
Protecting data and intellectual property in
accelerator-rich architectures with high-

level methods

Christian Pilato
Dipartimento di Elettronica, Informazione e Bioingegneria

christian.pilato@polimi.it

mailto:christian.pilato@polimi.it

©Christian Pilato, 2021 2

Increasing system complexity demands design & reuse approaches
• IP components may be coming from many vendors
• Designers need to assemble to create the SoC
• Most of the design houses are becoming fab-less

System Complexity and Hardware Security

2,
00

9

2,
01

0

2,
01

1

2,
01

2

2,
01

3

2,
01

4

2,
01

5

2,
01

6

2,
01

7

2,
01

8

2,
01

9

2,
02

0

2,
02

1

2,
02

2

2,
02

3

2,
02

4

0

20

40

60

80

100

pe
rc

en
to

fd
es

ig
n

% of designs with pre-existing components

0

50

100

150

Cybersecurity spending in US

0

50

100

150

bi
lli

on
s,

U
SD

(projected)

Hardware Security is the next
big issue for hardware design

©Christian Pilato, 2021 3

Supply chain is more and more distributed to reduce costs
• Many security threats
• Cost of addressing them is exponentially increasing from level to level

Globalization of the Supply Chain

Let’s focus on the early stages
of the design process…

©Christian Pilato, 2021 4

What (and How) to Protect?

How Sensitive Data is Elaborated by
the System-on-Chip Architectures
Analysis of the data elaboration to identify the
hardware modifications to improve the overall
security (prevent also software-based attacks)

Intellectual Property in the Design
of Components and Architectures
Analysis of the digital design (component or
architecture) to apply security protection
methods against IP theft and counterfeiting

Let's Raise the Abstraction Level
for Hardware Security

©Christian Pilato, 2021 5

Hardware Threats

Reverse Engineering and IP Theft
Methods to extract chip functionality from
circuit designs in order to create illegal
copies
• Steal the technology
• Cut design costs
• Enter into a market
• ...

Hardware Trojans
Malicious modifications of an existing chip
design to introduce an additional
functionality
• Steal data (e.g., through side channels)
• Harm the normal operations of the chips

(e.g., DoS attacks)
• Altern the chip functionality (e.g., errors)
• ...

Data Injection
Injection of spurious data to exploit software
or hardware/software vulnerabilities
• Buffer overflow attacks
• Memory corruption
• ...

Side Channel
Methods to create additional communication
channels to steal sensitive data
• Differential power analysis for key

extraction
• Timing channels for reverse enginnering
• ...

©Christian Pilato, 2021 6

Marking Data coming for untrusted sources with tags (taints)
• Trap to OS if tainted data are used in critical operations

• Pointer dereference, jump address, modified code or data, …

Data Protection & Information Flow Tracking

void preprocess (int v){
 struct results ret;
 if (v > 0)
 ret.x = 1;
 else
 ret.x = 4;
 ret.y = 10;
 ret.z = 5;
 return ret;
}

struct results
{
 int x;
 int y;
 int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
elaborate(ret);

get_IO

elaborate

preprocess

ATTACK

zyx

v

DIFT can protect from
several software-based

attacks

©Christian Pilato, 2021 7

Applications interleave tasks between hardware and software
• What happens when accelerators are executed before the potential attack point?

DIFT in Heterogeneous Architectures

void preprocess (int v){
 struct results ret;
 if (v > 0)
 ret.x = 1;
 else
 ret.x = 4;
 ret.y = 10;
 ret.z = 5;
 return ret;
}

struct results
{
 int x;
 int y;
 int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
elaborate(ret);

get_IO

elaborate

preprocess

ATTACK

zyx

v

get_IO

elaborate

preprocess

ATTACK

zyx

v

get_IO

elaborate

preprocess

DoS

zyx

v

Optimistic Pessimistic

©Christian Pilato, 2021 8

Applications interleaves tasks in both hardware and software
• What happens when accelerators are executed before the potential attack point?

