Type and Proof Structures
for Concurrency

Aleksandar Nanevski
IMDEA Software Institute, Madrid

In collaboration with Ruy-Ley Wild, llya Sergey, Anindya Banerjee,
German Delbianco, Ignacio Fabregas,
Frantishek Farka, Joakim Ohman and Jesus Dominguez

Universidad Complutense de Madrid
April 19, 2022

Concurrent programs & their formal proofs

In programs

In formal proofs

Information hiding
Code abstraction

Code reuse

Proof of component depends
on state of another

Proofs overwhelmingly detailed

Must redo proofs for every new
use context

Applying programming ideas to proofs

Most approaches: automate spurious proof obligations.
Our approach: avoid proof obligations by hiding, abstraction & reuse.

Curry-Howard isomorphism: proofs = programs
- for purely-functional programs

Goal: new foundations for concurrent progs, specs & proofs

* Linguistic & math concepts that make proofs scale
* Do for proofs what structured programming did for programming

—

N

N

Outline

. Subjective state

. Specifying ADTs

. State transition systems as types

. Function types

complu.key - 19 April 2022

Starting point: Owicki-Gries auxiliary (ghost) state

{x = 0}
(z=az+1)|(z:=0+1)
{x = 2}

Notation: < e > - lock; execute e; unlock.

Prove without enumerating all thread interleaving

Starting point: Owicki-Gries auxiliary (ghost) state

Resource invariant: V= z » a+b

{w =0}
Cemat s
{o =2}

Proofs depend on thread topology

Say we want to show that a 3-way increment adds 3 to x.

z:i=x+1; I r:i=x+1; I r:=x+1;
a:=a+1 b:=b+1 c:=c+1

Requires a new resource invariant: V = x » a-+b+tc.

Problem: The two-thread subproof can’t be reused because it relies
onV =xwm atlb.

Proofs depend on thread topology

incr 0 skip

iner (n+l) = <x:=x+1> || incr n

complu.key - 19 April 2022

How to hide thread topology?

Idea: let’s turn Hoare triples into types

- dependent monads
- not a mere syntactic change

e [ne YV HER BT4QpepraV

S

“logical” variables

9

9

What is Hoare type for increment?

(z :=z+1; a:=a+1): ST {a=0}{a=1}Q(zra+Db)

(x :=az+1; b:=b+1): ST {b=0}{b=1}Q(zw»a+b)

Ab. vb.

11

What is Hoare type for increment?

(x :=2z+1; a :=a+1): ST {a=0}{a=1}Q(zra+b)

(z :=x+1; b :=b+1): ST {b=0}{b=1}Q(xra+b)

10

What is Hoare type for increment?

(z :=z+1; a :=a+1): ST {a=0}{a=1}Q(zra+b)
(z :=z+1; b:=b+1): ST {b=0}{b=1}Q(zra+b)

Aba vba

12

complu.key - 19 April 2022

Subjective ghost variables

Each thread and type should have two local variables.

- g - how much "we” added to &

- (o -how much ”others” added to L (novel kind of variable)

13

13

Relating to old ghosts

In 3-way increment:

| left thread | middle thread | right thread |
as | _a | b | c |
a, | b+c | c+a | a+b |

Resource invariant V= x+ (as + a,) is same in all threads

The variables as and a, are local but not independent.

14

Remodeling parallel composition

parent
{ as — b1+b2, QAo — C}
child, child,
parent”

14

15

Remodeling parallel composition

parent
{ as — b1+b2, Ao — c}
{as= b1, ao = batc } { as= b2, ao = c+b1 }
child, childa

parent”’

Once forked, child; is part of child2’s environment, and vice-versa.

16

complu.key - 19 April 2022

Remodeling parallel composition

parent
{ as = bi+b2, ao = ¢}
{ as= b, ao = br+c } { as= bz, ao = c+b1 }
child, child

{a=b" ao=0c"} { as= b, ao = 2"}

{as =bi"+b a, = c1-b2’ = c2~b1” }
parent’

Once forked, childy is part of child2’s environment, and vice-versa.

