
Business Informatics Group

Specifying Quantities in Software Models

Tanja Mayerhofer, Manuel Wimmer
Business Informatics Group, TU Wien, Austria

Universidad Complutense de Madrid
March 12, 2018

Loli Burgueño, Antonio Vallecillo
Atenea Research Group, Univ. Málaga, Spain

Moderador
Notas de la presentación
ABSTRACT: The correct representation of numerical values and their units is an essential requirement for the design and development of any engineering application that deals with real-world physical systems. Although solutions exist for several programming languages and simulation frameworks, this problem is not fully solved in the case of software models. This talk discusses how both measurement uncertainty and units can be effectively incorporated into software models, becoming part of their basic type systems and hence ensuring statically type- and unit-safe assignments and operations of those model elements representing physical quantities.

Los modelos…

 Tan antiguos como las Ingenierías (p.e. Vitruvius)
 Los ingenieros tradicionales siempre construyen modelos antes de construir

sus obras y artefactos
 Los modelos sirven para:

 Especificar el sistema
 Estructura, comportamiento,…
 Comunicarse con los distintos

stakeholders
 Comprender el sistema (si ya existe)
 Razonar y validar el sistema
 Detectar errores y omisiones

en el diseño
 Prototipado (ejecutar el modelo)
 Inferir y demostrar propiedades

 Guiar la implementación

2

Características de los modelos

 Abstractos
 Enfatizan ciertos aspectos… mientras ocultan otros

 Comprensibles
 Expresados en un lenguaje comprensible por los usuarios y stakeholders

 Precisos
 Fieles representaciones del objeto

o sistema modelado
 Predictivos

 Deben de poder ser usados
para inferir conclusiones correctas

 Baratos
 Mas fáciles y baratos de construir

y estudiar que el propio sistema

3

Preliminaries: Abstraction

“Being abstract is something profoundly different from
being vague... The purpose of abstraction is not to be
vague, but to create a new semantic level in which one
can be absolutely precise.”

Edsger Dijkstra

4

Preliminaries: The abstract-o-meter
by Christoph Niemann (http://www.christophniemann.com)

Great depiction of one of the biggest challenges in software development: deciding the
right level of abstraction for every task. Not too much. Not too little. You want to abstract
irrelevant technical details (for that phase) while keeping all the key information

5https://modeling-languages.com/essential-software-engineering-quotes-on-instagram

https://modeling-languages.com/essential-software-engineering-quotes-on-instagram

Motivation

Uncertainty and Units in Engineering Disciplines
 Engineers naturally think about uncertainty associated with measured values

and units of values
 Uncertainty and units are explicitly defined in models and considered in

model-based simulations

 Example: Coupled Clutches of Modelica Standard Library

6

phi.start = 0 rad (rotation angle)
w.start = 10 rad/s (angular velocity)

(Coupled Clutches Example of Modelica Standard Library)

Moderador
Notas de la presentación
CoupledClutches in Modelica Standard Library 3.0

Rotating body J1:
Absolute rotation angle: 0 rad
Absolute angular velocity of component: 10 rad/s

We have plenty of examples…

7

Moderador
Notas de la presentación
Uncertainty is unavoidable in certain domains, such as the currency exchange (an attribute that is expressed in USD and needs to be converted to GBP). Uncertainty is also intrinsic to any Engineering discipline, and most engineering modelling notations provide support for expressing measurement uncertainty (e.g. TOLERANCE) and units. Next slide shows more examples of notations for expressing them.

Units and Tolerance (Measurement Uncertainty) Examples

8

Moderador
Notas de la presentación
Most engineering modelling notations provide support for expressing measurement uncertainty (e.g. TOLERANCE) and units. This slide shows more examples of notations for expressing them.

However the situation is not the same when modelled in software! 

9

Moderador
Notas de la presentación
The problem is that the representation currently provided by software models (such as UML) is rather naïve, simplistic and poor… For example, all attributes and methods shown in the RoundObject class should be aware of tolerance and of units…

Measurement Uncertainty in Software Models – Some Attempts 

context RectangleSw::area() : Real = h*w

10

Moderador
Notas de la presentación
What we have seen in some industrial settings is that Engineerings that have to incorporate tolerance are forced to use some workarounds and very “dirty” tricks…

Uncertainty and Units in Software Engineering
 Very limited support for representing uncertainty and units in software models
 No support for considering such properties in model-based simulations
 Not part of their type systems!

 Example: How to represent a measured value in UML?

Motivation

11

Measure

value : Real

What kind of value is measured?
In which unit is the value measured?
What is the uncertainty of the
measurement method?

Moderador
Notas de la presentación
Our question is: Can we do better???

