and DSE 

Accelerator Designk 
(SystemC) 

Accelerator Logick 
(Verilog) 

Memory 
Requirementsk 

       

Compatibility 
Information Memory 

IPs 

Technology-unaware 
Transformations1 

Local Tech-aware 
Transformations1 

Memory 
Subsystem 
(Verilog) 

Global Technology-aware Transformations 

1 1 

2 

3 

4 

MNEMOSYNE Technology-unaware 
Transformationsk 

2 

Local Tech-aware 
Transformationsk 

3 

Generation of RTL Architecture 
5 

…	
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Let us assume to have the two following data structures that are never 
alive at the same time
• A[1024] with data duplication over 4 parallel banks
• B[4096] with data distribution over 2 parallel banks

Address-Space Compatibility

A0 A1 A2 A3+B0 B1

Memory footprint: 4x1024x32 
+ 2x2048x32 = 254,485.68 um2

A0 A1 A2 A3

A0 A2

A1 A3

Reused to store B by 
putting banks in “series” to 
virtually increase capacity

Memory footprint: 4x1024x32 
= 140,426.46 um2 (-44.8%)
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A classical example is the ping-pong buffer (two 2048x16 arrays – A0/A1)
• When process P writes A0 (A1), it never writes A1 (A0)
• When process C reads from A0 (A1), it never reads from A1 (A0)

Memory-Interface Compatibility

if (ping)
A0[i] = …

else
A1[i] = …

if (ping)
… = f(A0[i])

else
… = f(A1[i])

μ-architectural optimizations

P CP C

memory controller

valid

ready
A0 A1

A0
(odd)

A1
(even)

A0 A1

A0
(even)

A1
(odd)

Memory footprint: 4x1024x32 = 140,426 um2

P CP C

memory controller

valid

ready
A0 A1

A0
(even)

A1
(even)

A0
(odd)

A1
(odd)

A0 A1

Merged in the same IP, but in 
a different memory space

Memory footprint: 2x2048x32 = 114,059.2 um2

Area reduced by 18% without any 
performance overhead!
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Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data 

footprint (after data allocation)
• Each edge represents compatibility between the two data structures 

Memory Compatibility Graph (MCG)

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the 
data structures are compatible and 
can use the same memory IPs

b) Memory-interface compatibility: 
the ports are never accessed at the 
same time and the data structures 
can stay in the same memory IP
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“A clique is a subset of the vertices of the memory 
compatibility graph such that every two vertices are 

connected by an edge”

Clique Definition

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

ab

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

We need two distinct configurations!
{A0,B0} and {A1} or {A1,B0} and {A0}? 

a

A clique represents a set of 
data structures that can 

share the same memory IPs
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Memory Cost Minimization

To determine how to partition the MCG such that the total memory cost is minimized

Clique Characterization

To determine the memory architecture of all cliques and their memory cost

Clique Enumeration

To define the list of admissible cliques in the MCG

How to Determine the Memory Subsystem
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A lightweight PLM controller is created for each compatibility set 
(clique) based on the bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

PLM Controller Generation

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom logic with negligible overhead, especially when 
the number of banks and their size is a power of two
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Industrial 32nm CMOS 
technology
• Memory library with 18 SRAMs

Impact of Optimizations
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Xilinx Virtex-7 FPGA
• Memory library with 6 

BRAM configurations
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Bram
Ctrl

PLM0 ACC0

Ctrl

ctrl

Creation of Parallel Architectures

PLM0

Ctrl

PLMm-1

…
ACC0

ctrl

Batch

Bram
Ctrl

A[MSBs]

PLM0
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PLMm-1

…
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ctrl
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…
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• Xilinx Zynq UltraScale+ MPSoC ZCU106 board
• CFD simulation of 50,000 elements

• Memory sharing allows us to fit more
kernels

Preliminary Evaluation
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DSL for representing the kernel

Moving to a system-level representation
• Simple example for a massively parallel architecture:

LOOP ~ KERNEL(S, D, u, v)
Possibility to decide the memory layout and configure DMA/prefetchers

based on the target architecture/platform

Next Step: System-Level DSL
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We are building a compilation flow based on 
LLVM MLIR for automatic specialization:
• MLIR Input – From DSL descriptions of the system 

functionality
• Data Organization – Determine which data resides 

off chip (also based on user/compiler annotations)
• Layout – Reorganize communication to exploit local 

memories (cache/PLM)
• Communication – Configure prefetcher to hide 

transfer latency
• Local Partitioning – Determine multi-bank PLM 

architecture (Mnemosyne1)
• HLS – Generate computation part (interfacing with 

existing HLS tools, e.g., open-source Vitis HLS 
frontend)

• HDL Output – Automated code generation and 
system-level integration based on the target platform

Next Step: Let’s Put Memory First

S. Soldavini and C. Pilato. "Compiler Infrastructure for Specializing 
Domain-Specific Memory Templates" LATTE’21

External Memory

Kernel

Logic to Resolve Addr
and Reduce Delay

Cache

DMA

Prefetcher

Multi-Channel
Controller

DRAM

HBM

Remote

PLM PLM

Multi port
(based on access

patterns)

Data Org Layout Communication
Local

Partitioning Kernel Gen

System-Level
Description

HDL

Intelligent Memory Logic
(Latency Insensitive)

Direct Access Memory
(Fixed Latency)
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We are developing a complete hardware architecture generation flow 
based on MLIR description of the system functionality

Platform-specific description
• HBM-based Xilinx Alveo
• IBM CloudFPGA
• …

Host code generation
• Based on platform libraries

to be developed for the specific
target

Olympus – Automated System-Level Integration
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• Determines the system-level architectures based on:
• Algorithm parallelism
• Characteristics of the target platform(s)
• Interfaces of the modules (HLS tools)

• Produces
• Synthesizable C++ code that includes:

• Accelerators and PLM generated with HLS
• Communication modules to match interfaces

• Standard AXI interfaces to the system (either cloudFPGA SHELL or HBM channels)
• May include “intelligent” policies to coordinate data transfers

• System configuration file to create the overall architecture
• Support for multiple computing units executing in parallel
• Interfacing with Xilinx HLS and synthesis tools

Olympus – System generation flow
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Automatic integration of memory optimizations for high-performance 
data transfers, such as:
• Double buffering to hide latency of host-FPGA data transfers
• Bus optimization (and data interleaving) for maximizing bandwidth (e.g., 256-bit 

AXI channels) – algorithms for efficient data layout on the bus
• Dataflow execution model to enable kernel pipelining – automatic (pre-HLS) code 

transformations

From MLIR to System Architecture

Double buffering Bus optimization Dataflow
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Results on HBM FPGA

Best performance: 103 GOPS
(118x faster than our "starting point")

Results are 6x better than HPC ones 
(~25x more energy efficient)

Possibility of integrating custom 
data formats and configure memories 
and data transfers accordingly
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Data management optimizations are becoming the key element for the 
creation of efficient FPGA architectures

HLS is now used not only to create accelerator kernels but also to 
generate the system-level architecture
• Portable solutions across multiple target platforms

Novel HBM architectures offer high bandwidth (that’s why are called 
high-bandwidth memory architectures… J) but their design is complex:
• Necessary to match application requirements and technology characteristics

Conclusions
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