DIFT in Heterogeneous Architectures

void preprocess (int v){
 struct results ret;
 if (v > 0)
 ret.x = 1;
 else
 ret.x = 4;
 ret.y = 10;
 ret.z = 5;
 return ret;
}

struct results
{
 int x;
 int y;
 int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
elaborate(ret);

get_IO

elaborate

preprocess

ATTACK

zyx

v

get_IO

elaborate

preprocess

Attack
prevented

zyx

v

Accelerators require
fine-grained support for

DIFT

©Christian Pilato, 2021 9

Data path extended with shadow logic and memory architecture with
taint memories
• HLS-based methodology for automatic generation based on HLS results

TaintHLS: DIFT Support within HLS

Datapath

reg_0 reg_1 reg_2

+

-

reg_3

reg_0 reg_1 reg_2

PM(+)

PM(-)

reg_3

mux mux

Controller
input_a input_b input_a input_b

return return

Hardware Module

local
memory

taint
memory

local
memory

taint
memory

data1

data2

taint1

taint2

Controller + Datapath

Hardware Module

local
memory

taint
memory

M
em

or
y

In
te

rf
ac

e

M
em

or
y

In
te

rf
ac

e

D
RA

M
 C

tr
l

…

DRAM

Se
ria

liz
er

Almost no performance overhead
with optimizations to limit area

overhead

©Christian Pilato, 2021 10

Microarchitectural solutions to propagate data and tags in parallel

Data Flow Consistency

Datapath

+

-

PM(+)

PM(-)

local
memory

taint
memory

address
data
tags

memory
interface

Datapath

- PM(-)

mux mux

Controller
muxmux

Datapath

reg_0

Controller

reg_0

resources shadow logic

WE

©Christian Pilato, 2021 11

Area overhead of each granularity wrt the baseline version
• Xilinx Virtex-7 FPGA @ 100 MHz

Area overhead

Baseline (no DIFT)
Variable-level DIFT

Word-level DIFT
Bit-level DIFT +31%

LU
T

O
ve

rh
ea

d
(N

or
m

al
ize

d)

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ICRC AES BFS Viterbi

Security depends on the
”quality” of the propagation

modules

©Christian Pilato, 2021 12

Attackers can exploit on-chip communications to make DoS attacks or
NoC-channel attacks
• Security regions can isolate tiles and packet encryption can prevent "sniffing"

Protection of On-Chip Communications

Dynamic security regions
can improve system

performance

©Christian Pilato, 2021 13

A tile can join/leave a security region upon request
• The smart routing search for an isolated path to protect the communication

Packets are encrypted with a group key to ensure only the tiles in the
region can read the data

Dynamic Security Regions

©Christian Pilato, 2021 14

System Effects

Communication isolation Link usage

0%

50%

100%

Number of security regions
2 3 4 5 6

Performance overhead (static) Performance overhead (dynamic)

0%

5%

10%

15%

20%

Number of security regions
2 3 4 5 6

Smart routing can achieve
high communication
isolation
• Increasing the link usage leads to more

power consumption

Dynamic regions remove
limitations on task mapping
• This can mitigate the performance

overhead (now around 17%)
• We can create architectures with more

security regions

Prototype in gem5+Noxim, and estimations on RTL descriptions

©Christian Pilato, 2021 15

Steal and claim ownership of IC and/or illegal use
• Malicious SoC integration house
• Malicious foundry
Real-life impact
• $4,000,000,000 loss per year to IC industry
• ARM detected IP piracy in 2000

IC/IP piracy and overbuilding

Se
lls

 li
ce

ns
e

fo
r 1

 c
op

y

3PIP
vendor

So
C I

nt
eg

rat
ion

Ho

us
e

Foundry

Makes 3 copies

©Christian Pilato, 2021 16

Logic obfuscation

Obfuscated
Netlist

k-bit key

2k netlists

2k key values

Designer
applies correct

key

©Christian Pilato, 2021 17

• Key Idea: obfuscate a design at the algorithm-level so that the
obfuscation is semantically meaningful

Raising the abstraction level

C/C++ RTL Netlist

always @ posedge clk
a[i] <= b[i] + c[i];
…..

for (i=0; i<N; i++)
c[i] = a[i]+b[i];
…..