A Family of Robot Languages

12[di Ruscio et al, IEEE Access, 2017]

Example: The way we would like to model with units and uncertain data

13

duration = end.time.minus(start.time)
distance = end.position.minus(start.position)
avgVelocity = distance.divideBy(duration)
avgAcceleration =(end.velocity.minus(start.velocity)).divideBy(duration)

Start A B C N…

Measure M0 M1 M2 M3 MN

S1 S2 S3

start
Segment

+ /duration : Time
+ /distance : Length
+ /avgVelocity : LinearVelocity
+ /avgAcceleration : LinearAcceleration

Observation

+ time : Time
+ position : Length
+ velocity : LinearVelocity

1

end
1

Operations are type-safe
and handle uncertainty!

Values incorporate
uncertainty and units!

Moderador
Notas de la presentación
This is how we would like to model a simple example of a toy car

Example: The way we would like to model with units and uncertain data

14

startS1 : Segment
/duration = 10.0 ± 0.0019799 s
/distance = 10.0 ± 0.0014142 m
/avgVelocity = 1.0000000392 ± 0.000489 m/s
/avgAcceleration = 0.200000008 ± 0.0632468 m/s²

end

M0 : Observation
time = 0.0 ± 0.0014 s
position = 0.0 ± 0.001 m
velocity = 0.0 m/s

M1 : Observation
time = 10.0 ± 0.0014 s
position = 10.0 ± 0.001 m
velocity = 2.0 ± 0.02 m/s

Start A B C N…

Measure M0 M1 M2 M3 MN

S1 S2 S3

Moderador
Notas de la presentación
This is how we would like to model a simple example of a toy car

 A Quantity is an observable property of an object, event or system that can
be measured and quantified numerically. [QUDT]
 For example its Mass, Speed or Temperature

 Quantities are determined by two main attributes, kind and magnitude,
which are expressed by a numerical value and a unit of measure. [NIST SI]
 For example, 3.5 m/s

 The numerical value should also incorporate a statement of the associated
uncertainty [GUM]:
 “When dealing with real-world entities, models need to take into account the

inability to know, estimate or measure with complete precision the value of the
quantity… A measurement result can only be considered complete when it is
accompanied by a statement of the associated uncertainty” [GUM]

Quantities

15

Unit
name : String
symbol : String

UReal

value : Real
u : Real

Quantityvalue unit

…

Units and Dimensions Systems of Units

International System of Units (SI, ISO 80000)
 Base dimensions: Length, Mass, Time, Electric Current, Thermodynamic

Temperature, Amount of Substance, Luminous Intensity, Data Storage
Capacity, Entropy, Traffic Intensity, Level, Angle

 Base units: Meter (m), Kilogram (kg), Second (s), Ampere (A), Kelvin (K), Mole
(mol), Candela (cd), Bit (b), Shannon (Sh), Erlang (E), Decibel (dB), Radian (rad)

 Derived dimensions: 100+ dimensions derived from the base dimensions
e.g., Area, Volume, LinearVelocity.

 Derived units: 100+ units derived from the base units
e.g., Square Meter (m²), Cubic Meter (m³), Meter per Second (m/s)

Other Systems of Units
 Centimeter-Gram-Second System (CGS)
 Imperial System
 United States Customary System (USCS, USC)

16B. N. Taylor and A. Thompson. The International System of Units (SI). NIST, 2008. http://www.nist.gov/pml/pubs/sp811/.

Moderador
Notas de la presentación
For example, the Centimeter-Gram-Second System (CGS) is a variant of the metric system that has the same dimensions but uses centimeters, grams and seconds as base units.
The Imperial System used in UK also defines the same dimensions as the SI, but uses several different units: miles, feet, inches, stones, pounds, Fahrenheit degrees, etc.
In USA, the United States Customary System (also called USCS or USC) is a variant of the Imperial System that uses different units for fluids.

Since they define the same dimensions, conversions among these systems of units are possible

Uncertainty

1. Uncertainty: Quality or state that involves imperfect and/or unknown
information. It applies to predictions of future events, estimations, physical
measurements, or unknown properties of a system, due to:
 Underspecification
 Lack of knowledge of the system actual behavior or underlying physics
 Numerical or measurement errors
 Numerical approximations because values are too costly to measure
 Associated properties are not directly measurable or accessible

2. Measurement of Uncertainty: A set of possible states or outcomes where
probabilities are assigned to each possible state or outcome.

3. The ISO document "Guide to the Expression of Uncertainty in
Measurement" (GUM) describes the procedure for calculating
measurement uncertainty, as used by most Engineering Disciplines (but
Software, until very recently)

17[GUM] JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Moderador
Notas de la presentación
There are different definitions of Uncertainty, because it can apply to different aspects of the unknown. Here we are just concerned with “Uncertainty in Measurement” as defined and specified by GUM international standard

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Measurement Uncertainty Representation of Uncertainty

Definition: Standard Uncertainty [GUM]

 Uncertainty of the result of a measurement 𝑥𝑥 expressed as a standard
deviation 𝑢𝑢

 Representation: 𝑥𝑥 ± 𝑢𝑢 or 𝑥𝑥,𝑢𝑢

 Examples:

18[GUM] JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Normal distribution: (𝑥𝑥,𝜎𝜎) with mean 𝑥𝑥, standard deviation 𝜎𝜎