17

17

Subjective conjunction

(AN ST {Pl} {Ql} €9 ST {PQ} {QQ}
e1 | ex: ST {Py® Py} {Q1®Q2}

Subjective conjunction

e1: ST {P} {Q1} ex : ST {P} {Q2}
e1 | ex: ST {Pr® P} {Q1 ® Qa}

da, az. as = a1+a and

(al, az—l—a,o) = P; and (az, al—l—ao) = Ps

18

19

Subjective conjunction

e1: ST {P} {Q1} ex : ST {P>} {Q2}
er1|ex: ST {Pr® P} {Q1®Qa}

da: az. as = a1+az and

(al, az—{—ao) = P; and (az, a1—|—ao) = P>

Works for every (partial) commutative, associative
operation with unit (PCM)

20

20

complu.key - 19 April 2022

Relationship to separation logic Framing in separation logic

{Pite{@Qi} {P2}ea{Q2} if
{P1*Ps}er | ea{Q1*Q2}
¢: ST (P} {Q)
a; = P * Pyiff
then

da, a:. as = a1 U as and
e: ST{P*R} {Q *R}
a1 &= Prand a2 E P>

Where Qs is a heap variable and Uis disjoint heap union.

21 22

21 22
Framing in our system Fault avoidance
_ In separation logic:
if Verified programs don’t fault
e ST {as an c} {as b ay— d} if starting state satisfies precondition
then In our setting:

Well-typed programs don’t go wrong
e: ST{as = atr A ao= c-1} {as = btr A ap= d-r}

Conclusion: separation logic = type theory of state

23

24

23 24

complu.key - 19 April 2022

One program/ghost state/proof for all contexts
{CLS - O) Ao = _}

r:=x+1;
as ;= as + 1

{CLS - 1,@0 — _}

25

Code/proof reuse

{as =0,a, = —}
{as - 0,(10 - _} {as = O,CLO - _}

r:=x+ 1 r:=x+ 1
I as ;= as+ 1

as ;= as+ 1
{as =1,a,=—} {as =1,a, = —}
{as =2,a, =—}

Same code, ghost code, proof on both sides of Il.

26

26

25

Code/proof reuse

—1} skip {as =0,a, = —}

incr 0 = {as =0,a, =
incr (n+1) = {as =0,a, = —}
{as=0,a, = — {as =0,a, = -}
ri=x+ 1 .
0= a,+1 H incrn
{as =n,a, = =}

{as =1,a, = =}
{as=n+1,a,=-}

Same code/proof can be substituted into any context

27

Abstraction and information hiding

27

{CLS = 07a0 = _}
incr n

{as =n,a, = -}
28
28

complu.key - 19 April 2022

Abstraction and information hiding

incr n ST {as = 0,0, =~}
{as =Nn,0, = _}

29

29

Abstraction and information hiding

—

N

B

Outline

. Subjective state

. Specifying ADTs

. State transition systems as types

Function types

< {E:x—i—n’ > ST {CLS:O?CLO:_}
s ‘= as+n {as =n,a, =—}
30
30

31

How to specify stacks?

push(x) : [zs]. ST {a; = xs} {as = © :: zs}

pop () : [zs]. ST {as = zs}

{res = None A a; = zs = nil
v 3z xs’. res — Some x A

xs = x:: xs' A a; = xs}

Suitable for sequential case, but useless in concurrency

Need PCM for stack effects

32

32

complu.key - 19 April 2022

Histories of abstract ops

ty — s T i IS

/

“timestamp”

abstract push

33

33

Timestamps capture real time

t, —
tk# -
k+2
tk;:& —'_’ > time increased at
i every abstract operation

34

Subjectivity with histories

34

as :AbsOps by “us” Q. :AbsOps by “others”
t —
i o
tiio — k+1
tis —
L T
R tk+n -
35
35

