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Motivation 

•  Online Social Networks (OSNs) are used everyday 
by billions of people 

•  They are invaluable to extract information and to 
actuate in advertising, marketing, politics, etc. 

•  A recurring problem in OSNs analyses is to identify 
“interesting” or “influential” users 

•  Usually the characterization of influential users is 
given a priori, and algorithms to find these 
characteristics are proposed 
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Characterizing Influential Users 

•  Several characterization that have been used for 
influential OSN users: 
� Large number of followers [Cha HBG 2010][Pastor-

Satorras Vespignani 2001] [Cohen EbAH 2001] 

� Capacity of engagement [Domingos Richardson 2001] 
[D’Agostino ANT 2015] 

� High infection capacity in an epidemic model [Kitsak 
GHLMSM 2010] [Morone Makse 2015] [Kempe Kleinberg 
Tardos 2015] 

•  Each of these characterizations may miss 
important interesting users 

•  They disregard many available attributes of the 
users 
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Contributions 

•  We propose a new unsupervised method to identify 
“interesting” users: Massive Unsupervised Outlier 
Detection (MUOD) 

•  MOUD finds outliers in the multidimensional data 
available from the users 

•  These outliers can later be explored further to 
identify their nature: MUOD identifies multiple 
types of outliers to make this easier 

•  MUOD scales to millions of users, so it is usable in 
large OSN 

•  We successfully tested MUOD in data of Google+ 
with 170M users over 2 years 
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Problem Statement 

•  We have a set of n OSN users 

•  For every user we have d attributes: 

� Connectivity: Number of friends, 
followers, centrality metrics, etc. 

� Activity: Number of posts, likes, 
reposts, etc. 

� Profile: user’s name, location (e.g., 
city where she lives), job, 
education, gender, and related data  

Un 
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Outliers 

•  The objective is to find 
the outliers in the set 
of OSN users 



Multidimensional Data 
•  Detecting outliers in multidimensional data is not 

easy 



Multidimensional Data 

•  With more than three dimensions, it is practically 
impossible to graphically visualize the observations 
using Cartesian coordinates. 

•  Convenient alternative: parallel coordinates 
[Wegman 1990] 

•  Observation x � Rd can be seen as real function 
defined on an arbitrary set of equally spaced 
domain points, e.g., {1, . . . , d }, and x can be 
expressed as x = {x (1), . . . , x (d)} [López-Pintado 
Romo 2009] 
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Functional Data Analysis 

•  Each observation/user is expressed as a curve, and 
the outliers are curves that are different from “the 
mass” [Hubert Rousseeuw Segaert 2015] in 

� Magnitude 

� Amplitude 

� Shape 
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The Method 

•  In MOUD we assign to each user an index that gives 
the outlier intensity of each type: 

� The shape index IS is based on the correlation 
coefficient between the functions 

� The amplitude index IA is based on the slope of linear 
regression curves between the functions 

� The magnitude index IM is based on the constant term of 
linear regression curves between the functions 

•  The higher the corresponding index, the more 
likely the user is an outlier 
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Shape Index 

Let us consider the set of users 

Where  each user is a vector of d values 

The shape index of a user x is computed as 

Where                 is the Pearson correlation 
coefficient 
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IS(x,X ) =

������
1

n

nX

j=1

⇢(x, xj)� 1

������
⇢(x, xj)



Shape Index Example 
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Magnitude and Amplitude Indices 

We use linear regression 

 

To obtain the magnitude and amplitude indices 

IM (x,X ) =
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Magnitude and Amplitude Indices 
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Which are Outliers? 
•  Given the index IS of each user we can obtain the 

set of outliers: 

� Sort by IS 

� Cut by point given by the tangent method [Louail 2014] 



Sets of Outliers 

•  Given the sets of outliers of shape, magnitude and 
amplitude, we have up to 7 different outliers 
subsets to consider, given their possible 
intersections 
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Performance Evaluation 
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Performance Results 
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Mixed Outliers 

26 



Decomposed Results 
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Implementation 

•  We have implemented the outlier detection 
algorithm MUOD in R 

•  We had to implement it in C++ and add it to the R 
system, since R functions did not allow the 
required memory control 

•  The implementation allows parallel execution in p 
cores, with time complexity O(n2d/p) 

•  It has been made available in a public repository: 

https://github.com/luisfo/muod.outliers
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Performance 
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MOUD in Google+ 

•  We have data of n=170M Google+ users and 2 years 
of activity (2011-2013), with d=21 features for 
each (of profile, activity, and connectivity) 

•  We use the 5.6M active 

•  We find: 

� 4K outliers of MAS 

� 2K outliers of MS 

� 2K outliers of AS 

� 294K outliers of only SHA 
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Exploration of the Outlier Sets 
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Epidemic Behavior 

•  We run 10 SI (susceptible-infected) simulations in 
the connected component (170M users) 
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Examples of Outlier Users 
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Conclusions and Future Work 

•  We propose to use an unsupervised outlier 
detection method to identify “interesting” users in 
OSN 

•  Then, explore what are the outliers 

•  We propose a new method that scales to millions 
of users and test it with a real data set 

•  In the future we plan to use the method in 
multiple contexts where identify outliers in 
multidimensional data is useful (fraud detection, 
faulty images, etc.) 
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Ongoing Work 

•  Data from Twitter (MAG 2, AMP 226, SHA 6871, MA 
5, MS 165, MAS 25, rest 138280) 

35 



Thank you!! 
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