Interval 𝑎𝑎, 𝑏𝑏 : Uniform or rectangular distribution is assumed

(𝑥𝑥,𝑢𝑢) with 𝑥𝑥 = 𝑎𝑎+𝑏𝑏
2

, 𝑢𝑢 = (𝑏𝑏−𝑎𝑎)
2 3

Moderador
Notas de la presentación
When dealing with real-world entities, models need to take into account the inability to know, estimate or measure with complete precision the value of any quantity.
For instance, in physical systems measurement uncertainty normally arises in partially observable and/or stochastic environments, or when the system properties are not directly measurable or accessible.
On other occasions estimations are needed because the exact values are too costly to measure, or simply because they are unknown—for example, the duration of a given task in a software process or the life of a battery.
Sometimes values are based on expert judgments and estimations. Such estimates normally feature ranges, or intervals, not exact values, which determine the possible lower and upper bounds for the exact values, or are given by a probability distribution that represents a range of its variation.
This is why, in general, a measurement result that determines the value of a quantity is only complete when it is accompanied by a statement of the associated uncertainty [15, 16].

The GUM framework also identifies two ways of evaluating the uncertainty of a measurement,
Type A evaluation of uncertainty: the knowledge about the quantity X is inferred from repeated measured values
Type B evaluation of uncertainty: the knowledge about the quantity x is inferred from scientific judgment or other information concerning the possible values of the quantity.

In Type A evaluation, if X={x1,…,xn} is the set of measured values, then the estimated value x is taken as the mean of these values, and the associated uncertainty u as their experimental standard deviation, i.e., u^2=(1 / (n *(n-1))) Σ (xi – x)^2

In Type B evaluation of uncertainty, only lower and upper bounds [a,b] for the values of X are known, without any further information about the possible values of X within the interval. Thus, we can only assume a uniform or rectangular distribution of the values, and therefore x is calculated as the midpoint of the interval, x = (a+b)/2, and its associated variance is taken as u^2=(b-a)^2/12. Therefore, u=(b-a)/(2 sqrt{3}).

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Measurement Uncertainty Operations

 Computations with uncertain values have to respect the propagation of
uncertainty (uncertainty analysis)

Two Methods for Computing Aggregated Uncertainty
 Normal or Uniform distribution: Analytical (closed-form) solutions
 General case: Using samples (SIPMath Std.)

19
A. Vallecillo, C. Morcillo, and P. Orue. Expressing Measurement Uncertainty in Software Models. In Proc. of
QUATIC 2016, pages 1–10, 2016.

Moderador
Notas de la presentación
This is why uncertain values admit two implementations:
one that assumes that all the probability distributions of the individual uncertainties follow Normal or Uniform distributions allowing the application of analytic solutions to compute the aggregated uncertainty, and the other that deals with the general case where that assumption cannot hold requiring Monte Carlo simulations. Although being more specific, the first one is more efficient and represents the most usual case. The second one is more general, but requires more number crunching.

Assumptions / Facts

 Uncertainty needs to be part of any value representing a physical property
 Units should be an intrinsic part of any measured or calculated value
 Dimensions should act as types (not “units as types”)

 Same as when you add two “integers” — no matter if they are expressed in Octal,
Hex or Decimal bases

 For example, consider the following Java program:

int x, y, sum;
x = 0x13; y = 10; sum = x + y;
System.out.format(“The sum of %d and %d is %d (in decimal) and

%x (in hexa).%n", x, y, sum, sum);

Result: “The sum of 19 and 10 is 29 (in decimal) and 1d (in hexa).”

 The key are the dimensions, not the units in which values are expressed
 The unit-mismatch problem is no longer an issue (units always accompany values)

 The type system should ensure type-safe operations
 Not permitting illegal or invalid operations on dimensions (e.g. Time+Length)

20

Moderador
Notas de la presentación
These are the assumptions that we consider essential for representing Quantities in an effective and complete manner, and on which we base our work

Quantities in UML Models (MARTE and SysML)

 MARTE has stereotypes to decorate values with information about the units
they are expressed in, and with measurement uncertainty (“precision”)
 However:
 It is simply “decorative information”: no type checking, no operations for

aggregating uncertainty values
 Units used as types! (not “Dimensions as types”)

 SysML 1.4 provides the QUDV (Quantities, Units, Dimensions) and ISO 80000
library with all units and dimensions.
 However:
 No support for dealing with measurement uncertainty
 Types of values are still based on explicit units

 Compatibility problems when combining MARTE and SysML models

 NOTE: Of course, simulation tools (Modelica, Matlab/Simulink) and
mathematic languages (Mathematica) provide support for units, dimensions
and uncertainty, but they are at a different abstraction level

21

MARTE Specification of the Example

22

 We need to define new (proprietary!) dimensions and new units because
they are not provided by the MARTE library of basic types

 It is simply “decorative information”: New types and units do not have
methods, there are no operations for aggregating uncertainty values, no
static type-checking, no standard derivation rules for operations on values of
these types, no propagation of uncertainty

 Cumbersome and error prone process

SysML Specification of the Example (1/2)

23

 This is the simplest way of dealing with units in SysML (using the library
“SI ValueType Library”)

 Types of values are based on explicit units…
 No way of handling uncertainty
 It is simply “decorative information”: Values do not have methods, no static

type-checking, no derivation rules for operations on values of these types
.