Subjectivity with histories

t, —

as + Qo :AbsOps “total”’
i -
kszlu -

thizs =

thra — disjoint union

36

36

complu.key - 19 April 2022

Histories = Heaps as PCM

Hist = (timestamps —, AbsOp, +, @)

Heap = (pointers —, Values, +, @)

B

Separation logic = type theory of time as well

37

37

Method specs

push(x) : ST {a;,— 2}
{3t zs. as = t v (s, z:25) }

38

Method specs

push(x) : ST {as= @ A a,= k}
{3t zs. as = t » (s, x:25) A

Non-local condition

Similar to linearizability, but at user level

39

38

39

Method specs

pop : [k|. ST {as= @ A a, = k}
{if res is Some x then
3t xs. as = t v (x:xs, ©s) At > last k
else a;= @ A 3g. kK C g C a, A empty g}

Recording unsuccessful pop is optional

- specifying histories at user level may be useful for relaxing
linearizability and implementing other correctness conditions

40

40

complu.key - 19 April 2022

—

N

S

Outline

. Subjective state
. Specifying ADTs
. State transition systems as types

. Function types

a1

How to specify lock-free programs?

Owicki-Gries = Resource Invariant (i.e., set of states)
- must lock whole stack before modification

For lock-free programs, add transitions:
e: {PHQ} @ - atomic moves allowed to the programs
- variant of Rely-Guarantee [Jones 83,
Dinsdale-Young et al. 2010]
- only programs of equal resource type
compose

Also relevant:

- Abadi+Lamport’s refinement mappings
- Lamport's TLA
42

Example: spin locks

42

43

SPIN resource and ghost histories

id_t
State space (aka. invariant)
unlock_t< >lock_t r— last_ op (as+a0) A
alternate (as+ao)
Transitions:

lock_tr: —locked(astao) A as’ = as+ fresh(ast+a,) » L

unlock_tr: locked(astao) A as” = as + fresh(asta,) » U

44

complu.key - 19 April 2022

Ghost code chooses transitions

45

Ghost code chooses transitions

log successful locking
to history

Ghost code chooses transitions

[
-

46

47

Ghost code chooses transitions

If called when lock is
free, no change to history

48

complu.key - 19 April 2022

Specs for lock and unlock

lock |k]. ST {as= @ A ao=k }
{3t. as = tw» L A t > last k}@QSPIN

unlock : [k]. ST {as= @ A ao=k}
{3t. as =tw» UAt > last kv
as= @ A 3g. kC g C a, A locked gt QSPIN

49

Outline

—

. Subjective state

o

Specifying ADTs
3. State transition systems as types

4. Function types

Extending SPIN with new ghost state/
code

/\

X o X

unlock:

[\ g

> <
X . X
< = <>

<

50

Need functions to coerce programs
between resources

A

gMock:
[\ / g unlock: @
lock: @ [>q v
\/ h

<

unlock:

=

h™N\ock:

hNunlock:

<

> 1)

complu.key - 19 April 2022

Resource morphism

ty tw
/\ N\
t2<0 L

\ \

t t
f

Sy e Sy
fa

Action of morphism fon program e

s’ fs s’

53

Need invariant for the morphing loop

Ty tw = faswty
fs
S’U S’U)
e: fre:
= T ==
| Program e:: | Program f“e::
‘tv,' jtw,'...
54

55

Need invariant for the morphing loop

S/ fz /

v Sw € I
tv tw:fASwtv
[
Sy Sw € I

e Jis a simulation.

