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Increasing system complexity demands design & reuse approaches
• IP components may be coming from many vendors
• Designers need to assemble to create the SoC
• Most of the design houses are becoming fab-less

System Complexity and Hardware Security
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Hardware Security is the next 
big issue for hardware design
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Supply chain is more and more distributed to reduce costs
• Many security threats
• Cost of addressing them is exponentially increasing from level to level

Globalization of the Supply Chain

Let’s focus on the early stages 
of the design process…
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What (and How) to Protect?

How Sensitive Data is Elaborated by 
the System-on-Chip Architectures
Analysis of the data elaboration to identify the 
hardware modifications to improve the overall 
security (prevent also software-based attacks) 

Intellectual Property in the Design 
of Components and Architectures
Analysis of the digital design (component or 
architecture) to apply security protection 
methods against IP theft and counterfeiting

Let's Raise the Abstraction Level 
for Hardware Security
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Hardware Threats

Reverse Engineering and IP Theft
Methods to extract chip functionality from 
circuit designs in order to create illegal 
copies
• Steal the technology 
• Cut design costs
• Enter into a market
• ...

Hardware Trojans
Malicious modifications of an existing chip 
design to introduce an additional 
functionality
• Steal data (e.g., through side channels)
• Harm the normal operations of the chips 

(e.g., DoS attacks)
• Altern the chip functionality (e.g., errors)
• ...

Data Injection
Injection of spurious data to exploit software 
or hardware/software vulnerabilities
• Buffer overflow attacks
• Memory corruption
• ...

Side Channel
Methods to create additional communication 
channels to steal sensitive data
• Differential power analysis for key 

extraction
• Timing channels for reverse enginnering
• ...
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Marking Data coming for untrusted sources with tags (taints)
• Trap to OS if tainted data are used in critical operations

• Pointer dereference, jump address, modified code or data, …

Data Protection & Information Flow Tracking

void preprocess (int v){
  struct results ret;
  if (v > 0) 
    ret.x = 1;
  else
    ret.x = 4;
  ret.y = 10;
  ret.z = 5;
  return ret;
}  

struct results
{
  int x;
  int y; 
  int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
elaborate(ret);

get_IO

elaborate

preprocess

ATTACK

zyx

v

DIFT can protect from 
several software-based 

attacks
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Applications interleave tasks between hardware and software
• What happens when accelerators are executed before the potential attack point?

DIFT in Heterogeneous Architectures

void preprocess (int v){
  struct results ret;
  if (v > 0) 
    ret.x = 1;
  else
    ret.x = 4;
  ret.y = 10;
  ret.z = 5;
  return ret;
}  

struct results
{
  int x;
  int y; 
  int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
elaborate(ret);

get_IO

elaborate

preprocess

ATTACK

zyx

v

get_IO

elaborate

preprocess

ATTACK

zyx

v

get_IO

elaborate

preprocess

DoS

zyx

v
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Applications interleaves tasks in both hardware and software
• What happens when accelerators are executed before the potential attack point?

DIFT in Heterogeneous Architectures

void preprocess (int v){
  struct results ret;
  if (v > 0) 
    ret.x = 1;
  else
    ret.x = 4;
  ret.y = 10;
  ret.z = 5;
  return ret;
}  

struct results
{
  int x;
  int y; 
  int z;
};
...
get_IO(&v);
...
ret = preprocess(v);
...
elaborate(ret);

get_IO

elaborate

preprocess

ATTACK

zyx

v

get_IO

elaborate

preprocess

Attack 
prevented

zyx

v

Accelerators require 
fine-grained support for 

DIFT
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Data path extended with shadow logic and memory architecture with 
taint memories
• HLS-based methodology for automatic generation based on HLS results

TaintHLS: DIFT Support within HLS
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Microarchitectural solutions to propagate data and tags in parallel

Data Flow Consistency

Datapath

+
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memory 
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Area overhead of each granularity wrt the baseline version
• Xilinx Virtex-7 FPGA @ 100 MHz 

Area overhead

Baseline (no DIFT)
Variable-level DIFT

Word-level DIFT
Bit-level DIFT +31%
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Security depends on the 
”quality” of the propagation 

modules
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Attackers can exploit on-chip communications to make DoS attacks or
NoC-channel attacks
• Security regions can isolate tiles and packet encryption can prevent "sniffing"

Protection of On-Chip Communications

Dynamic security regions
can improve system 

performance
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A tile can join/leave a security region upon request
• The smart routing search for an isolated path to protect the communication

Packets are encrypted with a group key to ensure only the tiles in the 
region can read the data

Dynamic Security Regions
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System Effects

Communication isolation Link usage

0%

50%

100%

Number of security regions
2 3 4 5 6

Performance overhead (static) Performance overhead (dynamic)
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20%

Number of security regions
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Smart routing can achieve 
high communication 
isolation
• Increasing the link usage leads to more 

power consumption

Dynamic regions remove 
limitations on task mapping
• This can mitigate the performance 

overhead (now around 17%)
• We can create architectures with more 

security regions

Prototype in gem5+Noxim, and estimations on RTL descriptions
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Steal and claim ownership of IC and/or illegal use
• Malicious SoC integration house
• Malicious foundry
Real-life impact
• $4,000,000,000 loss per year to IC industry
• ARM detected IP piracy in 2000

IC/IP piracy and overbuilding
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Logic obfuscation

Obfuscated
Netlist

k-bit key

2k netlists

2k key values

Designer 
applies correct 

key
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• Key Idea: obfuscate a design at the algorithm-level so that the 
obfuscation is semantically meaningful

Raising the abstraction level

C/C++ RTL Netlist

always @ posedge clk
a[i] <= b[i] + c[i];
…..

for (i=0; i<N; i++)
c[i] = a[i]+b[i];
…..