[SysML v1,4, Sect 8.4.1, Fig 8.12]

SysML Specification of the Example (2/2)

24

 Although this approach uses dimensions, types of values are still based on units
 Users have to define their own Quantities (“value” and “myUncertainty”). No

standard and compatible way of handling uncertainty
 It is simply “decorative information”: New types and units do not have methods,

there are no operations for aggregating uncertainty values, no static type-
checking, no derivation rules for operations on values of these types

.

[SysML v1,4, Sect E.5.4.2, Fig. E.9]

SysML Specification of the Example (2/2)

25

 Although this approach uses dimensions, types of values are still based on units
 Users have to define their own Quantities (“value” and “myUncertainty”). No

standard and compatible way of handling uncertainty
 It is simply “decorative information”: New types and units do not have methods,

there are no operations for aggregating uncertainty values, no static type-
checking, no derivation rules for operations on values of these types

 High chances of mistakes in the definitions!!!

[SysML v1,4, Sect E.5.4.2, Fig. E.9]

Our Work

1. Type system for representing measurement uncertainty and units
 Kernel representation for Quantities (value + uncertainty)
 All SI Dimensions and their operations available (Length, Area, Volume,

Force, Torque, etc.) as specialization of “Quantity”
 All SI Units available

2. Algebra of operations for performing computations with units and
uncertain data
 Computational kernel for computing quantities
 Type-safe operations
 Length + Length returns a Length

Length / Time returns a LinearVelocity
Length + Time is not valid
 Independently from whether the Length is expressed in meters, feet or inches

 Propagation of uncertainty

3. Implementations in UML, OCL, fUML y Java 26

Example: The way we would like to model with units and uncertain data

27

duration = end.time.minus(start.time)
distance = end.position.minus(start.position)
avgVelocity = distance.divideBy(duration)
avgAcceleration =(end.velocity.minus(start.velocity)).divideBy(duration)

Start A B C N…

Measure M0 M1 M2 M3 MN

S1 S2 S3

start
SectionMeasure

+ /duration : Time
+ /distance : Length
+ /avgVelocity : LinearVelocity
+ /avgAcceleration : LinearAcceleration

Measure

+ time : Time
+ position : Length
+ velocity : LinearVelocity

1

end
1

Operations are type-safe
and handle uncertainty!

Values incorporate
uncertainty and units!

Moderador
Notas de la presentación
This is how we would like to model a simple example of a toy car

Modeling the Example with our Proposal

28

 Quantities as types for values (providing both unit and uncertainty info).
 Beyond “decorative” information:

 Quantities provide methods for aggregating uncertainty values
 Standard derivation rules for operations on values of these types
 Static type-checking of operations with quantities and automatic

conversion of units (no unit-mismatch problem)

Moderador
Notas de la presentación
This is exactly how it works with our approach: This is how the example is modeled with our implementation for Magic Draw

Example of Available Quantities (Dimensions)

29

Length

Length()
Length(u : Real)
Length(u : UReal, unit : Unit)
Length(q : Quantity)
Length(x : Real)
Length(x : Real, u : Real)
Length(x : Real, unit . Unit)
Length(x : Real, u : Real, unit : Unit)
add(r : Length) : Length
minus(r : Length) : Length
mult(r : Mass) : LengthMass
multr(: Thermodynamic Temperature) : LengthTemperature
mult(r : Length) : Area
mult(r : Area) : Volume
mult(r : MassPerUnitTime) : LinearMomentum
divideBy(r : Time) : LinearVelocity
divideBy(r : ThermodynamicTemperature) : LinearThermalExpansion
abs() : Length
neg() : Length
equals(r : Length) : Boolean
distinct(r : Length) : Boolean
floor() : Length
round() : Length
min(r : Length) : Length
max(r : Length) : Length

LinearVelocity

LinearVelocity()
LinearVelocity(u : Real)
LinearVelocity(u : UReal, unit : Unit)
LinearVelocity(q : Quantity)
LinearVelocity(x : Real)
LinearVelocity(x : Real, u : Real)
LinearVelocity(x : Real, unit . Unit)
LinearVelocity(x : Real, u : Real, unit : Unit)
add(r : LinearVelocity) : LinearVelocity
minus(r : LinearVelocity) : LinearVelocity
mult(r : MassPerUnitTime) : Force
mult(r : Mass) : LinearMomentum
mult(r : Time) : Length
divideBy(r : Time) : LinearAcceleration
abs() : LinearVelocity
neg() : LinearVelocity
equals(r : LinearVelocity) : Boolean
distinct(r : LinearVelocity) : Boolean
floor() : LinearVelocity
round() : LinearVelocity
min(r : LinearVelocity) : LinearVelocity
max(r : LinearVelocity) : LinearVelocity

Units Representation of Units

How is this implemented?