High-Level
Synthesis

Logic
Synthesis

Semantic Information

©Christian Pilato, 2021 18

RTL Transformations for Security

RTL Secured Netlist

A
SS

U
R

E

R
TL

 S
yn

th
es

is

Secured RTL

Design key

Synthesizable Verilog

Compatible with any RTL
synthesis flow

Manual design

Pre-existing IPs

HLS flow

Behavioral
RTL*

*Independent of the input flow

In collaboration with

©Christian Pilato, 2021 19

Attacker has access to layout files and can reverse engineer the
functionality of the netlist
• Simulation and re-synthesis of obfuscated design
• No prior information on the design

The attacker has no activated chip
• Unknown input/output relationship (obviates SAT attacks)

Security is guaranteed when all input keys are equally plausible
• Make random guesses without knowing if it is correct
• No insights on whether one key is correct or not

Threat Model: Untrusted Foundry

©Christian Pilato, 2021 20

Easy-to-use command-line tool for Verilog-to-Verilog RTL elaboration
• Minimal requirements: runs with no modifications on DARPA Cloud
• Supports three high-level obfuscation techniques

ASSURE Features

Constant obfuscation of
sensitive data of the design

(e.g., coefficients)

Operation obfuscation of
arithmetic operations by
inserting additional ones

Control/branch
obfuscation masking of

control branches

a

b

*

test

T(F) F(T)

^* +

a b

c

1 0

©Christian Pilato, 2021 21

Obfuscated netlists are isomorphic (i.e., exactly the same) regardless of
the key choice
• Attacker cannot infer key from the design
• Thus ASSURE achieves 2K security for K key bits

ASSURE Security Analysis

Power Consumption (Baseline vs Obfuscated)

©Christian Pilato, 2021 22

Correctness of obfuscated RTL designs verified using Synopsys
Formality, i.e., with correct key, obfuscated design matches baseline

Power, Area, Speed: Overhead compared to baseline design using
Synopsys Design Compiler: Logic synthesis for area minimization
• Power: Total power consumption
• Area: Total chip area
• Speed: Delay of critical path(s)

Security: Formal proofs of obfuscation techniques
• 2number of input key bits

ASSURE Evaluation – PASS Metrics

©Christian Pilato, 2021 23

Benchmarks - Bits used for Locking
Constants Operations Branches Max Security

AES-192
(Datapath)

819,296
(102,403 constants)

429 1 2(820K+429+1)

IIR Filter
(Datapath)

608
(19 constants)

43 0 2(608+43+0)

I2C-Slave
(Controller)

244
(104 constants)

14 11 2(244+14+11)

Ethernet MAC
(Controller)

2414
(487 constants)

1217 218 2(2414+1217+218)

©Christian Pilato, 2021 24

Synthesized with Synopsys Design Compiler J2018.SP5 targeting Nangate 15nm library (area opt)

Security vs Area Trade-offs (AES)

All bits used for
obfuscating 8-bit
constants

Take-Aways
1. Constant obfuscation dominates the area overhead
2. Operator obfuscation has greater overhead per key-bit compared to const obfuscation
3. Branch obfuscation: Limited impact because there is only 1 branch
4. Full obfuscation => 3x area overhead (~820K key bits for constants; impractical?)

©Christian Pilato, 2021 25

Synthesized with Synopsys Design Compiler J2018.SP5 targeting Nangate 15nm library (area opt)

Security vs Area Trade-offs (E-Mac)

1/0/0

4/5/3

9/19/4

13/19/4

Take-Aways
1. Control-dominated design: 487 constants, 1217 operations and 218 branches
2. Branch obfuscation becomes as expensive as constant obfuscation
3. Operator obfuscation is always more expensive than constant and branch

obfuscation
4. However, compared to AES, operator obfuscation is less expensive for EthernetMac