56

complu.key - 19 April 2022

Inference Rule

e: {P} {QjAOV

fre:{}{}@W

57

Inference Rule

e: (P} {Q}@V
fre: {In.} {In..}@W

Inference Rule

e: {P} {Q}@V
fre: {Infs' P} {In..}@W

S;UE I

S;L wae I
to ‘tw = fASwtv
b
Ps, SwE I
58

by = fASwtv

59

Inference Rule

e: {P} {Qt@V
fre: {InfS'PY {InfST Ql@W

/ I

/
Spe————— S,€ [

tv‘ ‘tw - fASwtv
fe

Sy +—— Syw€ I

60

complu.key - 19 April 2022

Morphing example

61

Attaching behaviours to spin locks

* Add n to a counter simultaneously with each locking.

lock_tr incr_tr n

Morphism definition

A\ ; FARSRA
€ ——> <]

\/ V=Y
5
Qs M (as , k9

Ja
lock _tr ety lock_tr D incr_tr n

unlock_tr f———i‘l—} unlock_tr D id_tr

63

AR A
unlock_tr<
Vb y
CSPIN
62
Expected morphed spec
AR
flock : {x.= 0} {x.= n} @ CSPIN <
Ve

frlock : {In fs 'PYUA fs ' Q) @CSPIN

lock : {as = @ A a, = h}
{3t. as = t sL A t > last h}
@ SPIN

64

complu.key - 19 April 2022

Expected morphed spec

Expected morphed spec
AR

Voo \f

<

flock i {k, = n ($ra) Afg (as =)}

{ke=n (¥1a) A [@t a. = t =L)} @CSPIN

ARl
Flock : {In [1Py {In f ' Q) @CSPIN <
. > > \] N v
lock : {as = @}
{3t. a; = t =L } 12 xo=mn(¥ra)
@ SPIN
65
Expected morphed spec
A=A
<
VA IY;

flock : {xs = n (¥1 a:) Aas = 2}

{xs=mn (#1as) A3t a; = t =L} @CSPIN

67

Expected morphed spec
AR

<
Ve

flock : {ks =10}

{ k. = n } @CSPIN

68

complu.key - 19 April 2022

Conclusions

—_

. Type theory very suitable for modelling concurrency

2. New foundations for concurrent reasoning
+ new abstractions for type/code/specs, new rules for proofs

w

. Many well-known concepts receive type-inspired modification
- similar to how structured programming changed programming

4. Separation logic = dependent type theory
- arises directly from Owicki-Gries approach via types

5. Hoare triples = dependent monads

69

Important technical ideas

1. Subjective variables (as and Q)

+ local access to global state and global invariants
- give rise to novel algebra of PCMs (POPL20)

2. Subjective histories
- separation logic = temporal+spatial reasoning
- user-level encoding of linearizability

3. Algebra of resources and morphisms
- type-level ~ Abadi-Lamport refinements
+ novel reasoning rule for morphism application

Implementation

1. Implementation as minimalistic system

+ 9 Hoare-style rules + Coq (shallow embedding)

2. Verified number of benchmark programs

locks, stacks, snapshots, flat combiner, graph marking,...

70

71

Q&A slides

72

72

complu.key - 19 April 2022

Differences with separation logic

Rules

In separation logic In our system

[T].{P}A{Q}@V ={e:STVA|VI.Vs € 2(V).Ps —> vrf e Q s}

wr—v3*y|—v42 a;, =P 3+ yw» 42 le(T—?T)—>T

vif_post :(Vus.Js > Qrvs—> Q,us) > Js—ovifeQrs—>vrfeQ;s

vrf_ret :(Qu)*s > vrf (retv) Qs

vrf_bnd :vrfe; (Ax.vrf (e; x) Q) s — vrf (x «— e1;(e2x)) Qs

vrf_par :((vrf e Q1) * (vrf ez Qz)) s — vrf (e1 || €2) (Av:A;XA,. (Q10.1) % (Q20.2)) s
where (P * Q)s = ds;s;.s =51 x5 APs; AQsy