 Any unit can be derived from the base units:
𝐵𝐵1
𝑒𝑒1 ∗ 𝐵𝐵2

𝑒𝑒2… 𝐵𝐵𝑛𝑛
𝑒𝑒𝑛𝑛 where 𝐵𝐵𝑖𝑖 represents a base unit and 𝑒𝑒𝑖𝑖 its exponent

 Hence, any unit can be defined by the exponents 𝑒𝑒𝑖𝑖 of the base units:
𝑒𝑒1, 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛

 Examples

30

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚 = 𝑚𝑚1 ∗ 𝑘𝑘𝑘𝑘0 ∗ 𝑠𝑠0 ∗ 𝐴𝐴0 ∗ 𝐾𝐾0 ∗ 𝑐𝑐𝑐𝑐0 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚0 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟0 = 1, 0, 0, 0, 0, 0, 0, 0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚2 = 𝑚𝑚2 ∗ 𝑘𝑘𝑘𝑘0 ∗ 𝑠𝑠0 ∗ 𝐴𝐴0 ∗ 𝐾𝐾0 ∗ 𝑐𝑐𝑐𝑐0 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚0 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟0 = 2, 0, 0, 0, 0, 0, 0, 0

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚/𝑠𝑠 = 𝑚𝑚1 ∗ 𝑘𝑘𝑘𝑘0 ∗ 𝑠𝑠−1 ∗ 𝐴𝐴0 ∗ 𝐾𝐾0 ∗ 𝑐𝑐𝑐𝑐0 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚0 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟0 = 1, 0,−1, 0, 0, 0, 0, 0

R. Hodgson, P. J. Keller, J. Hodges, and J. Spivak. QUDT – Quantities, Units, Dimensions and Data Types Ontologies.
TopQuadrant, Inc. and NASA AMES Research Center, 2014. http://qudt.org/.

Units Conversion Between Units

 Conversion of quantity values from base units 𝐵𝐵𝑖𝑖 to derived units 𝐷𝐷𝑖𝑖
 Multiply the numerical value of the quantity value with conversion factor 𝑐𝑐𝑐𝑐
 Add an offset 𝑜𝑜 to the resulting numerical value

 Definition: 𝑥𝑥 𝐷𝐷𝑖𝑖 = (𝑥𝑥 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖 + 𝑜𝑜𝑖𝑖) 𝐵𝐵𝑖𝑖
 Examples:

 Conversion factors and offsets can be defined relative to the base units:
𝑐𝑐𝑐𝑐𝑖𝑖: 𝑐𝑐𝑐𝑐1, 𝑐𝑐𝑐𝑐1, … , 𝑐𝑐𝑐𝑐𝑛𝑛 , 𝑜𝑜𝑖𝑖: 𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑛𝑛

 Examples:

31

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘𝑘𝑘 : 𝑐𝑐𝑐𝑐 = 1000, 1, 1, 1, 1, 1, 1, 1 , 𝑜𝑜𝑜𝑜 = 0, 0, 0, 0, 0, 0, 0, 0

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 °𝐶𝐶 : 𝑐𝑐𝑐𝑐 = 1, 1, 1, 1, 1, 1, 1, 1 , 𝑜𝑜𝑜𝑜 = 0, 0, 0, 0, 273.15, 0, 0, 0

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑝𝑝𝑝𝑝𝑝𝑝 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑘𝑘𝑘𝑘/ℎ : 𝑐𝑐𝑐𝑐 = 1000, 1, 3600, 1, 1, 1, 1, 1 , 𝑜𝑜𝑜𝑜 = 0, 0, 0, 0, 0, 0, 0, 0

𝑥𝑥 𝑘𝑘𝑘𝑘 = 𝑥𝑥 ∗ 1000 + 0 𝑚𝑚
𝑥𝑥 °𝐶𝐶 = (𝑥𝑥 ∗ 1 + 273.15) K

𝑥𝑥 𝑘𝑘𝑘𝑘/ℎ = (𝑥𝑥 ∗ 1000
3600

+ 0) m/s

Units Model-Based Representation

 Domain Model

 Example Instances

32

Unit
name : String
symbol : String
dimensions : Real [12]
conversionFactor : Real [12]
offset : Real [12]

m : Unit
name = "Meter"
symbol = "m"
dimensions = <1,0,0,0,0,0,0,0,0,0,0,0>
conversionFactor = <1,1,1,1,1,1,1,1,1,1,1,1>
offset = <0,0,0,0,0,0,0,0,0,0,0,0>

km/h : Unit
name = "Kilometer per Hour"
symbol = "km/h"
dimensions = <1,0,-1,0,0,0,0,0,0,0,0,0>
conversionFactor = <1000,1,3600,1,1,1,1,1,1,1,1,1>
offset = <0,0,0,0,0,0,0,0,0,0,0,0>

Moderador
Notas de la presentación
8th dimension: Angle; unit: Radian

There is an additional supplementary dimension in the SI, for angles. The SI committee has not yet fully agreed on the nature of this angular dimension, because it is considered dimensionless. However, it is required to represent Angular Velocity (rad/s), Angular Acceleration (rad/s2), Area Angle (m2st) and Power per Angle (W/st). Therefore we decided to incorporate it, treating angular units like normal base units. So we will consider eight base dimensions. The base unit for Angle is Radian (rad). There is also a derived unit for solid angle measurement, the Steradian (st), which corresponds to rad2.