High-Level
Synthesis

Logic
Synthesis

Semantic Information
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RTL Transformations for Security

RTL Secured Netlist

A
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Secured RTL

Design key

Synthesizable Verilog

Compatible with any RTL 
synthesis flow

Manual design

Pre-existing IPs

HLS flow

Behavioral 
RTL*

*Independent of the input flow

In collaboration with 
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Attacker has access to layout files and can reverse engineer the
functionality of the netlist
• Simulation and re-synthesis of obfuscated design
• No prior information on the design

The attacker has no activated chip
• Unknown input/output relationship (obviates SAT attacks)

Security is guaranteed when all input keys are equally plausible
• Make random guesses without knowing if it is correct
• No insights on whether one key is correct or not

Threat Model: Untrusted Foundry
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Easy-to-use command-line tool for Verilog-to-Verilog RTL elaboration
• Minimal requirements: runs with no modifications on DARPA Cloud
• Supports three high-level obfuscation techniques

ASSURE Features

Constant obfuscation of 
sensitive data of the design 

(e.g., coefficients)

Operation obfuscation of 
arithmetic operations by 
inserting additional ones

Control/branch 
obfuscation masking of 

control branches
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Obfuscated netlists are isomorphic (i.e., exactly the same) regardless of 
the key choice
• Attacker cannot infer key from the design
• Thus ASSURE achieves 2K security for K key bits

ASSURE Security Analysis

Power Consumption (Baseline vs Obfuscated)
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Correctness of obfuscated RTL designs verified using Synopsys 
Formality, i.e., with correct key, obfuscated design matches baseline

Power, Area, Speed: Overhead compared to baseline design using 
Synopsys Design Compiler: Logic synthesis for area minimization
• Power: Total power consumption
• Area: Total chip area
• Speed: Delay of critical path(s)

Security: Formal proofs of obfuscation techniques
• 2number of input key bits 

ASSURE Evaluation – PASS Metrics
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Benchmarks - Bits used for Locking
Constants Operations Branches Max Security

AES-192 
(Datapath)

819,296
(102,403 constants)

429 1 2(820K+429+1)

IIR Filter 
(Datapath)

608
(19 constants)

43 0 2(608+43+0)

I2C-Slave
(Controller)

244
(104 constants)

14 11 2(244+14+11)

Ethernet MAC 
(Controller)

2414
(487 constants)

1217 218 2(2414+1217+218)
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Synthesized with Synopsys Design Compiler J2018.SP5 targeting Nangate 15nm library (area opt)

Security vs Area Trade-offs (AES)

All bits used for 
obfuscating 8-bit 
constants

Take-Aways
1. Constant obfuscation dominates the area overhead
2. Operator obfuscation has greater overhead per key-bit compared to const obfuscation
3. Branch obfuscation: Limited impact because there is only 1 branch
4. Full obfuscation => 3x area overhead (~820K key bits for constants; impractical?) 
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Synthesized with Synopsys Design Compiler J2018.SP5 targeting Nangate 15nm library (area opt)

Security vs Area Trade-offs (E-Mac)

1/0/0

4/5/3

9/19/4

13/19/4

Take-Aways
1. Control-dominated design: 487 constants, 1217 operations and 218 branches
2. Branch obfuscation becomes as expensive as constant obfuscation
3. Operator obfuscation is always more expensive than constant and branch 

obfuscation
4. However, compared to AES, operator obfuscation is less expensive for EthernetMac
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CAD Tools are Designed by Humans…
• Can you always trust a programmer?
Design houses (or competitors) may have interest to degradate IPs after
a certain amount of time
• Pushing customers to change device

CAD Tools as Potential Attack Vectors

High-Level 
Description

RTL Design

High-Level 
Synthesis

Gate-Level 
Design

Logic Synthesis

So!ware
Descriptions
(C/C++, …)

Hardware
Descriptions

(Verilog/VHDL) Equivalence 
Checking

Simulation-based 
Verification

Input Vectors

Design Flow Verification Flow

Very difficult to check 
non-functional properties

(Forbes, Oct 28, 2018)
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Accelerated battery discarging can motivate people to change device
• HLS knows which functional units are used in each clock cycle
• Unused units can be used to drain extra current

Battery Exhaustion Attack

+ *

FSM
in used states 

activation

FU

FSM

When unused, the FU computes
fake operations with bit-flipped 
inputs 

Results of faked operations 
are never stored into registers

This is no golden model 
before HLS for power analysis

Selected functional units are 
extended with extra logic 
active only in specific states

Extra logic to increase 
switching activity (more 
dynamic power)
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We added a malicious pass after binding to add extra logic
• Tech library provides information about power consumption

Battery Exhaustion Attack in Bambu
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Security must be address at ALL levels
• Provably-secure algorithms
• Robust OS and protected communications
• Secure components, secure architectures,

secure component integration, etc…

Complete and integrated solutions are missing at all levels!
• Separation of (security) concerns are required for scalable solutions

What is Still Missing?

Application

OS

IP Cores Processor Cores Memories

Communication

Network

Creating awareness of the 
problems is as much important 
as proposing countermeasures
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