(leads to theory of PCM vrf_frame : ((vif e Q1) *Q3) s — vrf e (Av. (Q; v) * Q2) s

functions and relations) vif_act :(As’.3s” v.[a] s" = (s",0) A(Q0)*s”")*s = vrf (a) Qs

vrf_morph : f*(vrf e Q) s,, — I's,, — vrf (morph fe) (Avs],. f(Qv)s;, Als],) sw
where f'Rs,, = Jsy.50 = fxsw ARsy

|2+ 3]hear * [1]ghost a.= (z» 3, 1)

fst as=x+» 3 Asnd as =1

dn. | » n2]heap * [p]ghost fst as = x+ (snd as+2)

rr3F¥yrd42 X as=xP 3 A a,= ym 42

73

73 74

Definitions Definitions

Definition 3.11. Given a morphism f : V. — W, an f-simulation is a predicate I on W-states

such that:
Definition 3.9. A resource morphism f : V. — W consists of two partial functions f5 : (W) — (1) if Is,,, and s, = f5 (s\) exists, and t, s, s,,, then there exist t,, = fa sy, t, and s/, such that
3 (V) (note the contravariance), and fp : (W) — A(V) — A (W), such that: Is!, ands), = fx(s},), and t,, Sy S,
(1) (locality of f5) there exists a function ¢ : M (W) — M (V) such that if f5; (s,y > p) = sy, then (2) if I'syy, and s, = f5(sy) exists, and s,, —W>* s,,» then I's,, and s;, = f5(s,) exists, and
there exists s;, such that s, = s;, > ¢ (p), and f5 (s, < p) =5, ¢ (p). Su —V>* s, Here, the relation s - s’ denotes that s other-steps by W to s’, i.e., that there

(2) (Iocality OffA) iffA (Sw Dp)(tv) = t,,, then fA (Sw QP)(tv) = by
(3) (other-fixity) if a, (s.) = a, (s1,) and fx (sv), f5 (s),) exist, then a, (fx (sw)) = a0 (f5 (s5,))-

exists a transition ¢t € A (W) such that ¢ s7 s’7. The transposition s’ = (a, s, a; s, as s) swaps
the subjective components of s, to obtain the view of other threads. The relation —W>* is the

reflexive-transitive closure of —, allowing for an arbitrary number of steps.
w

75 76

complu.key - 19 April 2022

Definitions

Definition B.2. A PCM morphism ¢ : A — B with a compatibility relation 14 is a partial
function from A to B such that:
1) ¢pla=1p
(2) if x Ly y,then ¢ x, gy exist,and px Lppy,and ¢ (x e y) = px e py
The morphism ¢ is total if 14 equals L 4.

Definition B.3. PCM A is a sub-PCM of a PCM B if there exists a total PCM morphism:: A — B
(injection) and a morphism p : B — A (retraction), such that:

W) pla)=a

(2) if b L, 1p theni(pb) =

(3) if (px) La(py)thenx L,y

77

Definitions

Definition B.5. Let R be an invariant compatibility relation on M (V). The sub-resource V /R is
defined with the same type, transitions and erasure as V, but with the PCM and the state space
defined as

(1) M(V/R) = M(V)/R

(2) seX(V/R)iff s€ Z(V) A (ass)R (ao s)

There is a generic resource morphism : : V. — V/R that is inclusion on states and identity on
transitions.

/—Owicki-Gries (|976)\

Rely-Guarantee (1983) CSL (2004)
! Bornat-a%OOS) RGSep (2007) \

SAGL (2007)

(20
l Gotsman-al (2007)
1 Deny-Guarantee (2009)

RG

(2009)
/— / C?P (2010)

HLRG (2010)

Jacobs-Piessens (2011)

RGSim (2012) HOCAP (2013)

/

Liang-Feng (2013) iCAP (2014)

CaReSL (2013) /

Iris (2015) CoLoSL (2015)

SCSL (2013)

TaDA (2014)

FCSL (2014)

79

79

78

complu.key - 19 April 2022