Units Operations

33

Unit

isBaseUnit() : Boolean
isCoherentDerivedUnit() : Boolean
isDimensionlessUnit() : Boolean

isCompatibleWith(Unit u) : Boolean
equals(Unit u) : Boolean

multiplyUnits(Unit u) : Unit
divideUnits(Unit u) : Unit
powerUnits(Real s) : Unit

Query nature of unit

Combine units

Compare units

Measurement Uncertainty Representation of Uncertainty

Definition: Standard Uncertainty [GUM]

 Uncertainty of the result of a measurement 𝑥𝑥 expressed as a standard
deviation 𝑢𝑢

 Representation: 𝑥𝑥 ± 𝑢𝑢 or 𝑥𝑥,𝑢𝑢

 Examples:

34[GUM] JCGM 100:2008. Evaluation of measurement data – Guide to the expression of uncertainty in measurement.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Normal distribution: (𝑥𝑥,𝜎𝜎) with mean 𝑥𝑥, standard deviation 𝜎𝜎

Interval 𝑎𝑎, 𝑏𝑏 : Uniform or rectangular distribution is assumed

(𝑥𝑥,𝑢𝑢) with 𝑥𝑥 = 𝑎𝑎+𝑏𝑏
2

, 𝑢𝑢 = (𝑏𝑏−𝑎𝑎)
2 3

Moderador
Notas de la presentación
When dealing with real-world entities, models need to take into account the inability to know, estimate or measure with complete precision the value of any quantity.
For instance, in physical systems measurement uncertainty normally arises in partially observable and/or stochastic environments, or when the system properties are not directly measurable or accessible.
On other occasions estimations are needed because the exact values are too costly to measure, or simply because they are unknown—for example, the duration of a given task in a software process or the life of a battery.
Sometimes values are based on expert judgments and estimations. Such estimates normally feature ranges, or intervals, not exact values, which determine the possible lower and upper bounds for the exact values, or are given by a probability distribution that represents a range of its variation.
This is why, in general, a measurement result that determines the value of a quantity is only complete when it is accompanied by a statement of the associated uncertainty [15, 16].

The GUM framework also identifies two ways of evaluating the uncertainty of a measurement,
Type A evaluation of uncertainty: the knowledge about the quantity X is inferred from repeated measured values
Type B evaluation of uncertainty: the knowledge about the quantity x is inferred from scientific judgment or other information concerning the possible values of the quantity.

In Type A evaluation, if X={x1,…,xn} is the set of measured values, then the estimated value x is taken as the mean of these values, and the associated uncertainty u as their experimental standard deviation, i.e., u^2=(1 / (n *(n-1))) Σ (xi – x)^2

In Type B evaluation of uncertainty, only lower and upper bounds [a,b] for the values of X are known, without any further information about the possible values of X within the interval. Thus, we can only assume a uniform or rectangular distribution of the values, and therefore x is calculated as the midpoint of the interval, x = (a+b)/2, and its associated variance is taken as u^2=(b-a)^2/12. Therefore, u=(b-a)/(2 sqrt{3}).

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

Measurement Uncertainty Model-Based Representation

 Domain Model

 Example Instances

35

UReal

x : Real
u : Real

1 : UReal

x = 10.0
u = 0.001

2 : UReal

x = 2.0
u = 0.02

10 ± 0.001 2 ± 0.02

Measurement Uncertainty Comparison

a: (1.0,1.5)  μa=1; σa=1.5
b: (5.0,1.0)  μb=5; σb=1

Comparison results

a = b: false
a < b: true
a > b: false

p(a = b): 0.10686633258850953 (gray area)
p(a < b): 0.8931336674114904 (red area)
p(a > b): 1.1102230246251565E-16
p(a <= b): 0.9999999999999999 (“<“ + “=“)
p(a >= b): 0.10686633258850964 (“>” + “=“)

36

Measurement Uncertainty Operations

37

UReal

add(r : UReal) : UReal
minus(r : UReal) : UReal
multiply(r : UReal) : UReal
divideBy(r : UReal) : UReal
power(s : Real) : UReal
…

lessThan(r : UReal) : UBoolean
lessThanOrEquals(r : UReal) : UBoolean
greaterThan(r : UReal) : UBoolean
…

