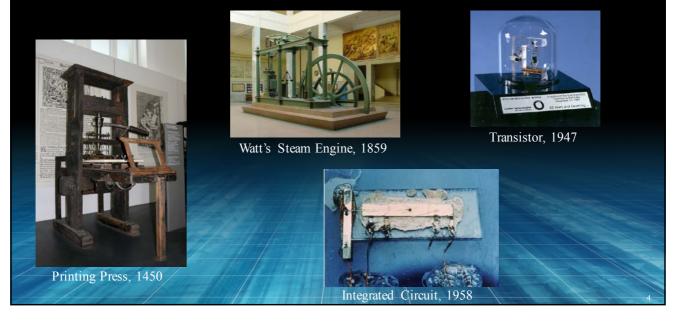
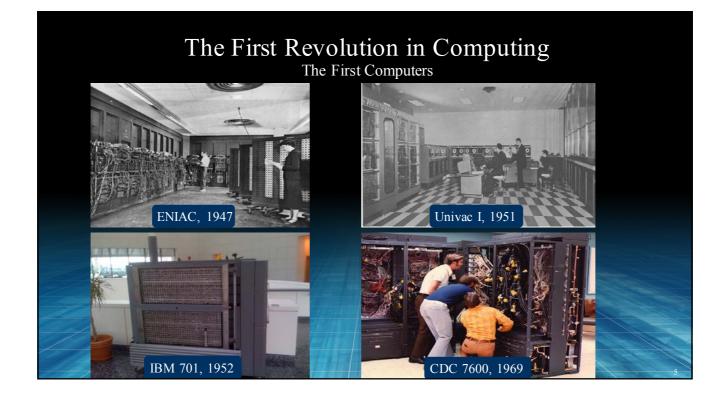


Agenda

- The next revolution in computing
- Key innovations to make it happen
- Concluding remarks

A Revolution


• From the Latin *revolutio*, "a turn around" is a fundamental change in power or organizational structures that takes place in a relatively short period of time



Tools, 2.5 million BC

More Recent Technology Revolutions

The Next Revolution: Ubiquitous Intelligent Computing

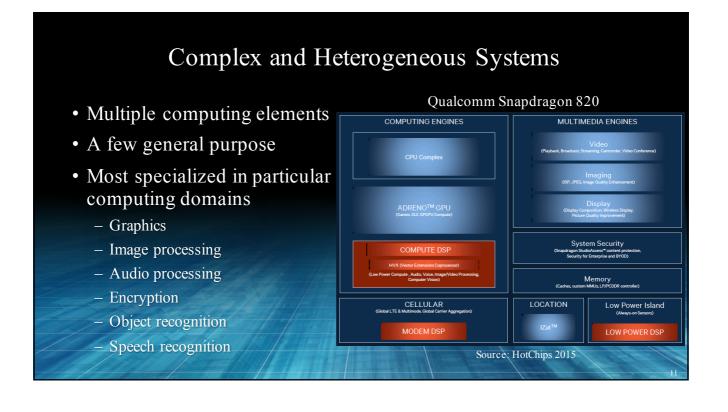
- Computing everywhere
 - On you
 - At home
 - At work
 - In the infrastructures
 - City
 - Roads
 - Public transportation
- Interconnected
 - To cooperate and share data
- Intelligent

Intelligent Computing

- Intelligence From "Mainstream Science on Intelligence" (1994)
 - Capability for comprehending our surroundings
 - Evaluate options and implications
 - Considering emotions and their effects
 - Proactively take decisions and autonomous actions
 - Learn from experience
- Artificial general intelligence
 - Human-like intelligence of a machine that could successfully perform any intellectual task that a human being can (Wikipedia)

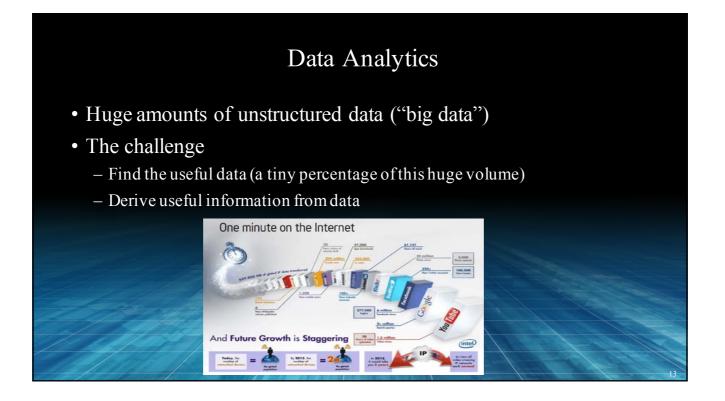
Intelligent Devices

- Replacing, complementing and amplifying our senses
 - Vision
 - Language processing
 - Touch
- Providing access to huge silos of information
- Processing a large amount of information in real time
- Providing real time responses
 - Personal assistants
 - SafetyEtc.