©Christian Pilato, 2021 26

CAD Tools are Designed by Humans…
• Can you always trust a programmer?
Design houses (or competitors) may have interest to degradate IPs after
a certain amount of time
• Pushing customers to change device

CAD Tools as Potential Attack Vectors

High-Level
Description

RTL Design

High-Level
Synthesis

Gate-Level
Design

Logic Synthesis

So!ware
Descriptions
(C/C++, …)

Hardware
Descriptions

(Verilog/VHDL) Equivalence
Checking

Simulation-based
Verification

Input Vectors

Design Flow Verification Flow

Very difficult to check
non-functional properties

(Forbes, Oct 28, 2018)

©Christian Pilato, 2021 27

Accelerated battery discarging can motivate people to change device
• HLS knows which functional units are used in each clock cycle
• Unused units can be used to drain extra current

Battery Exhaustion Attack

+ *

FSM
in used states

activation

FU

FSM

When unused, the FU computes
fake operations with bit-flipped
inputs

Results of faked operations
are never stored into registers

This is no golden model
before HLS for power analysis

Selected functional units are
extended with extra logic
active only in specific states

Extra logic to increase
switching activity (more
dynamic power)

©Christian Pilato, 2021 28

We added a malicious pass after binding to add extra logic
• Tech library provides information about power consumption

Battery Exhaustion Attack in Bambu
po

w
er

 o
ve

rh
ea

d
(%

)

0

5

10

15

20

25

ad
pc

m

ba
ck

pr
op fft

gs
m

jp
eg

m
ip

s

m
ot

io
n

vi
te

rb
i

Select only the 5 most unused functional
units to minimize area overhead

ar
ea

 o
ve

rh
ea

d
(%

)

0

5

10

15

ad
pc

m

ba
ck

pr
op fft

gs
m

jp
eg

m
ip

s

m
ot

io
n

vi
te

rb
i

Minimize area overhead with a 30%
power overhead budget

©Christian Pilato, 2021 29

Security must be address at ALL levels
• Provably-secure algorithms
• Robust OS and protected communications
• Secure components, secure architectures,

secure component integration, etc…

Complete and integrated solutions are missing at all levels!
• Separation of (security) concerns are required for scalable solutions

What is Still Missing?

Application

OS

IP Cores Processor Cores Memories

Communication

Network

Creating awareness of the
problems is as much important
as proposing countermeasures

Thank you!

Christian Pilato, christian.pilato@polimi.it

mailto:christian.pilato@polimi.it

©Christian Pilato, 2021 31

• C. Pilato, S. Garg, K. Wu, R. Karri, F. Regazzoni, “Securing Hardware Accelerators: A New Challenge for High-
Level Synthesis,” Embedded Systems Letters 10(3): 77-80, 2018

• C. Pilato, K. Wu, S. Garg, R. Karri, F. Regazzoni, "TaintHLS: High-Level Synthesis for Dynamic Information Flow
Tracking," IEEE Trans. on CAD of Integrated Circuits and Systems 38(5): 798-808 (2019)

• M. Tibaldi, C. Pilato, "WallSoC: Protecting On-Chip Communications with Dynamic Security Regions," submitted
to Computer Architecture Letters (2021)

• C. Pilato, F. Regazzoni, R. Karri, S. Garg, "TAO: techniques for algorithm-level obfuscation during high-level
synthesis," in Proceedings of the Design Automation Conference (DAC) 2018: 155:1-155:6

• C. Pilato, A. B. Chowdhury, D. Sciuto, S. Garg, R. Karri, "ASSURE: RTL Locking Against an Untrusted Foundry,"
in IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2021)

• K. Basu, S. M. Saeed, C. Pilato, M. Ashraf, M. Thari Nabeel, K. Chakrabarty, R. Karri, "CAD-Base: An Attack
Vector into the Electronics Supply Chain," in ACM Trans. Design Autom. Electr. Syst. 24(4): 38:1-38:30 (2019)

• C. Pilato, K. Basu, F. Regazzoni, R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?" in IEEE Trans.
VLSI Syst. 27(4): 913-926 (2019)

Home Reading