Arithmetic operations

Comparison operations

Quantities Model-Based Representation

 Domain Model

 Example Instance: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 10 ± 0.001 𝑚𝑚

38

Unit
name : String
symbol : String
dimensions : Real [12]
conversionFactor : Real [12]
offset : Real [12]

UReal

x : Real
u : Real

Quantityvalue unit

m : Unit
name = "Meter"
symbol = "m"
dimensions = <1,0,0,0,0,0,0,0,0,0,0,0>
conversionFactor = <1,1,1,1,1,1,1,1,1,1,1,1>
offset = <0,0,0,0,0,0,0,0,0,0,0,0>

ur : UReal

x = 10.0
u = 0.001

q : Quantityvalue unit

Quantities Operations

39

Quantity

compatibleUnits(q : Quantity) : Boolean

convertTo(u : Unit) : Quantity
convertToSIUnits() : Quantity
…

add(q : Quantity) : Quantity
minus(q : Quantity) : Quantity
mult(q : Quantity) : Quantity
divideBy(q : Quantity) : Quantity
…

lessThan(q : Quantity) : UBoolean
lessThanOrEquals(q : Quantity) : UBoolean
greaterThan(q : Quantity) : UBoolean
…

Arithmetic operations

Comparison operations

Unit conversion operations

Unit comparison

Quantities Static Type Checking

 Domain Model

40

Unit
name : String
symbol : String
dimensions : Real [12]
conversionFactor : Real [12]
offset : Real [12]

UReal

x : Real
u : Real

Quantityvalue unit

Mass Time Electric
Current

Thermodynamic
Temperature

AmountOf
Substance

Luminosity
Intensity Angle

Linear
Acceleration ForcePower

Length

Linear
Velocity Resistance…

Quantity types for base dimensions

Quantity types for derived dimensions

Quantities Static Type Checking

 Domain Model

41

Unit
name : String
symbol : String
dimensions : Real [12]
conversionFactor : Real [12]
offset : Real [12]

UReal

x : Real
u : Real

Quantityvalue unit

Mass Time Electric
Current

Thermodynamic
Temperature

AmountOf
Substance

Luminosity
Intensity Angle

Linear
Acceleration ForcePower

Length

Linear
Velocity Resistance…

Quantity types for base dimensions

Quantity types for derived dimensions

Length

add(l : Length) : Length
minus(l : Length) : Length
mult(l : Length) : Area
mult(l : Area) : Volume
divideBy (t : Time) : LinearVelocity
…

Available Implementations

 Java: Reference implementation

 OCL (USE Tool):
 Specification of operations with

preconditions and postconditions
 Support for imperative use of

operations (SOIL)

 UML (Papyrus, MagicDraw):
 Support for specifying quantities and

computations with quantities
 Proof-of-concept prototype for executing

computations with quantities with fUML

 Download: https://github.com/moliz/moliz.quantitytypes

Implementation

42USE Tool: https://sourceforge.net/projects/useocl/ MagicDraw: http://www.nomagic.com/products/magicdraw.html
Eclipse Papyrus UML: https://eclipse.org/papyrus/

Java Example
Length initialPosition = new Length(0, 0.001, Units.Meter);
Length finalPosition = new Length(10, 0.001, Units.Meter);
Length distance = finalPosition.minus(initialPosition);

USE OCL Example
!new UReal(’ip’)
!ip.x : = 0.0
!ip.u := 0.001
!new Quantity(’initialPosition’)
!initialPosition.value := ip
...
!distance := finalPosition.minus(initialPosition)

Papyrus UML Example

https://github.com/moliz/moliz.quantitytypes
https://sourceforge.net/projects/useocl/
http://www.nomagic.com/products/magicdraw.html
https://eclipse.org/papyrus/

UML Implementation

43

 Quantities as types for values (providing both unit and uncertainty info).
 Beyond “decorative” information:

 Quantities provide methods for aggregating uncertainty values
 Standard derivation rules for operations on values of these types
 Static type-checking of operations with quantities and automatic

conversion of units (no unit-mismatch problem)

Moderador
Notas de la presentación
We have seen this, this slide is just to recap, to start discussing the next slides.

fUML Implementation

44

Types

fUML Implementation

45

Operations: Realized as function behaviors (syntactical elements)

…

…
…

+ Implementations
plugged into the VM

fUML Implementation

46

Example

Classes

Behavior

A Family of Robot Languages (Original)

47[di Ruscio et al, IEEE Access, 2017]

A Family of Robot Languages (with Dimensions)

48

49

https://ozobot.com/ y https://games.ozoblockly.com/

https://ozobot.com/
https://games.ozoblockly.com/

Modeling the robot with USE

50

Behaviour in USE

51

Executing the USE specs

52

Object diagram with the resulting system

53

Integración con el sistema de tipos de OCL (USE)