Perceptual Computing

Very Diverse

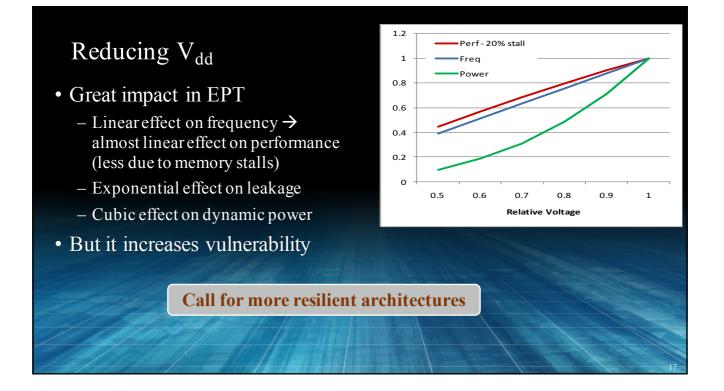

- Worn devices
- Body sensors
- Driving devices
- Home robots
- Healthcare devices
- Energy management
- Smart consumer electronics

Key Enabling Technologies

- Data analytics
- Device and data security
- Energy-efficient high performance

Security		
• Interoperability implies accessibility	S	Source: Symantec
 These devices will be used for very sensitiv activities Private data 	Total	Total Identities Exposed
 Private data Digital wallet House key 	253	552 Million
Personal data Control systems	+62%	+493%
Health careCar driving	156	93 Million
Access control (e.g. home)		
Threats are increasing		Li I

High Performance

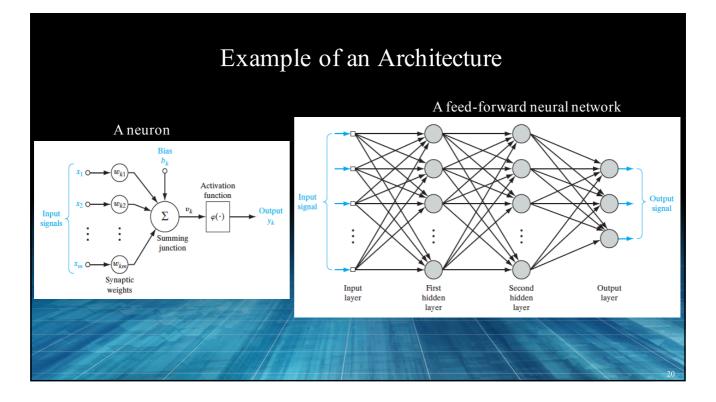

- Typical tasks performed by these devices will have high computing requirements
 - Pattern recognition
 - · Objects in real scenes
 - Spoken words
 - Facial identities and expressions
 - Anomalies (e.g. potential hazards when driving)
 - Natural language processing
 - Image and audio processing
 - Decision making

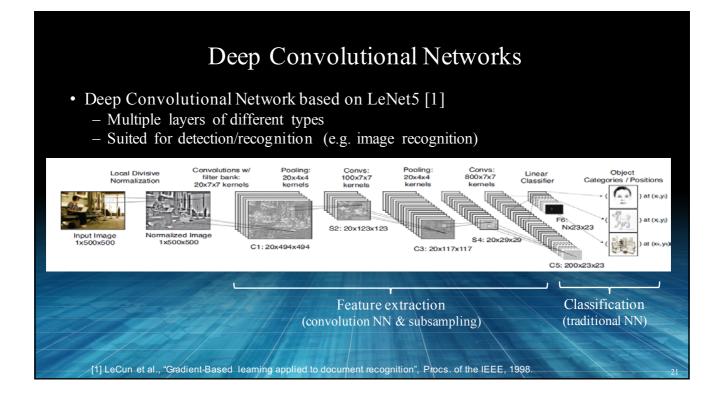
– Etc.

Energy Efficiency

- Small wireless devices with very limited battery capacity
- Performance ("intelligence") is limited by energy-efficiency
 - System power = EnergyPerTask * TaskPerSecond
 - To keep power constant
 - EPT has to decrease at the same pace as TPS (performance)

Reducing EPT is the key for delivering increased performance

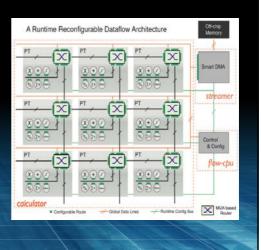

A Need for New Computing Models


- Many simple units
 - Simple units have low performance but consume much less energy
 - More parallelism provides the desired performance at much lower energy cost
- Much less data movement
 - For performance and energy reduction
- More specialized hardware
- New ISA and programming paradigms
 - Oriented to "intelligence"-related tasks (e.g. classification) rather than numerical algebra

-Based Neuron Model with Domain Wall Magn apse," IEEE Transactions on Nanotechnology

Example: Brain-Inspired Computing

- Human brain is very good at some of these intelligence-related tasks
 - E.g. object recognition
- Human brain uses a very different computing model with many good properties
 - Composed of many simple units
 - Highly parallel
 - Fault tolerant
 - With a very different programming paradigm: learning



Great Potential in Energy-Efficiency

	\mathbf{CPU}^1	$\mathbf{m}\mathbf{GP}\mathbf{U}^2$	GPU ³	neuV6 ⁴	neuIBM ⁵
Peak GOPs	10	182	1350	160	320
Real GOPs	1.1	54	294	147	294
Power (W)	30	30	220	10	0.6
GOPs/W	0.04	1.8	1.34	14.7	490

¹ CPU: Intel DuoCore, 2.7GHz, optimized C code

- ²⁻³ mGPU, GPU: a mobile Nvidia GT335m and a high-end GTX480
- ⁴ neuV6: neuFlow prototyped Xilinx Virtex 6 FPGA
- ⁵ neuIBM: 45nm IBM SOI process neuFlow (this work)

Pham et al., "NeuFlow: Dataflow Vision Processing SoC", IEEE MWSCAS, 2012.

Summary

- Next revolution in computing
 - A broad variety of intelligent devices
 - Ubiquitous
 - Applications very different to typical number crunching
- Calls for new computing paradigms
 - Orders of magnitude improvements in energy efficiency
 - Massive parallelism
 - Error tolerant
 - Reduction in data movement
 - More heterogeneous and specialized hardware
 - New programming paradigms

"The question of whether computers can think is about as relevant as the question whether submarines can swim", Edsger W. Dijkstra, 1984

Thank You!