54

abstract class MovingObject
attributes

speed:UReal derive: (self.current.position-self.previous.position)/(self.current.time-self.previous.time)
timeToStation: UReal derive: (self.headsTo.position-self.current.position)/self.speed
speedS :String derive: self.speed.toString()
timeToStationS :String derive: self.timeToStation.toString()

end

class Person < MovingObject
attributes

arrivesOnTime:UBoolean derive: (self.timeToStation + 3) < self.targetTrain.timeToStation
arrivesOnTimeS:String derive: self.arrivesOnTime.toString()

end

Integración con el sistema de tipos de OCL (USE)

55

Ongoing and Future Work

 Implementation
 Evolve fUML proof-of-concept implementation to full implementation
 Alf implementation (textual action language for fUML)
 Full integration with Papyrus (already done for MagicDraw)
 Integration with the OCL/USE type system

 Refinement of the conceptual model of quantity types
 Different kinds of uncertainty (e.g., interval, different probability distributions)

 Representation of quantities
 More usable representation of quantities
 Integration with existing standards, e.g., MARTE and SysML
 Connection with other analysis/simulation tools (Modelica, Simulink, etc.)

 More extensive case studies
 Larger case studies to evaluate the usability and effectiveness of our notation
 Industrial case studies to analyze the propagation of uncertainty in real

situations 56

Thank You!

Questions?

Manuel Wimmer
wimmer@big.tuwien.ac.at

Antonio Vallecillo
av@lcc.uma.es

Tanja Mayerhofer
mayerhofer@big.tuwien.ac.at

Contact
Loli Burgueño
loli@lcc.uma.es

A. Vallecillo, C. Morcillo, and P. Orue. Expressing Measurement Uncertainty in Software Models. In Proc. of 10th Int.
Conf. on the Quality of Information and Communications Technology (QUATIC), 1–10, 2016.

T. Mayerhofer, M. Wimmer, A. Vallecillo. Adding Uncertainty and Units to Quantity Types in Software Models. In
Proc. of 2016 ACM SIGPLAN Int. Conf. on Software Language Engineering (SLE), ACM, 118–131, 2016.

Code Repository: https://github.com/moliz/moliz.quantitytypes

Web Page: http://atenea.lcc.uma.es/index.php/Main_Page/Resources/DataUncertainty

References

	Specifying Quantities in Software Models
	Los modelos…
	Características de los modelos
	Preliminaries: Abstraction
	Preliminaries: The abstract-o-meter �by Christoph Niemann (http://www.christophniemann.com)
	Motivation
	We have plenty of examples…
	Units and Tolerance (Measurement Uncertainty) Examples
	However the situation is not the same when modelled in software! 
	Measurement Uncertainty in Software Models – Some Attempts 
	Motivation
	A Family of Robot Languages
	Example: The way we would like to model with units and uncertain data
	Example: The way we would like to model with units and uncertain data
	Quantities
	Units and Dimensions	Systems of Units
	Uncertainty
	Measurement Uncertainty	Representation of Uncertainty
	Measurement Uncertainty	Operations
	Assumptions / Facts
	Quantities in UML Models (MARTE and SysML)
	MARTE Specification of the Example
	SysML Specification of the Example (1/2)
	SysML Specification of the Example (2/2)
	SysML Specification of the Example (2/2)
	Our Work
	Example: The way we would like to model with units and uncertain data
	Modeling the Example with our Proposal
	Example of Available Quantities (Dimensions)
	Units	Representation of Units
	Units	Conversion Between Units
	Units	Model-Based Representation
	Units	Operations
	Measurement Uncertainty	Representation of Uncertainty
	Measurement Uncertainty	Model-Based Representation
	Measurement Uncertainty	Comparison
	Measurement Uncertainty	Operations
	Quantities	Model-Based Representation
	Quantities	Operations
	Quantities	Static Type Checking
	Quantities	Static Type Checking
	Implementation
	UML Implementation
	fUML Implementation	
	fUML Implementation	
	fUML Implementation	
	A Family of Robot Languages (Original)
	A Family of Robot Languages (with Dimensions)
	https://ozobot.com/ y https://games.ozoblockly.com/
	Modeling the robot with USE
	Behaviour in USE
	Executing the USE specs
	Object diagram with the resulting system
	Integración con el sistema de tipos de OCL (USE)
	Integración con el sistema de tipos de OCL (USE)
	Ongoing and Future Work
	Thank You!
	Addendum:
	Quantities
	Addendum:
	Unit	Operations
	Unit	Operations
	Unit	Operations
	Quantity	Operations
	Addendum:
	fUML Implementation	
	fUML Implementation	
	fUML Implementation	
	fUML Implementation	
	fUML Implementation	
	Addendum:
	Uncertainty
	Uncertainty
	Measurement Uncertainty
	Measurement Uncertainty
	Representation of Measurement Uncertainty
	Operations
	Operations (cnt’d)
	Measurement Uncertainty in Software Models
	Our proposal
	Implementations
	Implementations
	Other issues
	Propagation of uncertainty
	Ongoing/Future work
	Artefacts
	Expressing �Measurement Uncertainty �in Software Models
	Example
	Example
	Example
	UML Implementation

